REFERENCES
Achuo, E. A., Prinsen, E. & Hofte, M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathology 55 , 178–186 (2006).
Adavi, S. B. & Sathee, L. Elevated CO2 alters tissue balance of nitrogen metabolism and downregulates nitrogen assimilation and signalling gene expression in wheat seedlings receiving high nitrate supply. Protoplasma 258 , 219–233 (2021).
Adie, B. A. T. et al. ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis . The Plant Cell 19 , 1665–1681 (2007).
Ahlfors, R., Brosché, M., Kollist, H. & Kangasjärvi, J. Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana : NO modulates O3 responses. The Plant Journal 58 , 1–12 (2009).
Ahlfors, R. et al. Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein–Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses.Plant Cell 16 , 1925–1937 (2004).
Ainsworth, E. A., Rogers, A., Nelson, R. & Long, S. P. Testing the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology122 , 85–94 (2004).
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J. & Emberson, L. D. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. 27 (2012).
Ainsworth, E. A. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration: META-ANALYSIS OF RICE RESPONSES TO GLOBAL CHANGE.Global Change Biology 14 , 1642–1650 (2008).
Ainsworth, E. A. Understanding and improving global crop response to ozone pollution. Plant J 90 , 886–897 (2017).
Ainsworth, E. A., Leakey, A. D. B., Ort, D. R. & Long, S. P. FACE‐ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytologist 179 , 5–9 (2008).
Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytologist165 , 351–372 (2005).
Ainsworth, E. A. & Long, S. P. 30 years of free‐air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27 , 27–49 (2020).
Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions: Photosynthesis and stomatal conductance responses to rising [CO2]. Plant, Cell & Environment 30 , 258–270 (2007).
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J. & Emberson, L. D. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annu. Rev. Plant Biol.63 , 637–661 (2012).
Akimoto-Tomiyama, C., Tanabe, S., Kajiwara, H., Minami, E. & Ochiai, H. Loss of chloroplast-localized protein phosphatase 2Cs inArabidopsis thaliana leads to enhancement of plant immunity and resistance to Xanthomonas campestris pv. campestrisinfection: Loss of chloroplast PP2Cs enhances immunity. Molecular Plant Pathology 19 , 1184–1195 (2018).
Ambavaram, M. M. R. et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun 5 , 5302 (2014).
Anderson, J. P. et al. Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. Plant Cell16 , 3460–3479 (2004).
Anfoka, G. et al. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures.Sci Rep 6 , 19715 (2016).
Aranjuelo, I. et al. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. Journal of Experimental Botany 64 , 1879–1892 (2013).
Ashmore, M. R. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28 , 949–964 (2005).
Ashraf, M. & Akram, N. A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnology Advances 27 , 744–752 (2009).
Asrar, A.-W. A. & Elhindi, K. M. Alleviation of drought stress of marigold (Tagetes erecta ) plants by using arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences 18 , 93–98 (2011).
Atkinson NJ & Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany63 , 3523–3544 (2012).
Avnery, S, Mauzerall, DL, Liu, J, & Horowtiz, LW. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment 45 , 2284–2296 (2011).
Baillo, Kimotho, Zhang, & Xu. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes 10 , 771 (2019).
Bartels, D. & Sunkar, R. Drought and Salt Tolerance in Plants.Critical Reviews in Plant Sciences 24 , 23–58 (2005).
Batley, J. & Edwards, D. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Current Opinion in Plant Biology 30 , 78–81 (2016).
Battisti, David. S. & Naylor, R. L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science323 , 240–244 (2009).
Beattie, G. A. Water Relations in the Interaction of Foliar Bacterial Pathogens with Plants. Annu. Rev. Phytopathol. 49 , 533–555 (2011).
Berens, M. L. et al. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc. Natl. Acad. Sci. U.S.A. 116 , 2364–2373 (2019).
Bernacchi, C. J., Kimball, B. A., Quarles, D. R., Long, S. P. & Ort, D. R. Decreases in Stomatal Conductance of Soybean under Open-Air Elevation of [CO2] Are Closely Coupled with Decreases in Ecosystem Evapotranspiration. Plant Physiology 143 , 134–144 (2007).
Bi, H. et al. The impact of drought on wheat leaf cuticle properties. BMC Plant Biol 17 , 85 (2017).
Bilgin, D. D. et al. Biotic stress globally downregulates photosynthesis genes: Biotic stress downregulates photosynthesis.Plant, Cell & Environment 33 , 1597–1613 (2010).
Bishop, K. A., Betzelberger, A. M., Long, S. P. & Ainsworth, E. A. Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment: Variation in soybean response to elevated [CO2]. Plant Cell Environ 38 , 1765–1774 (2015).
Black, V. J., Black, C. R., Roberts, J. A. & Stewart, C. A. Tansley Review No. 115: Impact of ozone on the reproductive development of plants. New Phytologist 147 , 421–447 (2000).
Bloom, A. J., Kasemsap, P. & Rubio‐Asensio, J. S. Rising atmospheric CO2 concentration inhibits nitrate assimilation in shoots but enhances it in roots of C3 plants.Physiol Plantarum 168 , 963–972 (2020).
Booker, F. et al. The Ozone Component of Global Change: Potential Effects on Agricultural and Horticultural Plant Yield, Product Quality and Interactions with Invasive Species. Journal of Integrative Plant Biology 51 , 337–351 (2009).
Buckley, T. N. How do stomata respond to water status? New Phytol224 , 21–36 (2019).
Campos, M. L. et al. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat Commun7 , 12570 (2016).
Casson, S. & Gray, J. E. Influence of environmental factors on stomatal development. New Phytologist 178 , 9–23 (2008).
Caviness, C. E. & Fagala, B. L. Influence of Temperature on a Partially Male‐Sterile Soybean Strain. Crop Sci. 13 , 503–504 (1973).
CSP, 20 0 8: The effects of climate change on agriculture, land resources, water resources, and biodiversity. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. P. Backlund, A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M. Ryan, S. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L Meyerson, B. Peterson, R. Shaw. U.S. Environmental Protection Agency, Washington, DC., USA, 362 pp
Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nature Clim Change 4 , 287–291 (2014).
Chen, Y. et al. The Role of the Late Embryogenesis-Abundant (LEA) Protein Family in Development and the Abiotic Stress Response: A Comprehensive Expression Analysis of Potato (Solanum tuberosum ).Genes 10 , 148 (2019).
Chiou, T.-J. et al. Regulation of Phosphate Homeostasis by MicroRNA in Arabidopsis . The Plant Cell 18 , 412–421 (2006).
Choudhary, A. & Senthil‐Kumar, M. Drought attenuates plant defence against bacterial pathogens by suppressing the expression ofCBP60g / SARD1 during combined stress. Plant Cell & Environment 45 , 1127–1145 (2021).
Cisternas, I., Velásquez, I., Caro, A. & Rodríguez, A. Systematic literature review of implementations of precision agriculture.Computers and Electronics in Agriculture 176 , 105626 (2020).
Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R. Meta‐analysis of drought and heat stress combination impact on crop yield and yield components. Physiol Plantarum 171 , 66–76 (2021).
Cohen, S. P. & Leach, J. E. High temperature-induced plant disease susceptibility: more than the sum of its parts. Current Opinion in Plant Biology 56 , 235–241 (2020).
Colhoun, J. Effects of Environmental Factors on Plant Disease.Annu. Rev. Phytopathol. 11 , 343–364 (1973).
Coolen, S. et al. Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant J 86 , 249–267 (2016).
Cushman, J. C., Denby, K. & Mittler, R. Plant responses and adaptations to a changing climate. The Plant Journal 109 , 319–322 (2022).
Cruz-Mireles, N., Eisermann, I., Garduño-Rosales, M., Molinari, C., Ryder, L.S., Tang, B., Yan, X., Talbot, N.J.The Biology of Invasive Growth by the Rice Blast Fungus Magnaporthe oryzae . Methods Mol Biol 2356 :19-40 (2021).
Czajkowski, R., Kaczyńska, N., Jafra, S., Narajczyk, M. & Lojkowska, E. Temperature-responsive genetic loci in pectinolytic plant pathogenicDickeya solani . Plant Pathol 66 , 584–594 (2017).
Dalal, V. K. & Tripathy, B. C. Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci Rep 8 , 5955 (2018).
Davila Olivas, N. H. et al. Genome‐wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana . New Phytol213 , 838–851 (2017).
1.
de Carvalho, K., de Campos, M. K. F., Domingues, D. S., Pereira, L. F. P. & Vieira, L. G. E. The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep 40 , 3269–3279 (2013).
Desaint, H. et al. Fight hard or die trying: when plants face pathogens under heat stress. New Phytol 229 , 712–734 (2020).
Dossa, K. et al. Depicting the Core Transcriptome Modulating Multiple Abiotic Stresses Responses in Sesame (Sesamum indicumL.). IJMS 20 , 3930 (2019).
Dresselhaus, T. & Hückelhoven, R. Biotic and Abiotic Stress Responses in Crop Plants. Agronomy 8 , 267 (2018).
Duniway JM. Changes in resistance to water transport in safflower during the development of phytophthora root rot. Physiology and Biochemistry 67 , 331–337 (1977).
Dutilleul, C. et al. Leaf Mitochondria Modulate Whole Cell Redox Homeostasis, Set Antioxidant Capacity, and Determine Stress Resistance through Altered Signaling and Diurnal Regulation. Plant Cell15 , 1212–1226 (2003).
Eastburn, D. M., McElrone, A. J. & Bilgin, D. D. Influence of atmospheric and climatic change on plant-pathogen interactions: Climatic change and host-pathogen interactions. Plant Pathology60 , 54–69 (2011).
Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O. & Mcelrone, A. J. Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology 16 , 320–330 (2010).
Ebi, K. L. et al. Nutritional quality of crops in a high CO2 world: an agenda for research and technology development. Environ. Res. Lett. 16 , 064045 (2021).
Ebi, K. L. & Loladze, I. Elevated atmospheric CO2concentrations and climate change will affect our food’s quality and quantity. The Lancet Planetary Health 3 , e283–e284 (2019).
English-Loeb, G., Stout, M. J. & Duffey, S. S. Drought Stress in Tomatoes: Changes in Plant Chemistry and Potential Nonlinear Consequences for Insect Herbivores. Oikos 79 , 456 (1997).
Erpen, L., Devi, H. S., Grosser, J. W. & Dutt, M. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tiss Organ Cult132 , 1–25 (2018).
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29 , 185–212 (2009).
Feng, Z., Kobayashi, K. & Ainsworth, E. A. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biology14 , 2696–2708 (2008).
Figueroa-Macías, J. P. et al. Plant Growth-Defense Trade-Offs: Molecular Processes Leading to Physiological Changes. IJMS22 , 693 (2021).
Fischer, G., Shah, M., N. Tubiello, F. & van Velhuizen, H. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Phil. Trans. R. Soc. B 360 , 2067–2083 (2005).
Franks, S. J. & Hoffmann, A. A. Genetics of Climate Change Adaptation.Annu. Rev. Genet. 46 , 185–208 (2012).
Freeman, B. C. & Beattie, G. A. Bacterial Growth Restriction During Host Resistance to Pseudomonas syringae Is Associated with Leaf Water Loss and Localized Cessation of Vascular Activity inArabidopsis thaliana . MPMI 22 , 857–867 (2009).
Friedel, S., Usadel, B., von Wirén, N. & Sreenivasulu, N. Reverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk. Front. Plant Sci. 3 , (2012).
Fuhrer, J. Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96 , 173–194 (2009).
Fujii, H., Chiou, T.-J., Lin, S.-I., Aung, K. & Zhu, J.-K. A miRNA Involved in Phosphate-Starvation Response in Arabidopsis. Current Biology 15 , 2038–2043 (2005).
Fujita, M. et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9 , 436–442 (2006).
Fukuoka, S. et al. Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep 5 , 7773 (2015).
Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate Change Effects on Plant Disease: Genomes to Ecosystems. 23 (2006).
Garrett, K. A. et al. Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation.Annu. Rev. Phytopathol. 60 , 357–378 (2022).
Goel, A. K. et al. The Pseudomonas syringae Type III Effector HopAM1 Enhances Virulence on Water-Stressed Plants. MPMI21 , 361–370 (2008).
Gojon, A. et al. Approaches and determinants to sustainably improve crop production. Food and Energy Security (2022) doi:10.1002/fes3.369.
GLM-NOAA (2022). Global Monitoring Laboratory. Accessed September 29th, 2022.https://gml.noaa.gov/ccgg/trends/global.html.
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368 , 266–269 (2020).
Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants2 , 16132 (2016).
Grimes, H. D., Perkins, K. K. & Boss, W. F. Ozone Degrades into Hydroxyl Radical under Physiological Conditions: A Spin Trapping Study.Plant Physiol. 72 , 1016–1020 (1983).
Grimmer, M. K., Foulkes, M. J. & Paveley, N. D. Foliar pathogenesis and plant water relations: a review. 63 , 4321–4331 (2012).
Grulke, N. E. & Heath, R. L. Ozone effects on plants in natural ecosystems. Plant Biol J 22 , 12–37 (2020).
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368 , 266–269 (2020).
Hacquard, S., Wang, E., Slater, H. & Martin, F. Impact of global change on the plant microbiome. New Phytologist 234 , 1907–1909 (2022).
Hatfield, J. L. et al. Climate Impacts on Agriculture: Implications for Crop Production. Agron.j. 103 , 351–370 (2011).
Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10 , 4–10 (2015).
Heath, Robert L (1987) The biochemistry of ozone attack on the plasma membrane of plant cells. Phytochemical effects of environmental compounds . Springer, Boston, MA, 1987. 29-54.
Herms, D. A. & Mattson, W. J. The Dilemma of Plants: To Grow or Defend.The Quarterly Review of Biology 67 , 283–335 (1992).
Hillabrand, R. M., Hacke, U. G. & Lieffers, V. J. Drought-induced xylem pit membrane damage in aspen and balsam poplar: Drought-induced xylem pit membrane damage. Plant, Cell & Environment 39 , 2210–2220 (2016).
Hu, S. et al. Response of rice growth and leaf physiology to elevated CO2 concentrations: A meta-analysis of 20-year FACE studies. Science of The Total Environment 807 , 151017 (2022).
Huang, X., Li, J., Bao, F., Zhang, X. & Yang, S. A Gain-of-Function Mutation in the Arabidopsis Disease Resistance Gene RPP4 Confers Sensitivity to Low Temperature. Plant Physiology 154 , 796–809 (2010).
Huang, Z. et al. Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis ). PLoS ONE 11 , e0165953 (2016).
Huot, B. et al. Dual impact of elevated temperature on plant defense and bacterial virulence in Arabidopsis. Nat Commun8 , 1808 (2017).
Ijaz, S., Sadaqat, H. A. & Khan, M. N. A review of the impact of charcoal rot (Macrophomina phaseolina ) on sunflower. J. Agric. Sci. 151 , 222–227 (2013).
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Janda, M. et al. Temporary heat stress suppresses PAMP‐triggered immunity and resistance to bacteria in Arabidopsis thaliana .Molecular Plant Pathology 20 , 1005–1012 (2019).
Kangasjarvi, J., Talvinen, J., Utriainen, M. & Karjalainen, R. Plant defence systems induced by ozone. Plant Cell Environ 17 , 783–794 (1994).
Karnosky, D. F. et al. Interacting elevated CO 2and tropospheric O 3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae ). Global Change Biology 8 , 329–338 (2002).
Kerr, A. The Influence of Soil Moisture on Infection of Peas by Pythium Ultimum. Aust. Jnl. Of Bio. Sci. 17 , 676 (1964).
Khan, N., Bano, A., Ali, S. & Babar, Md. A. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses.Plant Growth Regul 90 , 189–203 (2020).
Kim, S. G., Kim, K. W., Park, E. W. & Choi, D. Silicon-Induced Cell Wall Fortification of Rice Leaves: A Possible Cellular Mechanism of Enhanced Host Resistance to Blast. Phytopathology 92 , 1095–1103 (2002).
104.
Kissoudis, C., van de Wiel, C., Visser, R. G. F. & van der Linden, G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 5 , (2014).
Kobayashi, K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. J Plant Res129 , 565–580 (2016).
Kobayashi, T. et al. Effects of Elevated Atmospheric CO2 Concentration on the Infection of Rice Blast and Sheath Blight. Phytopathology® 96 , 425–431 (2006).
Köhler, I. H., Huber, S. C., Bernacchi, C. J. & Baxter, I. R. Increased temperatures may safeguard the nutritional quality of crops under future elevated CO 2 concentrations. Plant J97 , 872–886 (2019).
Kole, C. et al. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects.Front. Plant Sci. 6 , (2015).
Kole, C. & Prasad, M. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects.Frontiers in Plant Science 6 , 16 (2015).
Ku, Y.-S., Sintaha, M., Cheung, M.-Y. & Lam, H.-M. Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses.IJMS 19 , 3206 (2018).
Kulcheski, F. R. et al. Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics12 , 307 (2011).
Kumar, A., Li, C. & Portis, A. R. Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures.Photosynth Res 100 , 143–153 (2009).
Kurek, I. et al. Enhanced Thermostability of ArabidopsisRubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress. Plant Cell 19 , 3230–3241 (2007).
Ladjal, M., Huc, R. & Ducrey, M. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars. Tree Physiology 25 , 1109–1117 (2005).
Lal, R. et al. Adapting agriculture to drought and extreme events. Journal of Soil and Water Conservation 67 , 162A-166A (2012).
Laurence JA & Wood FA. Effects of ozone on infection of soybean byPseudomonas glycinea . Ecology and Epidemiology68 , 441–445 (1978).
Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60 , 2859–2876 (2009).
Leisner, C. P. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Science293 , 110412 (2020).
Leisner, C. P. & Ainsworth, E. A. Quantifying the effects of ozone on plant reproductive growth and development. Glob Change Biol18 , 606–616 (2012).
León, P., Sheen J. Sugar and hormone connections. Trends in Plant Science 8 , 110–116 (2003).
Li, S. et al. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought.BMC Plant Biol 21 , 536 (2021).
Li, X. et al. Tomato-Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata.Journal of Experimental Botany 66 , 307–316 (2015).
Li, Z. et al. Low Temperature Enhances Plant Immunity via Salicylic Acid Pathway Genes That Are Repressed by Ethylene. Plant Physiol. 182 , 626–639 (2020).
Lindow, S. E. & Brandl, M. T. Microbiology of the Phyllosphere.APPL. ENVIRON. MICROBIOL. 69 , 9 (2003).
Liu, F., Jensen, C. R. & Andersen, M. N. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set.Field Crops Research 86 , 1–13 (2004).
Liu, L.-L. et al. ALDH2C4 regulates cuticle thickness and reduces water loss to promote drought tolerance. Plant Science323 , 111405 (2022).
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. 333 , 6 (2011).
Loladze, I., Nolan, J. M., Ziska, L. H. & Knobbe, A. R. Rising Atmospheric CO 2 Lowers Concentrations of Plant Carotenoids Essential to Human Health: A Meta‐Analysis. Mol. Nutr. Food Res. 63 , 1801047 (2019).
Ludwig, A. A. et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc. Natl. Acad. Sci. U.S.A. 102 , 10736–10741 (2005).
Mayek-PÉrez, N., GarcÍa-Espinosa, R., LÓpez-CastaÑeda, Cá., Acosta-Gallegos, J. A. & Simpson, J. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis ofMacrophomina phaseolina under drought stress. Physiological and Molecular Plant Pathology 60 , 185–195 (2002).
Mcgrath, J. M. & Lobell, D. B. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations: Nutrient decline mechanisms in CO2. Plant, Cell & Environment 36 , 697–705 (2013).
Melotto, M., Underwood, W., Koczan, J., Nomura, K. & He, S. Y. Plant Stomata Function in Innate Immunity against Bacterial Invasion.Cell 126 , 969–980 (2006).
Mikkelsen, B. L., Jørgensen, R. B. & Lyngkjaer, M. F. Complex interplay of future climate levels of CO2, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathol64 , 319–327 (2015).
Mittler, R. Abiotic stress, the field environment and stress combination. Trends in Plant Science 11 , 15–19 (2006).
Mittler, R. & Blumwald, E. Genetic Engineering for Modern Agriculture: Challenges and Perspectives. Annu. Rev. Plant Biol. 61 , 443–462 (2010).
Mohr, P. G. & Cahill, D. M. Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica . Functional Plant Biol.30 , 461 (2003).
Mohr, P. G. & Cahill, D. M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7 , 181–191 (2007).
Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15 , 8889–8973 (2015).
Montes, C. M., Demler, H. J., Li, S., Martin, D. G. & Ainsworth, E. A. Approaches to investigate crop responses to ozone pollution: from O3‐FACE to satellite‐enabled modeling. The Plant Journal 109 , 432–446 (2022).
Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. Journal of Experimental Botany 72 , 2822–2844 (2021).
Morales, M. & Munné-Bosch, S. Oxidative Stress: A Master Regulator of Plant Trade-Offs? Trends in Plant Science 21 , 996–999 (2016).
Morgan, P. B., Ainsworth, E. A. & Long, S. P. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield: Impact of elevated ozone on soybean. Plant, Cell & Environment26 , 1317–1328 (2003).
Mudd, JB. Biochemical reactions of ozone in plants. In: Proceedings of the International Sympoisum on Air Pollution and Climate Change Effects on Forest Ecosystems. (1998).
Mullineaux, P. M., et al . Arabidopsis HEAT SHOCK TRANSCRIPTION FACTOR 1b is a major determinant of seed yield and constitutively regulates basal resistance to abiotic and biotic stresses. Society for Experimental Biology Annual Main Meeting . Glasgow, UK. (2011).
Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510 , 139–142 (2014).
Nejat, N. & Mantri, N. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defense. Current Issues in Molecular Biology 1–16 (2017).
Newman, K. L., Almeida, R. P. P., Purcell, A. H. & Lindow, S. E. Use of a Green Fluorescent Strain for Analysis of Xylella fastidiosaColonization of Vitis vinifera . Appl Environ Microbiol69 , 7319–7327 (2003).
O’Neill, B. F. et al. Leaf temperature of soybean grown under elevated CO2 increases Aphis glycines (Hemiptera: Aphididae) population growth: CO2 increases population size of A. glycines. Insect Science 18 , 419–425 (2011).
Onaga, G. et al. High temperature effects on Pi54 conferred resistance to Magnaporthe oryzae in two genetic backgrounds ofOryza sativa . Journal of Plant Physiology 212 , 80–93 (2017).
Pandey, P., Ramegowda, V. & Senthil-Kumar, M. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front. Plant Sci. 6 , (2015a).
Pandey, P., Sinha, R., Mysore, K. S. & Senthil-Kumar, M. Impact of Concurrent Drought Stress and Pathogen Infection on Plants. inCombined Stresses in Plants (ed. Mahalingam, R.) 203–222 (Springer International Publishing, 2015b). doi:10.1007/978-3-319-07899-1_10.
Parvin, S. et al. Free air CO2 enrichment (FACE) improves water use efficiency and moderates drought effect on N2 fixation of Pisum sativum L. Plant Soil436 , 587–606 (2019).
Pastori, G. M. & Foyer, C. H. Common Components, Networks, and Pathways of Cross-Tolerance to Stress. The Central Role of “Redox” and Abscisic Acid-Mediated Controls. Plant Physiology 129 , 460–468 (2002).
Perkins, S. E., Alexander, L. V. & Nairn, J. R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells.Geophys. Res. Lett. 39 , 2012GL053361 (2012).
Pitaloka, M. K. et al. Induced Genetic Variations in Stomatal Density and Size of Rice Strongly Affects Water Use Efficiency and Responses to Drought Stresses. Front. Plant Sci. 13 , 801706 (2022).
Plazek A, Rapacz M, & Skoczowski A. Effects of ozone fumigation on photosynthesis and membrane permeability in leaves of spring barley, meadow fescue, and winter rape. Photosynthetica 3 , 409–413 (2000).
Potnis, N. et al . Xanthomonas perforans Colonization Influences Salmonella enterica in the Tomato Phyllosphere.Appl Environ Microbiol 80 , 3173–3180 (2014).
Qi, J. et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack: ROS signaling and stomatal movement. J. Integr. Plant Biol.60 , 805–826 (2018).
Raderschall, C. A., Vico, G., Lundin, O., Taylor, A. R. & Bommarco, R. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Glob. Change Biol.27 , 71–83 (2021).
Ramegowda, V. et al. Drought Stress Acclimation Imparts Toleranceto Sclerotinia sclerotiorum and Pseudomonas syringae inNicotiana benthamiana . IJMS 14 , 9497–9513 (2013).
Rao, M. V., Lee, H., Creelman, R. A., Mullet, J. E. & Davis, K. R. Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death. The Plant Cell 14 , 1633-1646 (2000).
Rao, M. V., Koch, J. R. & Davis, K. R. Ozone: a tool for probing programmed cell death in plants. in Programmed Cell Death in Higher Plants (eds. Lam, E., Fukuda, H. & Greenberg, J.) 101–114 (Springer Netherlands, 2000).
Rao, M. V., Lee, H. & Davis, K. R. Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. The Plant Journal32 , 447–456 (2002).
Reddy, A. R., Chaitanya, K. V. & Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants.Journal of Plant Physiology 161 , 1189–1202 (2004).
Reusche, M. et al. Verticillium Infection Triggers VASCULAR-RELATED NAC DOMAIN7–Dependent de Novo Xylem Formation and Enhances Drought Tolerance in Arabidopsis . The Plant Cell24 , 3823–3837 (2012).
Rivero, R. M., Mittler, R., Blumwald, E. & Zandalinas, S. I. Developing climate‐resilient crops: improving plant tolerance to stress combination. The Plant Journal 17 (2022).
Rizhsky, L. et al. When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiology 134 , 1683–1696 (2004).
Rodrigues, F. Á. et al. Silicon Enhances the Accumulation of Diterpenoid Phytoalexins in Rice: A Potential Mechanism for Blast Resistance. Phytopathology 94 , 177–183 (2004).
Rodriguez, M.C.S., Petersen, M. & Mundy, J. Mitogen-Activated Protein Kinase Signaling in Plants. Annu. Rev. Plant Biol. 61 , 621–649 (2010).
Romero-Puertas, M. C., Terrón-Camero, L. C., Peláez-Vico, M. Á., Molina-Moya, E. & Sandalio, L. M. An update on redox signals in plant responses to biotic and abiotic stress crosstalk: insights from cadmium and fungal pathogen interactions. Journal of Experimental Botany72 , 5857–5875 (2021).
Roosens, N. H., Bitar, F. A., Loenders, K. & Angenon, G. Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Molecular Breeding9 : 73-80 (2002).
Rubio-Asensio, J. S. & Bloom, A. J. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. EXBOTJ erw465 (2017).
Rudolph, K. Multiplication of Pseudomonas syringae pv.phaseolicola ‘in planta’.: I. Relation between bacterial concentration and water-congestion in different bean cultivars and plant species. J Phytopathol 111 , 349–362 (1984).
Ruiz‐Vera, U. M., Siebers, M. H., Drag, D. W., Ort, D. R. & Bernacchi, C. J. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Glob Change Biol 21 , 4237–4249 (2015).
Saha, N. D. et al. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorumsubsp. carotovorum . Curr Microbiol 71 , 585–593 (2015).
Saidi, M. N., Mahjoubi, H. & Yacoubi, I. Transcriptome meta-analysis of abiotic stresses-responsive genes and identification of candidate transcription factors for broad stress tolerance in wheat.Protoplasma (2022)/
Saijo, Y. & Loo, E. P. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol 225 , 87–104 (2020).
Sandermann, H. Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool. Environmental Pollution 108 , 327–332 (2000).
Sanz-Sáez, Á., Heath, K. D., Burke, P. V. & Ainsworth, E. A. Inoculation with an enhanced N 2 -fixing Bradyrhizobium japonicum strain (USDA110) does not alter soybean (Glycine max Merr.) response to elevated [CO2]. Plant Cell Environ 38 , 2589–2602 (2015).
Sanz‐Sáez, Á. et al. Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration.Glob Change Biol 23 , 3908–3920 (2017).
Scafaro, A. P., Bautsoens, N., den Boer, B., Van Rie, J. & Gallé, A. A Conserved Sequence from Heat-Adapted Species Improves Rubisco Activase Thermostability in Wheat. Plant Physiol. 181 , 43–54 (2019).
Scafaro, A. P. et al. Heat tolerance in a wild Oryzaspecies is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog. New Phytol211 , 899–911 (2016).
Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. U.S.A. 106 , 15594–15598 (2009).
Schnoor JL. The U.S. Drought of 202. Environmental Science & Technology 46 , 10480 (2012).
Shah, F. et al. Impact of high-temperature stress on rice plant and its traits related to tolerance. J. Agric. Sci. 149 , 545–556 (2011)
Sharma, R., De Vleesschauwer, D., Sharma, M. K. & Ronald, P. C. Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice.Molecular Plant 6 , 250–260 (2013).
Sheehy J, Elmido A, Centeno G, & Pablico P. Searching for new plants for climate change. Journal of Agricultural Meteorology60 , 463–368 (2005).
Shi, H., Liu, W., Yao, Y., Wei, Y. & Chan, Z. Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis.Plant Science 262 , 24–31 (2017).
Shigenaga, A. M., Berens, M. L., Tsuda, K. & Argueso, C. T. Towards engineering of hormonal crosstalk in plant immunity. Current Opinion in Plant Biology 38 , 164–172 (2017).
Shivhare, D. & Mueller-Cajar, O. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop. Plant Physiol. 174 , 1505–1516 (2017).
Singh, P., Dutta, P. & Chakrabarty, D. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. Plant Cell Rep 40 , 1617–1630 (2021).
Slattery, R. A. & Ort, D. R. Carbon assimilation in crops at high temperatures. Plant Cell Environ 42 , 2750–2758 (2019).
Smith, P. & Sward, R. Crop loss assessment studies on the effects of barley yellow dwarf virus in wheat in Victoria. Aust. J. Agric. Res. 33 , 179 (1982).
Soares, J. C., Santos, C. S., Carvalho, S. M. P., Pintado, M. M. & Vasconcelos, M. W. Preserving the nutritional quality of crop plants under a changing climate: importance and strategies. Plant Soil443 , 1–26 (2019).
Srinivasan, V., Kumar, P. & Long, S. P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change.Glob Change Biol 23 , 1626–1635 (2017).
Staehelin, L.A., and G.W.M. van der Staay. 1996. Structure, Composition, Functional Organization and Dynamic Properties of Thylakoid Membranes. In: Ort, D.R., Yocum, C.F., and Heichel, I.F., editors, Oxygenic Photosynthesis: The Light Reactions. Springer Netherlands, Dordrecht. p. 11–30
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol 203 , 32–43 (2014).
Tang, D., Simonich, M. T. & Innes, R. W. Mutations in LACS2 , a Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent Pseudomonas syringae But Confer Resistance toBotrytis cinerea in Arabidopsis. Plant Physiol.144 , 1093–1103 (2007).
Temple PJ & Bisessar S. Response of white bean to bacterial blight, ozone, and antioxidant protection in the field. Disease Detection and Losses 69 , 101–103 (1979).
Thorne, E. T., Stevenson, J. F., Rost, T. L., Labavitch, J. M. & Matthews, M. A. Pierce’s Disease Symptoms: Comparison with Symptoms of Water Deficit and the Impact of Water Deficits. 12 (2006).
Tiedemann Av & Firsching KH. Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environmental Pollution 108 , 357–363 (2000).
Todesco, M. et al. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465 , 632–636 (2010).
Ton, J., Flors, V. & Mauch-Mani, B. The multifaceted role of ABA in disease resistance. Trends in Plant Science 14 , 310–317 (2009).
Trębicki, P. et al. Virus infection mediates the effects of elevated CO2 on plants and vectors. Sci Rep6 , 22785 (2016).
UN-DESA. United Nations, Department of Economic and Social Affairs, Population Division, “World population prospects: the 2010 revision, volume I: comprehensive tables”(ST/ESA/SER.A/313, United Nations (2011).
Vainonen, J. P. & Kangasjärvi, J. Plant signalling in acute ozone exposure: Ozone action on plants. Plant Cell Environ 38 , 240–252 (2015).
Vallejos, C. E. et al. Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers.Theor Appl Genet 121 , 37–46 (2010).
Van Dingenen, R. et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment 43 , 604–618 (2009).
van Eerden, F. J., de Jong, D. H., de Vries, A. H., Wassenaar, T. A. & Marrink, S. J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations.Biochimica et Biophysica Acta (BBA) - Biomembranes 1848 , 1319–1330 (2015).
Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 37 , 195–222 (2012).
Vos, I. A., Moritz, L., Pieterse, C. M. J. & Van Wees, S. C. M. Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front. Plant Sci. 6 , (2015).
Walker, B. J., South, P. F. & Ort, D. R. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration.Photosynth Res 129 , 93–103 (2016).
217.
Walley, JW. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genetics 3 : e172 (2007).
Wang, D. et al. Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant.Physiologia Plantarum 139 , 55–67 (2010).
Wang, L. et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling: Role of CBP60 proteins in salicylic acid signaling. The Plant Journal 67 , 1029–1041 (2011).
Wang, Y., Bao, Z., Zhu, Y. & Hua, J. Analysis of Temperature Modulation of Plant Defense Against Biotrophic Microbes. MPMI 22 , 498–506 (2009).
Wellstein, C. et al. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob Change Biol23 , 2473–2481 (2017).
Wiebbecke, C. E., Graham, M. A., Cianzio, S. R. & Palmer, R. G. Day Temperature Influences the Male-Sterile Locus ms9 in Soybean.Crop Science 52 , 1503–1510 (2012).
Wiese, J., Kranz, T. & Schubert, S. Induction of Pathogen Resistance in Barley by Abiotic Stress. Plant Biology 6 , 529–536 (2004).
224.
Wu, W. et al. Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus.Biochimica et Biophysica Acta (BBA) - Bioenergetics1827 , 709–722 (2013).
Xu, P. et al. Virus infection improves drought tolerance.New Phytologist 180 , 911–921 (2008).
Zarattini, M. et al. Every cloud has a silver lining: how abiotic stresses affect gene expression in plant-pathogen interactions.Journal of Experimental Botany 72 , 1020–1033 (2021).
Zhang, H., Zhu, J., Gong, Z. & Zhu, J.-K. Abiotic stress responses in plants. Nat Rev Genet 23 , 104–119 (2022).
Zhang, J., Xu, Y., Huan, Q. & Chong, K. Deep sequencing ofBrachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics10 , 449 (2009).
Zhang, S. et al. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany 66 , 1951–1963 (2015).
Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. U.S.A. 114 , 9326–9331 (2017).
Zhu, P. et al. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Global Change Biology 24 , 4718–4730 (2018).
Zhu, T., Fonseca De Lima, C. F. & De Smet, I. The heat is on: how crop growth, development, and yield respond to high temperature.Journal of Experimental Botany erab308 (2021).