References

Athauda, D., Foltynie, T. (2016). The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov Today 21 (5):802-18.
Campanari, M. L., García-Ayllón, M. S., Belbin, O., Galcerán, J., Lleó, A., Sáez-Valero, J. (2014). Acetylcholinesterase modulates presenilin-1 levels and gamma-secretase activity. J Alzheimers Dis41 (3):911-24.
Carrodeguas, J. A., Rodolosse, A., Garza, M. V., Sanz-Clemente, A., Pérez-Pé, R., Lacosta, A. M., Domínguez, L., Monleón, I., Sánchez-Díaz, R., Sorribas, V., Sarasa, M. (2005). The chick embryo appears as a natural model for research in beta-amyloid precursor protein processing.Neuroscience 134 (4):1285-1300.
Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., Xu, H. E. (2017). Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin38 (9):1205-1235.
Cox, J., Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26 (12):1367-72.
Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., Mann, M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10 (4):1794-805.
De Strooper, B., Vassar, R., Golde, T. (2010). The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol6 (2):99-107.
Deng, M., He, W., Tan, Y., Han, H., Hu, X., Xia, K., Zhang, Z., Yan, R. (2013). Increased expression of reticulon 3 in neurons leads to reduced axonal transport of β site amyloid precursor protein-cleaving enzyme 1.J Biol Chem 288 (42):30236-30245.
During, M. J., Cao, L., Zuzga, D. S., Francis, J. S., Fitzsimons, H. L., Jiao, X., Bland, R. J., Klugmann, M., Banks, W. A., Drucker, D. J., Haile, C. N. (2003). Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9 (9):1173-9.
Grinde, B., Schirmer, H., Eggen, A. E., Aigner, L., Engdahl, B. (2021). A possible effect of montelukast on neurological aging examined by the use of register data. Int J Clin Pharm 43 (3):541-548.
Gu, Q., Cuevas, E., Raymick, J., Kanungo, J., Sarkar, S. (2020). Downregulation of 14-3-3 Proteins in Alzheimer’s Disease. Mol Neurobiol 57 (1):32-40.
Islam, M. R., Kaurani, L., Berulava, T., Heilbronner, U., Budde, M., Centeno, T. P., Elerdashvili, V., Zafieriou, M. P., Benito, E., Sertel, S. M., Goldberg, M., Senner, F., Kalman, J. L., Burkhardt, S., Oepen, A. S., Sakib, M. S., Kerimoglu, C., Wirths, O., Bickeböller, H., Bartels, C., Brosseron, F., Buerger, K., Cosma, N. C., Fliessbach, K., Heneka, M. T., Janowitz, D., Kilimann, I., Kleinedam, L., Laske, C., Metzger, C. D., Munk, M. H., Perneczky, R., Peters, O., Priller, J., Rauchmann, B. S., Roy, N., Schneider, A., Spottke, A., Spruth, E. J., Teipel, S., Tscheuschler, M., Wagner, M., Wiltfang, J., Düzel, E., Jessen, F., Delcode Study, G., Rizzoli, S. O., Zimmermann, W. H., Schulze, T. G., Falkai, P., Sananbenesi, F., Fischer, A. (2021). A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med 13 (11):e13659.
Jang, H., Kim, S., Lee, J. M., Oh, Y.-S., Park, S. M., Kim, S. R. (2017). Montelukast treatment protects nigral dopaminergic neurons against microglial activation in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neuroreport 28 (5):242-249.
Kalonia, H., Kumar, P., Kumar, A., Nehru, B. (2010). Protective effect of montelukast against quinolinic acid/malonic acid induced neurotoxicity: possible behavioral, biochemical, mitochondrial and tumor necrosis factor-α level alterations in rats. Neuroscience171 (1):284-99.
Kalueff, A. V., Nguyen, M. (2014). Testing anxiolytic drugs in the C57BL/6J mouse strain. Journal of Pharmacological and Toxicological Methods 69 (2):205-207.
Kume, H., Konishi, Y., Murayama, K. S., Kametani, F., Araki, W. (2009). Expression of reticulon 3 in Alzheimer’s disease brain.Neuropathol Appl Neurobiol 35 (2):178-88.
Lai, J., Hu, M., Wang, H., Hu, M., Long, Y., Miao, M. X., Li, J. C., Wang, X. B., Kong, L. Y., Hong, H. (2014a). Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Aβ1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology79 :707-14.
Lai, J., Mei, Z. L., Wang, H., Hu, M., Long, Y., Miao, M. X., Li, N., Hong, H. (2014b). Montelukast rescues primary neurons against Aβ1–42-induced toxicity through inhibiting CysLT1R-mediated NF-κB signaling. Neurochem Int75 :26-31.
Li, J. G., Barrero, C., Merali, S., Praticò, D. (2017). Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer’s phenotype. Sci Rep 7 :46002.
Li, Y., Duffy, K. B., Ottinger, M. A., Ray, B., Bailey, J. A., Holloway, H. W., Tweedie, D., Perry, T., Mattson, M. P., Kapogiannis, D., Sambamurti, K., Lahiri, D. K., Greig, N. H. (2010). GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19 (4):1205-19.
Mandas, A., Abete, C., Putzu, P. F., la Colla, P., Dessì, S., Pani, A. (2012). Changes in cholesterol metabolism-related gene expression in peripheral blood mononuclear cells from Alzheimer patients. Lipids Health Dis 11 :39.
Mansour, R. M., Ahmed, M. A. E., El-Sahar, A. E., El Sayed, N. S. (2018). Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: Possible role of its antioxidant, anti-inflammatory and antiapoptotic effects. Toxicol Appl Pharmacol 358 :76-85.
Marques, C., Marques, M. M., Justino, G. C. (2022a). Montelukast effect on chicken neuron proteomics. Mendeley Data , V1, doi:10.17632/rn8yvtmtxx.1.
Marques, C., Marques, M. M., Justino, G. C. (2022b). Montelukast effect on mouse proteomics. Mendeley Data , V1, doi:10.17632/6jphhgnrt8.1.
Marques, C. F., Marques, M. M., Justino, G. C. (2022c). Leukotrienes vs. Montelukast-Activity, Metabolism, and Toxicity Hints for Repurposing.Pharmaceuticals 15 (9):1039.
Marques, C. F., Marques, M. M., Justino, G. C. (2022d). The mechanisms underlying montelukast’s neuropsychiatric effects - new insights from a combined metabolic and multiomics approach. Life Sciences310 :121056.
Marschallinger, J., Altendorfer, B., Rockenstein, E., Holztrattner, M., Garnweidner-Raith, J., Pillichshammer, N., Leister, I., Hutter-Paier, B., Strempfl, K., Unger, M. S., Chishty, M., Felder, T., Johnson, M., Attems, J., Masliah, E., Aigner, L. (2020). The Leukotriene Receptor Antagonist Montelukast Reduces Alpha-Synuclein Load and Restores Memory in an Animal Model of Dementia with Lewy Bodies.Neurotherapeutics 17 (3):1061-1074.
Marschallinger, J., Schäffner, I., Klein, B., Gelfert, R., Rivera, F. J., Illes, S., Grassner, L., Janssen, M., Rotheneichner, P., Schmuckermair, C., Coras, R., Boccazzi, M., Chishty, M., Lagler, F. B., Renic, M., Bauer, H.-C., Singewald, N., Blümcke, I., Bogdahn, U., Couillard-Despres, S., Lie, D. C., Abbracchio, M. P., Aigner, L. (2015). Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun 6 :8466-8466.
Mi, H., Ebert, D., Muruganujan, A., Mills, C., Albou, L.-P., Mushayamaha, T., Thomas, P. D. (2021). PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 49 (D1):D394-D403.
Michael, J., Zirknitzer, J., Unger, M. S., Poupardin, R., Rieß , T., Paiement, N., Zerbe, H., Hutter-Paier, B., Reitsamer, H., Aigner, L. (2021). The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5xFAD Mice.Int J Mol Sci 22 (5):2782.
Mouse Genome Sequencing Consortium (2002). Initial sequencing and comparative analysis of the mouse genome. Nature420 (6915):520-562.
Nagarajan, V. B., Marathe, P. A. (2018). Effect of montelukast in experimental model of Parkinson’s disease. Neurosci Lett682 :100-105.
Nalivaeva, N. N., Belyaev, N. D., Lewis, D. I., Pickles, A. R., Makova, N. Z., Bagrova, D. I., Dubrovskaya, N. M., Plesneva, S. A., Zhuravin, I. A., Turner, A. J. (2012). Effect of Sodium Valproate Administration on Brain Neprilysin Expression and Memory in Rats. Journal of Molecular Neuroscience 46 (3):569-577.
Nalivaeva, N. N., Turner, A. J. (2019). Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy. Br J Pharmacol176 (18):3447-3463.
Pair, F. S., Yacoubian, T. A. (2021). 14-3-3 Proteins: Novel Pharmacological Targets in Neurodegenerative Diseases. Trends Pharmacol Sci 42 (4):226-238.
Palomer, E., Buechler, J., Salinas, P. C. (2019). Wnt Signaling Deregulation in the Aging and Alzheimer’s Brain. Front Cell Neurosci 13 :227.
Perez, D. M. (2020). α1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol11 :581098.
Petrova, V., Pearson, C. S., Ching, J., Tribble, J. R., Solano, A. G., Yang, Y., Love, F. M., Watt, R. J., Osborne, A., Reid, E., Williams, P. A., Martin, K. R., Geller, H. M., Eva, R., Fawcett, J. W. (2020). Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat Commun 11 (1):5614.
Ramires, R., Caiaffa, M. F., Tursi, A., Haeggström, J. Z., Macchia, L. (2004). Novel inhibitory effect on 5-lipoxygenase activity by the anti-asthma drug montelukast. Biochem Biophys Res Commun324 (2):815-821.
Russell, W. M. S., Burch, R. L. (1959). The principles of humane experimental technique . Methuen & Co. Limited.: London, UK.
Sarsani, V. K., Raghupathy, N., Fiddes, I. T., Armstrong, J., Thibaud-Nissen, F., Zinder, O., Bolisetty, M., Howe, K., Hinerfeld, D., Ruan, X., Rowe, L., Barter, M., Ananda, G., Paten, B., Weinstock, G. M., Churchill, G. A., Wiles, M. V., Schneider, V. A., Srivastava, A., Reinholdt, L. G. (2019). The Genome of C57BL/6J “Eve”, the Mother of the Laboratory Mouse Genome Reference Strain. G3 Genes|Genomes|Genetics 9 (6):1795-1805.
Sogorb-Esteve, A., Garcia-Ayllón, M. S., Llansola, M., Felipo, V., Blennow, K., Sáez-Valero, J. (2018). Inhibition of gamma-Secretase Leads to an Increase in Presenilin-1. Mol Neurobiol55 (6):5047-5058.
Sousa, L., Guarda, M., Meneses, M. J., Macedo, M. P., Vicente Miranda, H. (2021). Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J Pathol 255 (4):346-361.
Trinh, H. K. T., Suh, D. H., Nguyen, T. V. T., Choi, Y., Park, H. S., Shin, Y. S. (2019). Characterization of cysteinyl leukotriene-related receptors and their interactions in a mouse model of asthma.Prostaglandins Leukot Essent Fatty Acids 141 :17-23.
Tyanova, S., Temu, T., Cox, J. (2016a). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11 (12):2301-2319.
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., Cox, J. (2016b). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods13 (9):731-740.
UniProt Consortium (2020). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research 49 (D1):D480-D489.
Wallin, J., Svenningsson, P. (2021). Potential Effects of Leukotriene Receptor Antagonist Montelukast in Treatment of Neuroinflammation in Parkinson’s Disease. Int J Mol Sci 22 (11):5606.
Wang, Z., Zhang, X.-J., Li, T., Li, J., Tang, Y., Le, W. (2014). Valproic Acid Reduces Neuritic Plaque Formation and Improves Learning Deficits in APPSwe/PS1A246E Transgenic Mice via Preventing the Prenatal Hypoxia-Induced Down-Regulation of Neprilysin. CNS Neuroscience & Therapeutics 20 (3):209-217.
Xin, S. H., Tan, L., Cao, X., Yu, J. T., Tan, L. (2018). Clearance of Amyloid Beta and Tau in Alzheimer’s Disease: from Mechanisms to Therapy.Neurotox Res 34 (3):733-748.
Yan, X., Hu, Y., Wang, B., Wang, S., Zhang, X. (2020). Metabolic Dysregulation Contributes to the Progression of Alzheimer’s Disease.Front Neurosci 14 :530219.
Zhang, C. T., Lin, J. R., Wu, F., Ghosh, A., Tang, S. S., Hu, M., Long, Y., Sun, H. B., Hong, H. (2016). Montelukast ameliorates streptozotocin-induced cognitive impairment and neurotoxicity in mice.Neurotoxicology 57 :214-222.
Zhang, S., Glukhova, S. A., Caldwell, K. A., Caldwell, G. A. (2017). NCEH-1 modulates cholesterol metabolism and protects against alpha-synuclein toxicity in a C. elegans model of Parkinson’s disease.Hum Mol Genet 26 (19):3823-3836.
Zhang, X. Y., Chen, L., Yang, Y., Xu, D. M., Zhang, S. R., Li, C. T., Zheng, W., Yu, S. Y., Wei, E. Q., Zhang, L. H. (2014). Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1. Brain Res 1572 :59-71.