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Timeseries Analysis: DISSTANS
github.com/tobiscode/

disstans

2D Forward Model: SeqEAS
github.com/tobiscode/

seqeas-public

Inverse Model: AlTar
github.com/lijun99/
altar2-documentation

•Constraining the effective rheology of subduction zone
megathrusts is crucial to improve our understanding of the physics
of convergent plate boundary deformation (e.g., Bürgmann &
Dresen, 2008). Key questions include: How does stress
accumulate, release, and distribute during the earthquake cycle?
Where and how are mountain ranges sustained? How can plate-like
tectonics exist? And what does our understanding imply for seismic
hazard assessments?

•Laboratory experiments have been used to propose constitutive
relations of specific rock types at the micron to meter scale (e.g.,
Blanpied et al., 1995; Hirth, 2002; Hirth & Kohlstedt, 2004).

• Postseismic displacement timeseries observations near plate
interfaces have since been used to estimate ranges of parameters
for such models (e.g., Freed et al., 2012; Agata et al., 2019; Muto
et al., 2019; Fukuda & Johnson, 2021) although it is unclear if
geodetic evidence can distinguish between different models at
megathrust scales.
→ Longterm goal:

Identify classes of rheological models that are internally
consistent over different phases of the seismic cycle.

• We build on the concepts of Hetland & Simons (2010) and
Hetland et al. (2010) that model interseismic creep in the
Northern Japan subduction zone given a recurring rupture
sequence (informed by historical seismic catalogs), locked asperity
patches, and a rate-dependent frictional model.
→ Goal for this study:

Develop a Bayesian framework to solve for spatially-variable
rheological parameters of the Northern Japan megathrust using
3D GNSS displacement data of the entire observed post- and
interseismic periods.

• We have successfully recovered depth-dependent rheological parameters using
synthetic data and a simplified, flat 3D subduction interface with two
asperities (Box VII).

• We have ran the forward model of the entire earthquake history in Northern
Japan using a coarse mesh and non-optimized rheological properties (Box VI).

• The length of the real earthquake record (full cycle length approx. 4000 years
with more than 400 earthquakes) and mesh size require computational
improvements to perform timely inversions.

• We further aim to improve the size, shape, and location of the imposed
asperities using published coseismic rupture distributions, and allow the
frictional strength to vary both down-dip and along-strike.

• We use the F5 surface
observations provided by
GEONET (Takamatsu et
al., 2023).

• Using DISSTANS (Köhne
et al., 2023), we remove
effects not included in our
forward model (coseismic
steps, maintenance steps,
seasonal oscillations,
volcanic transients and
slow slip events) to yield
dobs(t).

• We reference the
timeseries (both observed
and modeled) to the
average motion of 10
stations in Western Japan.

•Markov-Chain Monte-Carlo (MCMC) framework: maximize the
likelihood p(dobs|ϑ) = N(dobs|g(ϑ), CΧ), matching the entire
timeseries (not a functional fit), yielding the posterior distribution
p(ϑ|d) for parameters ϑ = {(a-b) σE, depths} using the CATMIP
algorithm (Minson et al., 2013) as implemented in the AlTar software.

•Errors: observations dobs = g(ϑ) + ϵ + e = dpred + ϵ + e, corrupted
by observation errors e (covariance Cd currently assumed as constant,
diagonal matrix) as well as the model errors ϵ (covariance Cp,
currently ignored) with CΧ = Cd +Cp.

•Successfully tested on 2D synthetic subduction zones (Köhne et al.,
submitted) and for a flat interface in 3D using synthetic data (left).

• Each patch is modeled as a spring-slider system where the resistive shear traction τ is balancing the far-field
and elastic loading of the patch.

• From the boundary integral formulation, we get dτ/dt = K (v - vp) (K stress kernel, vp plate velocity).
• From the rheology of steady-state, rate-dependent friction, we get dτ/dt = (a-b) σE dζ/dt (Box III).
• Combining the previous equations yields the initial value problem dζ/dt (a-b) σE = K (v - vp).
• Periodically, we impose an earthquake by applying a step change in velocity (i.e. stress state) (Box IV)
• To ensure independence of initial conditions, we spin up the earthquake cycle until stationary behavior.
• Using Green's functions, we calculate surface displacement timeseries dpred(t) (Box VI).

• We define an asperity as an area on
the interface that only slips
coseismically.

• Based on the literature and
earthquake catalog review of Kanda
et al. (2013), we assign a recurrence
interval and slip magnitude for each
asperity.

• Plate convergence is recovered after
integration over a full cycle (e.g.,
4000 a).

• Asperities are allowed to rupture
jointly.• Each patch follows rate-dependent

friction:
fss = f0 + (a-b) ζ = τ / σE (fss
steady-state friction, f0, a, and b
constants, σE effective normal
stress, τ shear stress, ζ logarithm of
slip rate, e.g., Rice & Ruina, 1983).

• The steady-state frictional strength
(a-b) σE is varied with depth
based on the location of two
knickpoints and logarithmic
interpolation between them.

• Future work includes using splines
both down-dip and along-strike to
parameterize frictional strength.

1. Build mesh based on plate interface geometry and coseismic
rupture extents (center figure).

2. Define spatially-variable profile of rate-dependent strength
parameter (Box III).

3. Based on historical catalogs, define a rupture history for the
asperities (Box IV).

4. Solve the initial value problem relating external forcing (plate
convergence) to frictional resistance on the plate interface,
generating model interface and surface velocities (Box V).

5. Compare the model output with surface observations (Box VI).
6. Use a Markov chain Monte Carlo solver to estimate rheological
parameters that best match surface observations (Box VII) (i.e.,
repeat from step 2).

Study setting.The light grey contours show Northern Japan in
a slanted map view, focusing on the islands of Honshū and
Hokkaidō. The subset of the continuously-operating Global
Navigation Satellite System (GNSS) stations of the GEONET
network used in this study are marked by grey triangles (stations
93004 is highlighted, with Box VII showing the timeseries of it).
The plate interface of the Japan Trench subduction zone is
shown as the depth-colored triangular mesh (based on Slab2,
Hayes et al., 2018). 7 asperities with recurring earthquakes are
marked with different colors and labeled with their last
significant rupture and magnitude. The rupture timelines for
each asperity are shown in Box IV. Asterisks mark asperities
that, in our rupture timeline and forward model, also slipped
during the great Mw 9.1 Tōhoku in 2011. The relative plate
convergence is modeled using Euler poles for the Eurasian and
Pacific plates. For the forward model in Box VI, we use a coarse
version of this mesh for computational reasons. Future work will
include improving the size, shape and location of the asperities.
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