References
Amundsen, T. (2000). Why are female birds ornamented? Trends in
Ecology and Evolution .https://doi.org/10.1016/S0169-5347(99)01800-5n
Andersson, M. (1994). Sexual selection. Princeton University Press,
Princeton, NJ.
Avilés, J. M., Soler, J. J., & Pérez-Contreras, T. (2006). Dark nests
and egg colour in birds: A possible functional role of ultraviolet
reflectance in egg detectability. Proceedings of the Royal Society
B: Biological Sciences , 273(1603), 2821–2829.https://doi.org/10.1098/rspb.2006.3674
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting
linear mixed-effects models using lme4. Journal of Statistical
Software , 67(1).https://doi.org/10.18637/jss.v067.i01
Bleiweiss, R. (2004). Novel chromatic and structural biomarkers of diet
in carotenoid-bearing plumage. Proceedings of the Royal Society B:
Biological Sciences , 271(1555), 2327–2335.https://doi.org/10.1098/rspb.2004.2868
Candolin, U. (2004). Opposing selection on a sexually dimorphic trait
through female choice and male competition in a water boatman.Evolution , 58(8), 1861–1864.https://doi.org/10.1111/j.0014-3820.2004.tb00470.x
Charmantier, A., Wolak, M., Grégoire, A. et al. (2017). Colour
ornamentation in the blue tit: quantitative genetic (co)variances across
sexes. Heredity 118 , 125–134.https://doi.org/10.1038/hdy.2016.70
Cramp, S. & Perrins, C. M. (1993). Blue tit. In The birds of the
western Palearctic, vol. 7 (ed. S. Cramp & C. M. Perrins), pp.
225–248. Oxford University Press.
Cuthill, I. C., Allen, W. L., Arbuckle, K., Caspers, B., Chaplin, G.,
Hauber, M. E., … Caro, T. (2017). The biology of color.Science , https://doi.org/10.1126/science.aan0221
del Cerro, S., Merino, S., Martínez-de la Puente, J., Lobato, E.,
Ruiz-de-Castañeda, R., Rivero-de Aguilar, J., … Moreno, J.
(2010). Carotenoid-based plumage colouration is associated with blood
parasite richness and stress protein levels in blue tits
(Cyanistes caeruleus ). Oecologia , 162(4), 825–835.https://doi.org/10.1007/s00442-009-1510-y
Delhey, K., Burger, C., Fiedler, W., & Peters, A. (2010). Seasonal
changes in colour: A comparison of structural, melanin- and
carotenoid-based plumage colours. PLoS ONE , 5(7).https://doi.org/10.1371/journal.pone.0011582
Delhey, K., Peters, A., Johnsen, A., & Kempenaers, B. (2006). Seasonal
changes in blue tit crown color: Do they signal individual quality?Behavioral Ecology , 17(5), 790–798.https://doi.org/10.1093/beheco/arl012
Dickens, M., & Hartley, I. R. (2007). Differences in parental food
allocation rules: Evidence for sexual conflict in the blue tit?Behavioral Ecology , 18(4), 674–679.
https://doi.org/10.1093/beheco/arm029
Doutrelant, C., Grégoire, A., Grnac, N., Gomez, D., Lambrechts, M. M.,
& Perret, P. (2008). Female coloration indicates female reproductive
capacity in blue tits. Journal of Evolutionary Biology , 21(1),
226–233.https://doi.org/10.1111/j.1420-9101.2007.01451.x
Doutrelant, C., Grégoire, A., Midamegbe, A., Lambrechts, M., & Perret,
P. (2012). Female plumage coloration is sensitive to the cost of
reproduction. An experiment in blue tits. Journal of Animal
Ecology , 81(1), 87–96.https://doi.org/10.1111/j.1365-2656.2011.01889.x
Endler, J. A., & Mappes, J. (2017). The current and future state of
animal coloration research. Philosophical Transactions of the
Royal Society B: Biological Sciences . Royal Society Publishing.
https://doi.org/10.1098/rstb.2016.0352
Ferns, P. N., & Hinsley, S. A. (2008). Carotenoid plumage hue and
chroma signal different aspects of individual and habitat quality in
tits. Ibis , 150(1), 152–159.https://doi.org/10.1111/j.1474-919X.2007.00759.x
Ferrer, E. S., García-Navas, V., Bueno-Enciso, J., Sanz, J. J., &
Ortego, J. (2015). Multiple sexual ornaments signal heterozygosity in
male blue tits. Biological Journal of the Linnean Society ,
115(2), 362–375.https://doi.org/10.1111/bij.12513
Fromhage, L., & Henshaw, J. M. (2022). The balance model of honest
sexual signaling. Evolution , 76(3), 445–454.https://doi.org/10.1111/evo.14436
García-Campa, J., Müller, W., & Morales, J. (2022). Experimental
evidence that adult UV/yellow colouration functions as a signal in blue
tit families — but only for parents. Behavioral Ecology and
Sociobiology , 76(2).https://doi.org/10.1007/s00265-022-03145-1
García-Campa, J., Müller, W., González-Braojos, S., García-Juárez, E.,
& Morales, J. J. (2020). Dietary carotenoid supplementation facilitates
egg laying in a wild passerine. Ecology and Evolution , 10(11),
4968–4978.https://doi.org/10.1002/ece3.6250
García-Navas, V., Ferrer, E. S., & Sanz, J. J. (2012). Plumage
yellowness predicts foraging ability in the blue tit Cyanistes
caeruleus. Biological Journal of the Linnean Society , 106(2),
418–429.https://doi.org/10.1111/j.1095-8312.2012.01865.x
García-Navas, V., Ferrer, E. S., & Serrano-Davies, E. (2014).
Experimental evidence for parental, but not parentally biased,
favouritism in relation to offspring size in Blue Tits Cyanistes
caeruleus. Ibis , 156(2), 404–414.
https://doi.org/10.1111/ibi.12140
Hidalgo-Garcia, S. (2006). The carotenoid-based plumage coloration of
adult Blue Tits Cyanistes caeruleus correlates with the health status of
their brood. Ibis , 148(4), 727–734.https://doi.org/10.1111/j.1474-919X.2006.00575.x
Hill, G. E. (2011). Condition-dependent traits as signals of the
functionality of vital cellular processes. Ecology Letters ,
14(7), 625–634.https://doi.org/10.1111/j.1461-0248.2011.01622.x
Hill, G. E., Hill, G. E., McGraw, K. J., & Kevin, J. (Eds.). (2006).Bird coloration, volume 1: mechanisms and measurements (Vol. 1) .
Harvard University Press.
Hooper, A. K., & Bonduriansky, R. (2022). Effects of genetic vs.
environmental quality on condition-dependent morphological and life
history traits in a neriid fly. Journal of Evolutionary Biology ,
35, 803– 816.https://doi.org/10.1111/jeb.14014
Hunt, S., Bennett, A. T. D., Cuthill, I. C., & Griffiths, R. (1998).
Blue tits are ultraviolet tits. Proceedings of the Royal Society
B: Biological Sciences , 265(1395), 451–455.https://doi.org/10.1098/rspb.1998.0316
Hunt, S., Kilner, R. M., Langmore, N. E., & Bennett, A. T. D. (2003).
Conspicuous, ultraviolet-rich mouth colours in begging chicks.Proceedings of the Royal Society B: Biological Sciences ,
270(SUPPL. 1).https://doi.org/10.1098/rsbl.2003.0009
Jacot, A., & Kempenaers, B. (2007). Effects of nestling condition on UV
plumage traits in blue tits: An experimental approach. Behavioral
Ecology , 18(1), 34–40.https://doi.org/10.1093/beheco/arl054
Johnsen, A., Delhey, K., Andersson, S., & Kempenaers, B. (2003).
Plumage colour in nestling blue tits: Sexual dichromatism, condition
dependence and genetic effects. Proceedings of the Royal Society
B: Biological Sciences , 270(1521), 1263–1270.https://doi.org/10.1098/rspb.2003.2375
Johnsen, A., Delhey, K., Schlicht, E., Peters, A., & Kempenaers, B.
(2005). Male sexual attractiveness and parental effort in blue tits: A
test of the differential allocation hypothesis. Animal Behaviour ,
70(4), 877–888.https://doi.org/10.1016/j.anbehav.2005.01.005
Laidre, M. E., & Johnstone, R. A. (2013). Animal signals. Current
Biology . Cell Press.https://doi.org/10.1016/j.cub.2013.07.070
Limbourg, T., Mateman, A. C., & Lessells, C. M. (2013a). Opposite
differential allocation by males and females of the same species.Biology Letters , 9(1).https://doi.org/10.1098/rsbl.2012.0835
Limbourg, T., Mateman, A. C., & Lessells, C. M. (2013b). Parental care
and UV coloration in blue tits: Opposite correlations in males and
females between provisioning rate and mate’s coloration. Journal
of Avian Biology , 44(1), 017–026.https://doi.org/10.1111/j.1600-048X.2012.05575.x
Lyon, B. E., Eadie, J. M., & Hamilton, L. D. (1994). Parental choice
selects for ornamental plumage in American coot chicks. Nature ,
371(6494), 240–243.https://doi.org/10.1038/371240a0
Mas, F., & Kölliker, M. (2011). Differential effects of offspring
condition-dependent signals on maternal care regulation in the European
earwig. Behavioral Ecology and Sociobiology , 65(2), 341–349.https://doi.org/10.1007/s00265-010-1051-8
Megía-Palma, R., Martínez, J., & Merino, S. (2016). A structural colour
ornament correlates positively with parasite load and body condition in
an insular lizard species. Science of Nature , 103(7–8).
https://doi.org/10.1007/s00114-016-1378-8
Midamegbe, A., Grégoire, A., Staszewski, V., Perret, P., Lambrechts, M.
M., Boulinier, T., & Doutrelant, C. (2013). Female blue tits with
brighter yellow chests transfer more carotenoids to their eggs after an
immune challenge. Oecologia , 173(2), 387–397.
https://doi.org/10.1007/s00442-013-2617-8
Montgomerie R. (2009). CLR, version 1.1. Queen’s University, Kingston,
Canada.
Morales, J., & Velando, A. (2018). Coloration of chicks modulates
costly interactions among family members. Behavioral Ecology ,
29(4), 894–903.https://doi.org/10.1093/beheco/ary057
Parker, G. A., Royle, N. J., & Hartley, I. R. (2002). Intrafamilial
conflict and parental investment: A synthesis. Philosophical
Transactions of the Royal Society B: Biological Sciences , 357(1419),
295–307.https://doi.org/10.1098/rstb.2001.0950
Peters, A., Delhey, K., Johnsen, A., & Kempenaers, B. (2007). The
condition-dependent development of carotenoid-based and structural
plumage in nestling blue tits: Males and females differ. American
Naturalist , 169(SUPPL.).https://doi.org/10.1086/510139
Postema, E. G., Lippey, M. K., Armstrong-Ingram, T. (2022). Color under
pressure: how multiple factors shape defensive coloration,Behavioral Ecology, arac056,https://doi.org/10.1093/beheco/arac056
R Core Team. (2020). R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
Rodríguez-Ruiz, G., Ortega, J., Cuervo, J. J., López, P., Salvador, A.,
& Martín, J. (2020). Male rock lizards may compensate reproductive
costs of an immune challenge affecting sexual signals. Behavioral
Ecology , 31(4), 1017–1030.https://doi.org/10.1093/BEHECO/ARAA047
Schoppe, V. R. (1977). Beiträge zur postembryonalen Gefiederentwicklung
bei Parus und Ficedula. Die Vogelwelt 98, 201-221
Senar, J. C., Figuerola, J., & Pascual, J. (2002). Brighter yellow blue
tits make better parents. Proceedings of the Royal Society B:
Biological Sciences , 269(1488), 257–261.https://doi.org/10.1098/rspb.2001.1882
Shawkey, M. D., & Hill, G. E. (2005). Carotenoids need structural
colours to shine. Biology Letters , 1(2), 121–124.https://doi.org/10.1098/rsbl.2004.0289
Stenning, M. (2018). The blue tit. London , UK: T & A D Poyser.
Wȩgrzyn, E., Leniowski, K., Rykowska, I., & Wasiak, W. (2011). Is UV
and blue-green egg colouration a signal in cavity-nesting birds?Ethology Ecology and Evolution , 23(2), 121–139.https://doi.org/10.1080/03949370.2011.554882
West-Eberhard, M. J. (1983). Sexual selection, social competition, and
speciation. Quarterly Review of Biology, 58(2), 155–183.https://doi.org/10.1086/413215
Wiebe, K. L., & Slagsvold, T. (2009). Mouth coloration in nestling
birds: increasing detection or signalling quality? Animal
Behaviour , 78(6), 1413–1420.https://doi.org/10.1016/j.anbehav.2009.09.013
Godfray, H. C. J. (1991). Signalling of need by offspring to their
parents. Nature , 352(6333), 328–330.
https://doi.org/10.1038/352328a0
Godfray, H. C. (1995). Signaling of need between parents and young:
Parent-offspring conflict and sibling rivalry. American
Naturalist , 146(1), 1–24. https://doi.org/10.1086/285784
Caro, S. M., Griffin, A. S., Hinde, C. A., & West, S. A. (2016).
Unpredictable environments lead to the evolution of parental neglect in
birds. Nature Communications , 7.
https://doi.org/10.1038/ncomms10985
Tschirren, B., Fitze, P. S., & Richner, H. (2005). Carotenoid-based
nestling colouration and parental favouritism in the great tit.Oecologia , 143(3), 477–482.
https://doi.org/10.1007/s00442-004-1812-z