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Introduction
Motivation and Dataset Machine Learning Methods
Geologists seek assistance in classifying Machine Learning (ML)
microscope rock images A 77 77 G oINS L .
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* CNNs are atype of ML models
inspired by the brain.
* Used to extract features such as

. shape, color and texture to infer
* Only ~ 100 positive examples

, | o B image labels.
* Sigma clasts are notoriously difficult to . Requires thousands of examples!!

classify, even for geologists | X

Challenge: Very limited dataset, difficult
feature extraction

Transfer Learning applied to Sigma Clasts Detection Problem

Comparing Different Transfer Learning Approaches: InceptionV3, ResNet50, VGG19
What is Transfer Learning?
ol | Experimental Setup
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Typically, CNNs require * Train/Validation Split = 0.8 on
hundreds and thousands Of model train loss train acc val loss val acc fl score tota| Of 100 |mage5
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useful prediction accuracy for a False.h5 0.825], [0.787, 0.809, 0.781, 40.0], [0.851, 0.825, 0.826, 40.0]]
P Y ResNet50 epochs02 train acc- [[metric, precision, recall, f1-score, support], [0.667, 0.333, 0.444, 6.0], e 0O ptl mizer = Adam
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. . 1 09693 val acc-0.7250 Regularized- 10.634 0791 2451 0725  [0.818,0.643, 0.72, 14.0], [0.783, 0.9, 0.837, 20.0], [0.725, 0.725, 0.725, eration step size = 1e-
models trained with other data True.h5 0.725], [0.645, 0.625, 0.63, 40.0], [0.728, 0.725, 0.721, 40.0]] e Activation = Relu softmax for
y fA VGG19 epochs14 train acc- [[metric, precision, recall, f1-score, support], [0.3, 1.0, 0.462, 6.0], [1.0, ’
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layers on our sigma clasts data
and observe the results.
Detecting Multiple Objects in an Image Efficient Exploration of Models through Visualization

* YOLOV3 is the third iteration of CNN
based object detection architecture, able
to output real time bounding boxes
around Sigma clasts

Understand Model Prediction Accuracy

* |n order to prioritize the exploration of
possible new models with different
settings, we are developing a
computational experimentation
environment to visualize different CNN
network layers, classification heatmaps,
and comparative metrics.

Blue — ground truth labels
Green — predicted labels

* [nitial implementations of YOLO show the
ability to distinguish multiple sigma clasts

in a single image: not possible through * We propose heatmaps that show where

* In the future: fine tune this approach clasts, to compare and distinguish where
using tail detection. some models are underperforming




