AUTHOR CONTRIBUTIONS
Yihao Chen: Data curation; investigation; writing-original
draft; writing-review & editing. Jingjing Chen: Software;
writing-original draft. Chongchong Chen: Data curation;
investigation; software; writing-original draft. Xiaoli Wu:Funding acquisition; Software; writing-review & editing; investigation;
Project administration; supervision. Yifan Li: Writing-original
draft; supervision. Jie Zhang: Data curation; investigation.Jingtao Wang: Funding acquisition; project administration;
supervision; writing-original draft; writing-review & editing.
REFERENCES
1. Brennecke JF, Freeman B. Reimagining petroleum refining.Science . 2020; 369:254–255.
2. Werber JR, Osuji CO, Elimelech M. Materials for next-generation
desalination and water purification membranes. Nat. Rev. Mater.2016;1:16018.
3. Ghalei B, Sakurai K, Kinoshita Y, Wakimoto K, Isfahani AP, Song Q,
Doitomi K, Furukawa S, Hirao H, Kusuda H, Kitagawa S, Sivaniah E.
Enhanced selectivity in mixed matrix membranes for CO2capture through efficient dispersion of amine-functionalized MOF
nanoparticles. Nat. Energy . 2017;2:17086.
4. Freger V. Outperforming nature’s membranes. Science .
2015;348:1317–1318.
5. Zhang S, Li H, Li H, Sengupta B, Zha S, Li S, Yu M. Negative charge
confined amine carriers within the nanowire network for stable and
efficient membrane carbon capture.Adv. Funct. Mater.2020;30:2002804.
6. Liu Q, Babu DJ, Hao J, Vahdat MT, Campi D, Agrawal KV. Metal soap
membranes for gas separation. Adv. Funct. Mater. 2021;31:2005629.
7. Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding LX, Wang S, Caro J,
Gogotsi Y. MXene molecular sieving membranes for highly efficient gas
separation. Nat. Commun. 2018;9:155.
8. Liu G, Jin W, Xu N. Two-dimensional-material membranes: a new family
of high-performance separation membranes. Angew. Chem., Int. Ed.2016;55:13384−13397.
9. Chen J, Wu X, Chen C, Chen Y, Li W, Wang J. Secondary-assembled
defect-free MOF membrane via triple-needle electrostatic
atomization for highly stable and selective organics permeation.J. Membr. Sci. 2022;648:120382.
10. Hu J, Yuan C, Zhi L, Zhang H, Yuan Z, Li X. In situ defect-free
vertically aligned layered double hydroxide composite membrane for high
areal capacity and long-cycle zinc-based flow battery. Adv. Funct.
Mater. 2021;31:2102167.
11. Yang J, Li HN, Zhang X, Zhu CY, Yu HH, Xu ZK. Janus membranes for
fast-mass-transfer separation of viscous ionic liquids from emulsions.J. Membr. Sci. 2021;637:119643.
12. Zhang X, Zhou W, Xu F, Wei M, Wang Y. Resistance of water transport
in carbon nanotube membranes. Nanoscale . 2018;10:13242−13249.
13. Song Y, Wei M, Xu F, Wang Y. Molecular simulations of water
transport resistance in polyamide RO membranes: interfacial and interior
contributions. Engineering . 2020;6:577−584.
14. Uragami T, Yono T, Sugihara M, Studies on syntheses and
permeabilities of special polymer membranes. 36. Permeabilities of
alcohols and hydrocarbons through acrylonitrile-butadiene-styrene
terpolymer membranes. Die Angew. Makromol. Chemie .
1979;82:89−102.
15. Sandru M, Sandru EM, Ingram WF, Deng J, Stenstad PM, Deng L, Spontak
RJ. An integrated materials approach to ultrapermeable and
ultraselective CO2 polymer membranes. Science .
2022;376:90−94.
16. Qian Y, Shang J, Liu D, Yang G, Wang X, Chen C, Kou L, Lei W.
Enhanced ion sieving of graphene oxide membranes via surface
amine functionalization. J. Am. Chem. Soc. 2021;143:5080−5090.
17. Huang K, Liu G, Shen J, Chu Z, Zhou H, Gu X, Jin W, Xu N.
High-efficiency water-transport channels using the synergistic effect of
a hydrophilic polymer and graphene oxide laminates. Adv. Funct.
Mater. 2015;25:5809−5815.
18. Zhang Z, Wu H, Li Y, Liu Y, Cao C, Wang H, Wang M, Pan F, Jiang Z.
Heterostructured graphene oxide membranes with tunable water-capture
coatings for highly selective water permeation. J. Mater. Chem.
A . 2021;9:7903–7912.
19. Tunuguntla RH, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. Enhanced
water permeability and tunable ion selectivity in subnanometer carbon
nanotube porins. Science . 2017;357:792–796.
20. Cheng C, Iyengar SA, Karnik R. Molecular size-dependent subcontinuum
solvent permeation and ultrafast nanofiltration across nanoporous
graphene membranes Nat. Nanotechnol. 2021;16:989–995.
21. Jang D, Idrobo JC, Laoui T, Karnik R. Water and solute transport
governed by tunable pore size distributions in nanoporous graphene
membranes. ACS Nano . 2017;11:10042–10052.
22. Wan J, Huang L, Wu J, Xiong L, Hu Z, Yu H, Li T, Zhou J. Microwave
combustion for rapidly synthesizing pore-size-controllable porous
graphene. Adv. Funct. Mater. 2018;28:1800382.
23. Sapkota B, Liang W, Mohammadi AV, Karnik R, Noy A, Wanunu M. High
permeability sub-nanometre sieve composite MoS2membranes. Nat. Commun. 2020;11:2747.
24. Kang J, Choi Y, Kim JH, Choi E, Choi SE, Kwon O, Kim DW.
Functionalized nanoporous graphene membrane with ultrafast and stable
nanofiltration. J. Membr. Sci. 2021;618:118635.
25. Zhang C, Wu BH, Ma MQ, Wang Z, Xu ZK. Ultrathin
metal/covalent-organic framework membranes towards ultimate separation.Chem. Soc. Rev. 2019;48:3811–3841.
26. Wang Y, Jin H, Ma Q, Mo K, Mao H, Feldhoff A, Cao X, Li Y, Pan F,
Jiang Z. A MOF glass membrane for gas separation. Angew. Chem.,
Int. Ed. 2020;59:4365–4369.
27. Liu TY, Yuan HG, Liu YY, Ren D, Su YC, Wang X. Metal-organic
framework nanocomposite thin films with interfacial bindings and
self-standing robustness for high water flux and enhanced ion
selectivity. ACS Nano . 2018;12:9253–9265.
28. Dou H, Xu M, Wang B, Zhang Z, Wen G, Zheng Y, Luo D, Zhao L, Yu A,
Zhang L, Jiang Z, Chen Z. Microporous framework membranes for precise
molecule/ion separations. Chem. Soc. Rev. 2021;50:986–1029.
29. Mandal S, Natarajan S, Mani P, Pankajakshan A. Post-synthetic
modification of metal-organic frameworks toward applications. Adv.
Funct. Mater. 2021;31:2006291.
30. Feng L, Wang KY, Lv XL, Yan TH, Zhou HC. Hierarchically porous
metal-organic frameworks: synthetic strategies and applications.Natl. Sci. Rev. 2020;7:1743–1758.
31. Lin RB, Xiang S, Zhou W, Chen B. Microporous metal-organic framework
materials for gas separation. Chem . 2020;6:337–363.
32. Ji Z, Wang H, Canossa S, Wuttke S, Yaghi OM. Pore chemistry of
metal-organic frameworks. Adv. Funct. Mater. 2020;30:2000238.
33. Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal-organic framework
nanosheets for membrane-based gas separation. Angew. Chem., Int.
Ed. 2017;56:9757–9761.
34. Jian M, Qiu R, Xia Y, Lu J, Chen Y, Gu Q, Liu R, Hu C, Qu J, Wang H,
Zhang X. Ultrathin water-stable metal-organic framework membranes for
ion separation. Sci. Adv. 2020;6:eaay3998.
35. Chowdhury MR, Steffes J, Huey BD, McCutcheon JR. 3D printed
polyamide membranes for desalination. Science . 2018;361:682–686.
36. Wang Q, Wu X, Chen J, Li W, Zhang H, Wang J. Ultrathin and stable
organic-inorganic lamellar composite membrane for high-performance
organic solvent nanofiltration. Chem. Eng. Sci. 2020;228:116002.
37. Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C,
Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu
S, Zhao H, Tang Z. Ultrathin metal-organic framework nanosheets for
electrocatalytic oxygen evolution. Nat. Energy . 2016;1:16184.
38. Wang B, Zhao M, Li L, Huang Y, Zhang X, Guo C, Zhang Z, Cheng H, Liu
W, Shang J, Jin J, Sun X, Liu J, Zhang H. Ultra-thin metal-organic
framework nanoribbons. Natl. Sci. Rev. 2020;7:46–52.
39. Wang B, Shang J, Guo C, Zhang J, Zhu F, Han A, Liu J. A general
method to ultrathin bimetal-MOF nanosheets arrays via in situ
transformation of layered double hydroxides arrays. Small .
2019;15:1804761.
40. Wang Z, Yu Q, Huang Y, An H, Zhao Y, Feng Y, Li X, Shi X, Liang J,
Pan F, Cheng P, Chen Y, Ma S, Zhang Z. PolyCOFs: a new class of
freestanding responsive covalent organic framework membranes with high
mechanical performance. ACS Cent. Sci. 2019;5:1352–1359.
41. Gonzalez-Nelson A, Mula S, Šimėnas M, Nas SB, Altenhof AR, Vojvodin
CS, Canossa S, Banys JR, Schurko RW, Coudert FX, Veen MA. Emergence of
coupled rotor dynamics in metal-organic frameworks via tuned
steric interactions. J. Am. Chem. Soc. 2021;143:12053–12062.
42. Oveisia M, Asli MA, Mahmoodi NM. MIL-Ti metal-organic frameworks
(MOFs) nanomaterials as superior adsorbents: synthesis and
ultrasound-aided dye adsorption from multicomponent wastewater systems.J. Hazard. Mater. 2018;347:123–140.
43. Wang J, Yuan Z, Wu X, Li Y, Chen J, Jiang Z. Beetle-inspired
assembly of heterostructured lamellar membranes with polymer
cluster-patterned surface for enhanced molecular permeation. Adv.
Funct. Mater. 2019;29:1900819.
44. Ding Li, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding LX, Wang S, Caro
J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas
separation.Nat.
Commun. 2018;9:155.
45. Boateng LK, Madarshahian R, Yoon Y, Caicedo JM, Flora JRV. A
probabilistic approach for estimating water permeability in
pressure-driven membranes. J. Mol. Model. 2016;22:185.
46. Karan S, Jiang Z, Livingston AG. Sub-10 nm polyamide nanofilms with
ultrafast solvent transport for molecular separation. Science .
2015;348:1347–1351
47. Ruijter MJ, Coninck JD, Blake TD, Clarke A, Rankin A. Contact angle
relaxation during the spreading of partially wetting drops.Langmuir . 1997;13:7293–7298.
48. Feng X, Huang RYM. Estimation of activation energy for permeation in
pervaporation processes. J. Membr. Sci. 1996;118:127–131.
49. Uragami T, Maekawa K, Sugihara M. Studies on syntheses and
permeabilities of special polymer membranes. 21. Permeabilities of
alcohols and hydrocarbons through nylon 12 membranes. Die Angew.
Makromol. Chemie 1980;87:175−193.
50. Chen C, Wang J, Liu D, Yang C, Liu Y, Ruoff RS, Lei W.
Functionalized boron nitride membranes with ultrafast solvent transport
performance for molecular separation. Nat. Commun. 2018;9:1902.
51. Machado DR, Hasson D, Semiat R. Effect of solvent properties on
permeate flow through nanofiltration membranes. Part I: Investigation of
parameters affecting solvent flux. J. Membr. Sci.1999;163:93–102.
52. Uragami T, Fujimoto M, Sugihara M. Studies on syntheses and
permeabilities of special polymer membranes: 24. Permeation
characteristics of poly(vinylidene fluoride) membranes. Polymer .
1980;21:1047–1051.
53. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded
permeation of water through helium-leak-tight graphene-based membranes.Science . 2012;335:442–444.
54. Fu W, Hu SP, Song XG, Li JX, Cao J, Feng JC, Wang GD. Wettability
and bonding of graphite by
Sn0.3Ag0.7Cu-Ti alloys. Carbon N.
Y. 2017;121:536–543.
55. Starov VM, Zhdanov SA, Kosvintsev SR, Sobolev VD, Velarde MG.
Spreading of liquid drops over porous substrates. Adv. Colloid
Interface Sci. 2003;104:123–158.
56. Xu F, Dai L, Wu Y, Xu Z.
Li+/Mg2+ separation by membrane
separation: the role of the compensatory effect. J. Membr. Sci.2021;636:119542.
57. Machado DR, Hasson D, Semiat R. Effect of solvent properties on
permeate flow through nanofiltration membranes: Part II. Transport
model. J. Membr. Sci. 2000;166:63–69.
58. Shevate R, Shaffer DL. Large-area 2D covalent organic framework
membranes with tunable single-digit nanopores for predictable mass
transport. ACS Nano 2022;16:2407–2418.
59. Uedaira H, Uedaira H, Role of hydration of polyhydroxy compounds in
biological systems. Cell. Mol. Biol. 2001;47:823–829.
60. Zhang X, Shi X, Zhao Q, Li Y, Wang J, Yang Y, Bi F, Xu J, Liu N.
Defects controlled by acid-modulators and water molecules enabled UiO-67
for exceptional toluene uptakes: An experimental and theoretical study.Chem. Eng. J. 2022;427:131573.
61. Emamian S, Lu T, Kruse H, Emamian H. Exploring nature and predicting
strength of hydrogen bonds: a correlation analysis between
atoms-in-molecules descriptors, binding energies, and energy components
of symmetry-adapted perturbation theory. J. Comput. Chem.2019;40:2868–2881.
62. Kujawa J, Kujawski W, Cerneaux S, Li G, Al-Gharabli S. Zirconium
dioxide membranes decorated by silanes based-modifiers for membrane
distillation-material chemistry approach. J. Membr. Sci.2020;596:117597.
63. Rezayi T, Entezari MH, Moosavi F. The variation of surface free
energy of Al during superhydrophobicity processing. Chem. Eng. J.2017;322:181–187.
64. KongX, ZhouMY, Lin CE, Wang J, Zhao B, Wei XZ, Zhu BK. Polyamide/PVC
based composite hollow fiber nanofiltration membranes: Effect of
substrate on properties and performance. J. Membr. Sci.2016;505:231–240.
65. Alemayehu HG, Liu C, Hou J, Yang J, Fang M, Tang Z, Li L. Highly
stable membrane comprising MOF nanosheets and graphene oxide for
ultra-permeable nanofiltration. J. Membr. Sci. 2022;652:120479.
66. Li Y, Zhang X, Yang A, Jiang C, Zhang G, Mao J, Meng Q. Polyphenol
etched ZIF-8 modified graphene oxide nanofiltration membrane for
efficient removal of salts and organic molecules. J. Membr. Sci.2021;635:119521.