References
Ahrens, D. 2004. Monographie der Sericini des Himalaya (Coleoptera, Scarabaeidae). Dissertation.de - Verlag im Internet GmbH, Berlin, 534pp.
Ahrens, D. and Fabrizi, S. 2016. A Monograph of the Sericini of India (Coleoptera: Scarabaeidae). – Bonn Zool. Bull. 65: 1–355.
Ahrens, D. 2007. Beetle evolution in the Asian highlands: insight from a phylogeny of the scarabaeid subgenus Serica (Coleoptera, Scarabaeidae). – Syst. Entomol. 32: 450–476.
Ahrens, D. et al. 2007. DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). – Mol. Phylogenet. Evol. 44: 436–449.
Ahrens, D. et al. 2009. Seasonal fluctuation, phenology and turnover of chafer assemblages - insight to the structural plasticity of insect communities in tropical farmland (Coleoptera: Scarabaeidae). – Agric. For. Entomol. 11: 265–274.
Ahrens, D. et al. 2014. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. – Proc. R. Soc. B. 281: 20141470.
Baselga, A. et al. 2022. Joint analysis of species and genetic variation to quantify the role of dispersal and environmental constraints in community turnover. – Ecography. 2022: e05808.
Beck, J. and Kitching, I.J. 2007. Estimating regional species richness of tropical insects from museum data: a comparison of a geography-based and sample-based methods. – J. Appl. Ecol. 44: 672–681.
Bosc, C. et al. 2019. Importance of biotic niches versus drift in a plant‐inhabiting arthropod community depends on rarity and trophic group. – Ecography 42: 1926–1935.
Brehm, G. et al. 2019. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. – Ecography 42: 632–642.
Buckley, L.B. and Jetz, W. 2007. Environmental and historical constraints on global patterns of amphibian richness. – Proc. R. Soc. B. 274: 1167–1173.
Chao, A. and Lee, S.M. 1992. Estimating the number of classes via sample coverage. vJ. Am. Stat. Assoc. 87: 210–217.
Danks, H.V. 1992. Long life cycles in insects. – Can. Entomol. 124: 167–187.
Daru, B.H. et al. 2020. Endemism patterns are scale dependent. – Nat. Commun. 11: 2115.
Davis, A.L.V., et al. 2013. Is microclimate-driven turnover of dung beetle assemblage structure in regenerating coastal vegetation a precursor to re-establishment of a forest fauna? – J. Insect Conserv. 17: 565–576.
Decaëns, T. 2010. Macroecological patterns in soil communities. – Glob. Ecol. Biogeogr. 19: 287–302.
De Oliveira, C.P. et al. 2021. Seasonality and distribution of Coleoptera families (Arthropoda, Insecta) in the Cerrado of Central Brazil. – Rev. Bras. Entomol. 65(3): e20210025.
Eberle, J. et al. 2014. The Evolution of morphospace in phytophagous scarab chafers: no competition - no divergence? – PLoS One 9(5): e98536.
Eberle, J. et al. 2016. A historical biogeography of megadiverse Sericini – another story “out of Africa”? – Cladistics 33: 183–197.
Eberle, J. et al. 2017. Landscape genetics indicate recently increased habitat fragmentation in African forest-associated chafers. – Glob. Change Biol. 23: 1988–2004.
Echevarría Ramos, M. and Hulshof, C.M. 2019. Using digitized museum collections to understand the effects of habitat on wing coloration in the Puerto Rican monarch. – Biotropica 51: 477– 483.
Fabrizi, S. and Ahrens, D. 2014. A Monograph of the Sericini of Sri Lanka (Coleoptera: Scarabaeidae). – Bonn Zool. Bull. 61: 1–124.
Gálvez-Reyes, N. et al. 2020. Local-scale dispersal constraints promote spatial structure and arthropod diversity within a tropical sky-island. – Authorea. DOI: 10.22541/au.160193334.45224582/v1
García-López, et al. 2010. Spatiotemporal variation of scarab beetle assemblages (Coleoptera: Scarabaeidae: Dynastinae, Melolonthinae, Rutelinae Rutelinae) in the premontane rain forest in Costa Rica: a question of scale. – Ann. Entomol. Soc. Am. 103: 956–964.
García-Lopez, A. et al. 2013. Beta diversity at multiple hierarchical levels: explaining the high diversity of scarab beetles in tropical montane forests. – J. Biogeogr. 40: 2134–2145.
Garcia-Robledo, C. et al. 2020. Evolutionary history, not ecogeographic rules, explains size variation of tropical insects along elevational gradients. – Funct Ecol. 00:1–11.
Hammer, O. et al. 2001. PAST: paleontological statistics software package for education and data analysis. – Palaeontol. Electron. 4:1–9.
Hill, M. O. 1973. Diversity and evenness: a unifying notation and its consequences. – Ecology 54: 427–432.
Holt, B.G. et al. 2013. An update of Wallace’s zoogeographic regions of the world. – Science 339: 74–78.
Inward, D.J.G. et al. 2011. Local and regional ecological morphology of dung beetle assemblages across four biogeographic regions. – J. Biogeogr. 38: 1668–1682.
Jaccard, P. 1912. The distribution of the flora In the Alpine zone. – New Phytol. 11 (2): 37–50.
Kemp, J.E. et al. 2017. Beta diversity of herbivorous insects is coupled to high species and phylogenetic turnover of plant communities across short spatial scales in the Cape Floristic Region. – J. Biogeogr. 44: 1813–1823.
Lira, A.F.A. et al. 2021. Contrasting patterns at interspecific and intraspecific levels in scorpion body size across a climatic gradient from rainforest to dryland vegetation. – Zoology 146: 125908.
Luo, F. et al. 2021. Scale-dependent contribution of host-specificity and environmental factors to wood-boring longhorn beetle community assemblage in SW China. – Sci. Rep. 11: 5100.
Mani, M.S. 1968. Ecology and biogeography of high altitude insects. – Junk, The Hague, 527pp.
McKenna, D.D. et al. 2019. The evolution and genomic basis of beetle diversity. – PNAS 116(49): 24729–24737.
Murria, C., et al. 2017. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe. – Mol. Ecol. 26: 6085–6099.
Myers, N. et al. 2000. Biodiversity hotspots for conservation priorities. – Nature 403: 853–858.
Nielsen, U.N. 2019. Soil Fauna Assemblages. Global to local scales. – Cambridge University Press, Cambridge, New York, Port Melbourne, 365pp.
Ødegaard, F. 2006. Host specificity, alpha- and beta-diversity of phytophagous beetles in two tropical forests in Panama. – Biodivers. Conserv. 15: 83–105.
Ranasinghe, S. et al. 2020. New species of Sericini from Sri Lanka (Coleoptera, Scarabaeidae). – Eur. J. Taxon. 621: 1–20.
Ranasinghe, S., et al. 2022. New species of Sericini from Sri Lanka (Coleoptera, Scarabaeidae). Part II. – Eur. J. Taxon. 821: 57–101.
Ranasinghe, S., et al. in review. Contrasting results of multiple species delimitation approaches cause uncertainty in synecological studies.
Ritcher, P. O. 1958. Biology of Scarabaeidae. Ann. Rev. Entomol. 3: 311–334.
Romero, G.Q. 2016. Food web structure shaped by habitat size and climate across a latitudinal gradient. – Ecology 97: 2705–2715.
Santos, A.M.C. and Quicke, D. 2011. Large-scale diversity patterns of parasitoid insects. – Insect Sci. 14: 371–382.
Shannon, C. E. 1948. A mathematical theory of communication. – Bell Syst. Tech. J., 27: 379–423 and 623–656.
Smith, T.J., et al. 2021. Phylogenetic sampling affects evolutionary patterns of morphological disparity. –Palaeontology. 64: 765–787.
Simpson, E. H. 1949. Measurement of diversity. – Nature 163 (4148): 688.
Stork, N. E. et al. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. – PNAS 112: 201502408.
Tshikae, B.P. et al. 2013. Dung beetle assemblage structure across the aridity and trophic resource gradient of the Botswana Kalahari: patterns and drivers at regional and local scales. – J. Insect Conserv. 17: 623–636.
Yotkham, S. et al. 2021. Biodiversity and Spatiotemporal Variation of Longhorn Beetles (Coleoptera: Cerambycidae) in Tropical Forest of Thailand. – Insects 12(1): 45.
Zou, Y. and Axmacher, J.C. 2021. Estimating the number of species shared by incompletely sampled communities. – Ecography 44: 1–11.