References
1. Önder Türkmen, Mustafa Çirka and Suat Şensoy (2005), Initial
Evaluation of a New Edible Wild Rhubarb Species (Rheum ribes L.) with a
Modified Weighted Scaling Index Method, Pakistan Journal of Biological
Sciences 8 (5): 763-765, 2005.
2. Ruirui, Liu; Wang, Ailan; Tian, Xinmin; Wang, Dongshi; Liu, Jianquan
(2010). ”Uniformity of karyotypes in Rheum (Polygonaceae), a
species-rich genus in the Qinghai-Tibetan Plateau and adjacent regions”.
Caryologia Firenze. 63 (1): 82–90.
3. Korotyaev, Boris A.; Gültekin, Levent; Volkovitsh, Mark G.;
Dorofeyev, Vladimir I.; Konstantinov, Alexander S. (January 2016).
”Bioindicator beetles and plants in desertified and eroded lands in
Turkey”. Journal of Insect Biodiversity. 4 (1): 28, 29.
4. Krupitsky, Anatoly; Kolesnichenko, Kirill (March 2013). ”A new
species of the Callophrys mystaphia Miller, 1913—group from Iran
(Lepidoptera: Lycaenidae: Eumaeini)”. Zootaxa. 3619 (4): 460–461.
5. Seval Andıç, Yusuf Tunçtürk, Elvan Ocak and Senol Köse (2009), Some
Chemical Characteristics of Edible Wild Rhubarb Species (Rheum Ribes
L.), Research Journal of Agriculture and Biological Sciences, 5(6):
973-977, 2009.
6. Sayyah M, Boostani H, Pakseresht S, Malayeri A. Efficacy of
hydroalcoholic extract of Rheum ribes L. in treatment of major
depressive disorder. Journal of Medicinal Plant Research. 2009,
3(8):573-575.
7. Yildirim M, Degirmenci U, Akkapulu M, Comelekoglu U, Balli E, Metin
Ozcan T, Berköz M, Yalin AE, Yalin S. The effect of Rheum ribes L. on
oxidative stress in diabetic rats. J Basic Clin Physiol Pharmacol. 2020
Aug 15:/j/jbcpp.ahead-of-print/jbcpp-2020-0058/jbcpp-2020-0058.xml.
8. Fallah Huseini H, Heshmat R, Mohseni F, Jamshidi A, Alavi S, Ahvasi M
et al . The Efficacy of Rheum ribes L. Stalk Extract on Lipid Profile in
Hypercholesterolemic Type II Diabetic Patients: A Randomized,
Double-Blind, Placebo - Controlled, Clinical Trial. J. Med. Plants.
2008; 7 (27) :92-97.
9. Fallah Huseini, H., Heshmat, R., Mohseni, F., Jamshidi, A.H., Alavi,
S.H.R., Ahvazi, M. and Larijani, B. (2008). Effect of stem of Rheum
ribes L. based on blood lipids in type II diabetic patients with high
blood lipids. Iranian Journal of Medicinal Plants, 3(27), 92 - 97.
10. Hu, B.Y., Zhang, H., Meng, X.L., Wang, F. and Wang, P. (2014).
Aloeemodin from rhubarb (Rheum rhabarbarum) inhibits
lipopolysaccharide-induced in flammatory responses in RAW264.7
macrophages. Journal of Ethnopharmacol. http://dx.doi.org/10.1016/
j.jep.2014.03.059i.
11. Mun, S.C. and Mun, G.S. (2015). Development of an efficient callus
proliferation system for Rheum coreanum Nakai, a rare medicinal plant
growing in Democratic People’s Republic of Korea. Saudi Journal of
Biological Sciences, 5, 1-7.
12. Nikbakht, M.R., Esnaashari, S. and Heshmati Afshar, F. (2013).
Chemical Composition and General Toxicity of Essential Oil Extracted
from the Stalks and Flowers of Rheum Ribes L. Growing in Iran. Journal
of Reports in Pharmaceutical Sciences, 2(2), 165-170.
13. Sayyah, M., Boostani, H., Pakseresht, S and malayeri, A. (2009).
Efficacy of hydroalcoholic extract of Rheum ribes L. in treatment of
major depressive disorder. Journal of Medicinal Plants Research Vol.
3(8), 573-575.
14. Zare Chahouki, M.A., Yousefi, M., Zare Arani, M. and Zare Chahoki,
A. (2009). Effective factors on presence on Rheum ribes and preparing
the predicted map of it’s (Case study: Chah-torosh Rangelands of Yazd
province). Iranian Journal of Watershed Management Research (Pajouhesh
& Sazandegi), 85, 72-79.
15. Goppert T.M., Muller R.H. Adsorption kinetics of plasma proteins on
solid lipid nanoparticles for drug targeting. Int. J. Pharm.
2005;302:172–186.
16. Ogawara K., Furumoto K., Nagayama S., Minato K., Higaki K., Kai T.,
Kimura T. Pre-coating with serum albumin reduces receptor-mediated
hepatic disposition of polystyrene nanosphere: Implications for rational
design of nanoparticles. J. Control. Release. 2004;100:451–455.
17. Bahrami B., Hojjat-Farsangi M., Mohammadi H., Anvari E., Ghalamfarsa
G., Yousefi M., Jadidi-Niaragh F. Nanoparticles and targeted drug
delivery in cancer therapy. Immunol. Lett. 2017;190:64–83.
18. Ajnai G., Chiu A., Kan T., Cheng C.C., Tsai T.H., Chang J. Trends of
Gold Nanoparticle-based Drug Delivery System in Cancer Therapy. J. Exp.
Clin. Med. 2014;6:172–178.
19. Kong F.Y., Zhang J.W., Li R.F., Wang Z.X., Wang W.J., Wang W. Unique
Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging
Applications. Molecules. 2017;22:1445.
20. Singh H., Du J., Yi T.H. Green and rapid synthesis of silver
nanoparticles using Borago officinalis leaf extract: Anticancer
and antibacterial activities. Artif. Cells Nanomed. Biotechnol.
2017;45:1310–1316.
21. Zhang Q., Yang M., Zhu Y., Mao C. Metallic Nanoclusters for Cancer
Imaging and Therapy. Curr. Med. Chem. 2018;25:1379–1396.
22. Aggarwal P., Hall J.B., McLeland C.B., Dobrovolskaia M.A., McNeil
S.E. Nanoparticle interaction with plasma proteins as it relates to
particle biodistribution, biocompatibility and therapeutic efficacy.
Adv. Drug Deliv. Rev. 2009;61:428–437.
23. Dobrovolskaia M.A., Patri A.K., Zheng J., Clogston J.D., Ayub N.,
Aggarwal P., Neun B.W., Hall J.B., McNeil S.E. Interaction of colloidal
gold nanoparticles with human blood: Effects on particle size and
analysis of plasma protein binding profiles. Nanomed. Nanotechnol. Biol.
Med. 2009;5:106–117.
24. Chen D., Ganesh S., Wang W., Amiji M. Plasma protein adsorption and
biological identity of systemically administered nanoparticles.
Nanomedicine. 2017;12:2113–2135.
25. Chen Y.H., Tsai C.Y., Huang P.Y., Chang M.Y., Cheng P.C., Chou C.H.,
Chen D.H., Wang C.R., Shiau A.L., Wu C.L. Methotrexate conjugated to
gold nanoparticles inhibits tumor growth in a syngeneic lung tumor
model. Mol. Pharm. 2007;4:713–722.
26. Singh P., Kim Y.J., Singh H., Wang C., Hwang K.H., Farh Mel A., Yang
D.C. Biosynthesis, characterization, and antimicrobial applications of
silver nanoparticles. Int. J. Nanomed. 2015;10:2567–2577.
27. Singh P., Kim Y.J., Yang D.C. A strategic approach for rapid
synthesis of gold and silver nanoparticles by Panax ginsengleaves. Artif. Cells Nanomed. Biotechnol. 2016;44:1949–1957.
28. Singh P., Kim Y.J., Wang C., Mathiyalagan R., El-Agamy Farh M., Yang
D.C. Biogenic silver and gold nanoparticles synthesized using red
ginseng root extract, and their applications. Artif. Cells Nanomed.
Biotechnol. 2016;44:811–816.
29. Singh H., Du J., Singh P., Yi T.H. Ecofriendly synthesis of silver
and gold nanoparticles by Euphrasia officinalis leaf extract and
its biomedical applications. Artif. Cells Nanomed. Biotechnol.
2018;46:1163–1170.
30. Sanvicens N., Marco M.P. Multifunctional nanoparticles–properties
and prospects for their use in human medicine. Trends Biotechnol.
2008;26:425–433.
31. Wang F., Wang Y.C., Dou S., Xiong M.H., Sun T.M., Wang J.
Doxorubicin-tethered responsive gold nanoparticles facilitate
intracellular drug delivery for overcoming multidrug resistance in
cancer cells. ACS Nano. 2011;5:3679–3692.
32. Firer M.A., Laptev R., Kasatkin I., Trombka D. Specific destruction
of hybridoma cells by antigen-toxin conjugates demonstrate an efficient
strategy for targeted drug therapy in leukemias of the B cell lineage.
Leuk. Lymphoma. 2003;44:681–689.
33. Gellerman G., Baskin S., Galia L., Gilad Y., Firer M.A. Drug
resistance to chlorambucil in murine B-cell leukemic cells is overcome
by its conjugation to a targeting peptide. Anticancer Drugs.
2013;24:112–119.
34. Srinivas Raghavan B., Kondath S., Anantanarayanan R., Rajaram R.
Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic
effects on MCF-7 cancer cell line. Process Biochem. 2015;50:1966–1976.
35. Brown S.D., Nativo P., Smith J.A., Stirling D., Edwards P.R.,
Venugopal B., Flint D.J., Plumb J.A., Graham D., Wheate N.J. Gold
nanoparticles for the improved anticancer drug delivery of the active
component of oxaliplatin. J. Am. Chem. Soc. 2010;132:4678–4684.
36. Dixit S., Novak T., Miller K., Zhu Y., Kenney M.E., Broome A.M.
Transferrin receptor-targeted theranostic gold nanoparticles for
photosensitizer delivery in brain tumors. Nanoscale. 2015;7:1782–1790.
37. M. Baghayeri, B. Mahdavi, Z. Hosseinpor‐Mohsen Abadi, S. Farhadi,
Green synthesis of silver nanoparticles using water extract of Salvia
leriifolia: Antibacterial studies and applications as catalysts in the
electrochemical detection of nitrite, Applied Organometallic Chemistry,
32 (2018) e4057.
38. Gilad Y., Firer M.A., Rozovsky A., Ragozin E., Redko B., Albeck A.,
Gellerman G. “Switch off/switch on” regulation of drug cytotoxicity by
conjugation to a cell targeting peptide. Eur. J. Med. Chem.
2014;85:139–146.
39. Gilad Y., Noy E., Senderowitz H., Albeck A., Firer M.A., Gellerman
G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma
and non-small lung cancer cells. Biopolymers. 2015;106:160–171.
40. Kalimuthu K., Lubin B.C., Bazylevich A., Gellerman G., Shpilberg O.,
Luboshits G., Firer M.A. Gold nanoparticles stabilize
peptide-drug-conjugates for sustained targeted drug delivery to cancer
cells. J. Nanobiotechnol. 2018;16:34.
[41] S. Deepika, C.I. Selvaraj, S.M. Roopan, Screening bioactivities
of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract
synthesized silver nanoparticles on HCT116 cell line, Materials Science
and Engineering: C, 106 (2020) 110279.
[42] R. Renuka, K.R. Devi, M. Sivakami, T. Thilagavathi, R.
Uthrakumar, K. Kaviyarasu, Biosynthesis of silver nanoparticles using
Phyllanthus emblica fruit extract for antimicrobial application,
Biocatalysis and Agricultural Biotechnology, 24 (2020) 101567.
[43] M. Behravan, A.H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi,
A. Mirzapour, Facile green synthesis of silver nanoparticles using
Berberis vulgaris leaf and root aqueous extract and its antibacterial
activity, International journal of biological macromolecules, 124 (2019)
148-154.
[44] Y. Zhang, B. Mahdavi, M. Mohammadhosseini, E. Rezaei-Seresht,
S. Paydarfard, M. Qorbani, M. Karimian, N. Abbasi, H. Ghaneialvar, E.
Karimi, Green synthesis of NiO nanoparticles using calendula officinalis
extract: chemical charactrization, antioxidant, cytotoxicity, and
anti-esophageal carcinoma properties, Arabian Journal of Chemistry, 14
(2021) 103105.
[45] B. Mahdavi, S. Paydarfard, E. Rezaei‐Seresht, M. Baghayeri, M.
Nodehi, Green synthesis of NiONPs using Trigonella subenervis extract
and its applications as a highly efficient electrochemical sensor,
catalyst, and antibacterial agent, Applied Organometallic Chemistry, DOI
(2021) e6264.
[46] S. Dakshayani, M. Marulasiddeshwara, S. Kumar, R. Golla, S.
Devaraja, R. Hosamani, Antimicrobial, anticoagulant and antiplatelet
activities of green synthesized silver nanoparticles using Selaginella
(Sanjeevini) plant extract, International journal of biological
macromolecules, 131 (2019) 787-797.
[47] S. Hemmati, A. Rashtiani, M.M. Zangeneh, P. Mohammadi, A.
Zangeneh, H. Veisi, Green synthesis and characterization of silver
nanoparticles using Fritillaria flower extract and their antibacterial
activity against some human pathogens, Polyhedron, 158 (2019) 8-14.
48. Van de Broek B., Devoogdt N., D’Hollander A., Gijs H.L., Jans K.,
Lagae L., Muyldermans S., Maes G., Borghs G. Specific cell targeting
with nanobody conjugated branched gold nanoparticles for photothermal
therapy. ACS Nano. 2011;5:4319–4328.
49. Pitsillides C.M., Joe E.K., Wei X., Anderson R.R., Lin C.P.
Selective cell targeting with light-absorbing microparticles and
nanoparticles. Biophys. J. 2003;84:4023–4032.
50. Dickerson E.B., Dreaden E.C., Huang X., El-Sayed I.H., Chu H.,
Pushpanketh S., McDonald J.F., El-Sayed M.A. Gold nanorod assisted
near-infrared plasmonic photothermal therapy (PPTT) of squamous cell
carcinoma in mice. Cancer Lett. 2008;269:57–66.
51. Vankayala R., Lin C.C., Kalluru P., Chiang C.S., Hwang K.C. Gold
nanoshells-mediated bimodal photodynamic and photothermal cancer
treatment using ultra-low doses of near infra-red light. Biomaterials.
2014;35:5527–5538.
52. Cheng Y., Samia A.C., Meyers J.D., Panagopoulos I., Fei B., Burda C.
Highly efficient drug delivery with gold nanoparticle vectors for in
vivo photodynamic therapy of cancer. J. Am. Chem. Soc.
2008;130:10643–10647.
53. Zhu D.M., Xie W., Xiao Y.S., Suo M., Zan M.H., Liao Q.Q., Hu X.J.,
Chen L.B., Chen B., Wu W.T., et al. Erythrocyte membrane-coated gold
nanocages for targeted photothermal and chemical cancer therapy.
Nanotechnology. 2018;29:084002.
54. Dreaden E.C., Austin L.A., Mackey M.A., El-Sayed M.A. Size matters:
Gold nanoparticles in targeted cancer drug delivery. Ther. Deliv.
2012;3:457–478.
55. Kim C.K., Ghosh P., Pagliuca C., Zhu Z.J., Menichetti S., Rotello
V.M. Entrapment of hydrophobic drugs in nanoparticle monolayers with
efficient release into cancer cells. J. Am. Chem. Soc.
2009;131:1360–1361.
56. Weissleder R. A clearer vision for in vivo imaging. Nat. Biotechnol.
2001;19:316–317.
57. Huff T.B., Tong L., Zhao Y., Hansen M.N., Cheng J.X., Wei A.
Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine.
2007;2:125–132.
58. El-Sayed I.H., Huang X., El-Sayed M.A. Selective laser photo-thermal
therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold
nanoparticles. Cancer Lett. 2006;239:129–135.
59. (a) M. M. Zangeneh, A. Zangeneh, E. Pirabbasi, R. Moradi, M. Almasi.
Appl. Organometal. Chem. 33 (2019) e5246. DOI: 10.1002/aoc.5246. (b) B.
Mahdavi, S. Paydarfard, M. M. Zangeneh, S. Goorani, N. Seydi, A.
Zangeneh. Appl. Organometal. Chem. 33 (2019) e5248.
DOI:10.1002/aoc.5248. (c) A. R. Jalalvand, M. Zhaleh, S. Goorani, M. M.
Zangeneh, N. Seydi, A. Zangeneh, R. Moradi, J. Photochem. Photobiol. B.
192 (2019) 103–112. (d) A. Zangeneh, M.M. Zangeneh, Appl. Organometal.
Chem. 33 (2019) e5290. DOI:10.1002/aoc.5290.
60. Gondivkar S.M., Gadbail A.R., Choudhary M.G., Vedpathak P.R.,
Likhitkar M.S. Photodynamic treatment outcomes of potentially-malignant
lesions and malignancies of the head and neck region: A systematic
review. J. Investig. Clin. Dent. 2018;9:e12270.
61. Kostovic K., Pastar Z., Ceovic R., Mokos Z.B., Buzina D.S.,
Stanimirovic A. Photodynamic therapy in dermatology: Current treatments
and implications. Coll. Antropol. 2012;36:1477–1481.
62. Khlebtsov B., Panfilova E., Khanadeev V., Bibikova O., Terentyuk G.,
Ivanov A., Rumyantseva V., Shilov I., Ryabova A., Loshchenov V., et al.
Nanocomposites containing silica-coated gold-silver nanocages and
Yb-2,4-dimethoxyhematoporphyrin: Multifunctional capability of
IR-luminescence detection, photosensitization, and photothermolysis. ACS
Nano. 2011;5:7077–7089.
63. Gao L., Fei J., Zhao J., Li H., Cui Y., Li J. Hypocrellin-Loaded
Gold Nanocages with High Two-Photon Efficiency for
Photothermal/Photodynamic Cancer Therapy in Vitro. ACS Nano.
2012;6:8030–8040.
64. Seo S.H., Kim B.M., Joe A., Han H.W., Chen X., Cheng Z., Jang E.S.
NIR-light-induced surface-enhanced Raman scattering for detection and
photothermal/photodynamic therapy of cancer cells using methylene
blue-embedded gold nanorod@SiO2 nanocomposites.
Biomaterials. 2014;35:3309–3318.
65. Menon J.U., Jadeja P., Tambe P., Vu K., Yuan B., Nguyen K.T.
Nanomaterials for photo-based diagnostic and therapeutic applications.
Theranostics. 2013;3:152–166.
66. Tomic S., Ethokic J., Vasilijic S., Ogrinc N., Rudolf R., Pelicon
P., Vucevic D., Milosavljevic P., Jankovic S., Anzel I., et al.
Size-dependent effects of gold nanoparticles uptake on maturation and
antitumor functions of human dendritic cells in vitro. PLoS ONE.
2014;9:e96584.
67. Lucky S.S., Soo K.C., Zhang Y. Nanoparticles in Photodynamic
Therapy. Chem. Rev. 2015;115:1990–2042.
68. (a) M.M. Zangeneh, Appl. Organometal. Chem. 33 (2019) e5295.
DOI:10.1002/aoc.5295. (b) G. Mohammadi, M.M. Zangeneh, A. Zangeneh, Z.M.
Siavosh Haghighi, Appl. Organometal. Chem. 33 (2019) e5136.
DOI:10.1002/aoc.5136. (c) M. M. Zangeneh, S. Bovandi, S. Gharehyakheh,
A. Zangeneh, P. Irani, Appl. Organometal. Chem. 33 (2019) e4961. (d) M.
M. Zangeneh, Z. Joshani, A. Zangeneh, E. Miri, Appl. Organometal. Chem.
33 (2019) e5016. (e) A. Zangeneh, M. M. Zangeneh, R. Moradi. Appl.
Organometal. Chem. 33 (2019) e5247. DOI:10.1002/aoc.5247.
69. Allison R., Moghissi K., Downie G., Dixon K. Photodynamic therapy
(PDT) for lung cancer. Photodiagn. Photodyn. Ther. 2011;8:231–239.