References
1. Önder Türkmen, Mustafa Çirka and Suat Şensoy (2005), Initial Evaluation of a New Edible Wild Rhubarb Species (Rheum ribes L.) with a Modified Weighted Scaling Index Method, Pakistan Journal of Biological Sciences 8 (5): 763-765, 2005.
2. Ruirui, Liu; Wang, Ailan; Tian, Xinmin; Wang, Dongshi; Liu, Jianquan (2010). ”Uniformity of karyotypes in Rheum (Polygonaceae), a species-rich genus in the Qinghai-Tibetan Plateau and adjacent regions”. Caryologia Firenze. 63 (1): 82–90.
3. Korotyaev, Boris A.; Gültekin, Levent; Volkovitsh, Mark G.; Dorofeyev, Vladimir I.; Konstantinov, Alexander S. (January 2016). ”Bioindicator beetles and plants in desertified and eroded lands in Turkey”. Journal of Insect Biodiversity. 4 (1): 28, 29.
4. Krupitsky, Anatoly; Kolesnichenko, Kirill (March 2013). ”A new species of the Callophrys mystaphia Miller, 1913—group from Iran (Lepidoptera: Lycaenidae: Eumaeini)”. Zootaxa. 3619 (4): 460–461.
5. Seval Andıç, Yusuf Tunçtürk, Elvan Ocak and Senol Köse (2009), Some Chemical Characteristics of Edible Wild Rhubarb Species (Rheum Ribes L.), Research Journal of Agriculture and Biological Sciences, 5(6): 973-977, 2009.
6. Sayyah M, Boostani H, Pakseresht S, Malayeri A. Efficacy of hydroalcoholic extract of Rheum ribes L. in treatment of major depressive disorder. Journal of Medicinal Plant Research. 2009, 3(8):573-575.
7. Yildirim M, Degirmenci U, Akkapulu M, Comelekoglu U, Balli E, Metin Ozcan T, Berköz M, Yalin AE, Yalin S. The effect of Rheum ribes L. on oxidative stress in diabetic rats. J Basic Clin Physiol Pharmacol. 2020 Aug 15:/j/jbcpp.ahead-of-print/jbcpp-2020-0058/jbcpp-2020-0058.xml.
8. Fallah Huseini H, Heshmat R, Mohseni F, Jamshidi A, Alavi S, Ahvasi M et al . The Efficacy of Rheum ribes L. Stalk Extract on Lipid Profile in Hypercholesterolemic Type II Diabetic Patients: A Randomized, Double-Blind, Placebo - Controlled, Clinical Trial. J. Med. Plants. 2008; 7 (27) :92-97.
9. Fallah Huseini, H., Heshmat, R., Mohseni, F., Jamshidi, A.H., Alavi, S.H.R., Ahvazi, M. and Larijani, B. (2008). Effect of stem of Rheum ribes L. based on blood lipids in type II diabetic patients with high blood lipids. Iranian Journal of Medicinal Plants, 3(27), 92 - 97.
10. Hu, B.Y., Zhang, H., Meng, X.L., Wang, F. and Wang, P. (2014). Aloeemodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced in flammatory responses in RAW264.7 macrophages. Journal of Ethnopharmacol. http://dx.doi.org/10.1016/ j.jep.2014.03.059i.
11. Mun, S.C. and Mun, G.S. (2015). Development of an efficient callus proliferation system for Rheum coreanum Nakai, a rare medicinal plant growing in Democratic People’s Republic of Korea. Saudi Journal of Biological Sciences, 5, 1-7.
12. Nikbakht, M.R., Esnaashari, S. and Heshmati Afshar, F. (2013). Chemical Composition and General Toxicity of Essential Oil Extracted from the Stalks and Flowers of Rheum Ribes L. Growing in Iran. Journal of Reports in Pharmaceutical Sciences, 2(2), 165-170.
13. Sayyah, M., Boostani, H., Pakseresht, S and malayeri, A. (2009). Efficacy of hydroalcoholic extract of Rheum ribes L. in treatment of major depressive disorder. Journal of Medicinal Plants Research Vol. 3(8), 573-575.
14. Zare Chahouki, M.A., Yousefi, M., Zare Arani, M. and Zare Chahoki, A. (2009). Effective factors on presence on Rheum ribes and preparing the predicted map of it’s (Case study: Chah-torosh Rangelands of Yazd province). Iranian Journal of Watershed Management Research (Pajouhesh & Sazandegi), 85, 72-79.
15. Goppert T.M., Muller R.H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 2005;302:172–186.
16. Ogawara K., Furumoto K., Nagayama S., Minato K., Higaki K., Kai T., Kimura T. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: Implications for rational design of nanoparticles. J. Control. Release. 2004;100:451–455.
17. Bahrami B., Hojjat-Farsangi M., Mohammadi H., Anvari E., Ghalamfarsa G., Yousefi M., Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 2017;190:64–83.
18. Ajnai G., Chiu A., Kan T., Cheng C.C., Tsai T.H., Chang J. Trends of Gold Nanoparticle-based Drug Delivery System in Cancer Therapy. J. Exp. Clin. Med. 2014;6:172–178.
19. Kong F.Y., Zhang J.W., Li R.F., Wang Z.X., Wang W.J., Wang W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules. 2017;22:1445.
20. Singh H., Du J., Yi T.H. Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: Anticancer and antibacterial activities. Artif. Cells Nanomed. Biotechnol. 2017;45:1310–1316.
21. Zhang Q., Yang M., Zhu Y., Mao C. Metallic Nanoclusters for Cancer Imaging and Therapy. Curr. Med. Chem. 2018;25:1379–1396.
22. Aggarwal P., Hall J.B., McLeland C.B., Dobrovolskaia M.A., McNeil S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009;61:428–437.
23. Dobrovolskaia M.A., Patri A.K., Zheng J., Clogston J.D., Ayub N., Aggarwal P., Neun B.W., Hall J.B., McNeil S.E. Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles. Nanomed. Nanotechnol. Biol. Med. 2009;5:106–117.
24. Chen D., Ganesh S., Wang W., Amiji M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine. 2017;12:2113–2135.
25. Chen Y.H., Tsai C.Y., Huang P.Y., Chang M.Y., Cheng P.C., Chou C.H., Chen D.H., Wang C.R., Shiau A.L., Wu C.L. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm. 2007;4:713–722.
26. Singh P., Kim Y.J., Singh H., Wang C., Hwang K.H., Farh Mel A., Yang D.C. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int. J. Nanomed. 2015;10:2567–2577.
27. Singh P., Kim Y.J., Yang D.C. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginsengleaves. Artif. Cells Nanomed. Biotechnol. 2016;44:1949–1957.
28. Singh P., Kim Y.J., Wang C., Mathiyalagan R., El-Agamy Farh M., Yang D.C. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif. Cells Nanomed. Biotechnol. 2016;44:811–816.
29. Singh H., Du J., Singh P., Yi T.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol. 2018;46:1163–1170.
30. Sanvicens N., Marco M.P. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol. 2008;26:425–433.
31. Wang F., Wang Y.C., Dou S., Xiong M.H., Sun T.M., Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5:3679–3692.
32. Firer M.A., Laptev R., Kasatkin I., Trombka D. Specific destruction of hybridoma cells by antigen-toxin conjugates demonstrate an efficient strategy for targeted drug therapy in leukemias of the B cell lineage. Leuk. Lymphoma. 2003;44:681–689.
33. Gellerman G., Baskin S., Galia L., Gilad Y., Firer M.A. Drug resistance to chlorambucil in murine B-cell leukemic cells is overcome by its conjugation to a targeting peptide. Anticancer Drugs. 2013;24:112–119.
34. Srinivas Raghavan B., Kondath S., Anantanarayanan R., Rajaram R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochem. 2015;50:1966–1976.
35. Brown S.D., Nativo P., Smith J.A., Stirling D., Edwards P.R., Venugopal B., Flint D.J., Plumb J.A., Graham D., Wheate N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc. 2010;132:4678–4684.
36. Dixit S., Novak T., Miller K., Zhu Y., Kenney M.E., Broome A.M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7:1782–1790.
37. M. Baghayeri, B. Mahdavi, Z. Hosseinpor‐Mohsen Abadi, S. Farhadi, Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite, Applied Organometallic Chemistry, 32 (2018) e4057.
38. Gilad Y., Firer M.A., Rozovsky A., Ragozin E., Redko B., Albeck A., Gellerman G. “Switch off/switch on” regulation of drug cytotoxicity by conjugation to a cell targeting peptide. Eur. J. Med. Chem. 2014;85:139–146.
39. Gilad Y., Noy E., Senderowitz H., Albeck A., Firer M.A., Gellerman G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers. 2015;106:160–171.
40. Kalimuthu K., Lubin B.C., Bazylevich A., Gellerman G., Shpilberg O., Luboshits G., Firer M.A. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J. Nanobiotechnol. 2018;16:34.
[41] S. Deepika, C.I. Selvaraj, S.M. Roopan, Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line, Materials Science and Engineering: C, 106 (2020) 110279.
[42] R. Renuka, K.R. Devi, M. Sivakami, T. Thilagavathi, R. Uthrakumar, K. Kaviyarasu, Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application, Biocatalysis and Agricultural Biotechnology, 24 (2020) 101567.
[43] M. Behravan, A.H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, A. Mirzapour, Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity, International journal of biological macromolecules, 124 (2019) 148-154.
[44] Y. Zhang, B. Mahdavi, M. Mohammadhosseini, E. Rezaei-Seresht, S. Paydarfard, M. Qorbani, M. Karimian, N. Abbasi, H. Ghaneialvar, E. Karimi, Green synthesis of NiO nanoparticles using calendula officinalis extract: chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties, Arabian Journal of Chemistry, 14 (2021) 103105.
[45] B. Mahdavi, S. Paydarfard, E. Rezaei‐Seresht, M. Baghayeri, M. Nodehi, Green synthesis of NiONPs using Trigonella subenervis extract and its applications as a highly efficient electrochemical sensor, catalyst, and antibacterial agent, Applied Organometallic Chemistry, DOI (2021) e6264.
[46] S. Dakshayani, M. Marulasiddeshwara, S. Kumar, R. Golla, S. Devaraja, R. Hosamani, Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract, International journal of biological macromolecules, 131 (2019) 787-797.
[47] S. Hemmati, A. Rashtiani, M.M. Zangeneh, P. Mohammadi, A. Zangeneh, H. Veisi, Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens, Polyhedron, 158 (2019) 8-14.
48. Van de Broek B., Devoogdt N., D’Hollander A., Gijs H.L., Jans K., Lagae L., Muyldermans S., Maes G., Borghs G. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano. 2011;5:4319–4328.
49. Pitsillides C.M., Joe E.K., Wei X., Anderson R.R., Lin C.P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 2003;84:4023–4032.
50. Dickerson E.B., Dreaden E.C., Huang X., El-Sayed I.H., Chu H., Pushpanketh S., McDonald J.F., El-Sayed M.A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008;269:57–66.
51. Vankayala R., Lin C.C., Kalluru P., Chiang C.S., Hwang K.C. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials. 2014;35:5527–5538.
52. Cheng Y., Samia A.C., Meyers J.D., Panagopoulos I., Fei B., Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 2008;130:10643–10647.
53. Zhu D.M., Xie W., Xiao Y.S., Suo M., Zan M.H., Liao Q.Q., Hu X.J., Chen L.B., Chen B., Wu W.T., et al. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology. 2018;29:084002.
54. Dreaden E.C., Austin L.A., Mackey M.A., El-Sayed M.A. Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther. Deliv. 2012;3:457–478.
55. Kim C.K., Ghosh P., Pagliuca C., Zhu Z.J., Menichetti S., Rotello V.M. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J. Am. Chem. Soc. 2009;131:1360–1361.
56. Weissleder R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001;19:316–317.
57. Huff T.B., Tong L., Zhao Y., Hansen M.N., Cheng J.X., Wei A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine. 2007;2:125–132.
58. El-Sayed I.H., Huang X., El-Sayed M.A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239:129–135.
59. (a) M. M. Zangeneh, A. Zangeneh, E. Pirabbasi, R. Moradi, M. Almasi. Appl. Organometal. Chem. 33 (2019) e5246. DOI: 10.1002/aoc.5246. (b) B. Mahdavi, S. Paydarfard, M. M. Zangeneh, S. Goorani, N. Seydi, A. Zangeneh. Appl. Organometal. Chem. 33 (2019) e5248. DOI:10.1002/aoc.5248. (c) A. R. Jalalvand, M. Zhaleh, S. Goorani, M. M. Zangeneh, N. Seydi, A. Zangeneh, R. Moradi, J. Photochem. Photobiol. B. 192 (2019) 103–112. (d) A. Zangeneh, M.M. Zangeneh, Appl. Organometal. Chem. 33 (2019) e5290. DOI:10.1002/aoc.5290.
60. Gondivkar S.M., Gadbail A.R., Choudhary M.G., Vedpathak P.R., Likhitkar M.S. Photodynamic treatment outcomes of potentially-malignant lesions and malignancies of the head and neck region: A systematic review. J. Investig. Clin. Dent. 2018;9:e12270.
61. Kostovic K., Pastar Z., Ceovic R., Mokos Z.B., Buzina D.S., Stanimirovic A. Photodynamic therapy in dermatology: Current treatments and implications. Coll. Antropol. 2012;36:1477–1481.
62. Khlebtsov B., Panfilova E., Khanadeev V., Bibikova O., Terentyuk G., Ivanov A., Rumyantseva V., Shilov I., Ryabova A., Loshchenov V., et al. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: Multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano. 2011;5:7077–7089.
63. Gao L., Fei J., Zhao J., Li H., Cui Y., Li J. Hypocrellin-Loaded Gold Nanocages with High Two-Photon Efficiency for Photothermal/Photodynamic Cancer Therapy in Vitro. ACS Nano. 2012;6:8030–8040.
64. Seo S.H., Kim B.M., Joe A., Han H.W., Chen X., Cheng Z., Jang E.S. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials. 2014;35:3309–3318.
65. Menon J.U., Jadeja P., Tambe P., Vu K., Yuan B., Nguyen K.T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics. 2013;3:152–166.
66. Tomic S., Ethokic J., Vasilijic S., Ogrinc N., Rudolf R., Pelicon P., Vucevic D., Milosavljevic P., Jankovic S., Anzel I., et al. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS ONE. 2014;9:e96584.
67. Lucky S.S., Soo K.C., Zhang Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015;115:1990–2042.
68. (a) M.M. Zangeneh, Appl. Organometal. Chem. 33 (2019) e5295. DOI:10.1002/aoc.5295. (b) G. Mohammadi, M.M. Zangeneh, A. Zangeneh, Z.M. Siavosh Haghighi, Appl. Organometal. Chem. 33 (2019) e5136. DOI:10.1002/aoc.5136. (c) M. M. Zangeneh, S. Bovandi, S. Gharehyakheh, A. Zangeneh, P. Irani, Appl. Organometal. Chem. 33 (2019) e4961. (d) M. M. Zangeneh, Z. Joshani, A. Zangeneh, E. Miri, Appl. Organometal. Chem. 33 (2019) e5016. (e) A. Zangeneh, M. M. Zangeneh, R. Moradi. Appl. Organometal. Chem. 33 (2019) e5247. DOI:10.1002/aoc.5247.
69. Allison R., Moghissi K., Downie G., Dixon K. Photodynamic therapy (PDT) for lung cancer. Photodiagn. Photodyn. Ther. 2011;8:231–239.