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Abstract15

Exhumed high-pressure/low-temperature (HP/LT) metamorphic rocks provide insights16

into deep (⇠20-70 km) subduction interface dynamics. On Syros Island (Cyclades, Greece),17

the Cycladic Blueschist Unit (CBU) preserves blueschist-to-eclogite facies oceanic- and18

continental-a�nity rocks that record the structural and thermal evolution associated with19

Eocene subduction. Despite decades of research on Syros, the pressure-temperature-deformation20

history (P-T-D), and timing of subduction and exhumation, are matters of ongoing dis-21

cussion. Here we show that the CBU on Syros comprises three coherent tectonic slices,22

and each one underwent subduction, underplating, and syn-subduction return flow along23

similar P-T trajectories, but at progressively younger times. Subduction and return flow24

are distinguished by stretching lineations and ductile fold axis orientations: top-to-the-S25

(prograde-to-peak subduction), top-to-the-NE (blueschist facies exhumation), and then E-26

W coaxial stretching (greenschist facies exhumation). Amphibole chemical zonations record27

cooling during decompression, indicating return flow along the top of a cold subducting slab.28

New multi-mineral Rb-Sr isochrons and compiled metamorphic geochronology demonstrate29

that three nappes record distinct stages of peak subduction (53 Ma, ⇠50 Ma (?), and 4730

Ma) that young with structural depth. Retrograde blueschist and greenschist facies fab-31

rics span ⇠50-40 Ma and ⇠43-20 Ma, respectively, and also young with structural depth.32

The datasets support a revised tectonic framework for the CBU, involving subduction of33

structurally distinct nappes and simultaneous return flow of previously accreted tectonic34

slices in the subduction channel shear zone. Distributed, ductile, dominantly coaxial return35

flow in an Eocene-Oligocene subduction channel proceeded at rates of ⇠1.5-5 mm/yr, and36

accommodated ⇠80% of the total exhumation of this HP/LT complex.37

1 Introduction38

The mechanical and thermal properties of the subduction interface strongly influence39

the internal structure, kinematics, and dynamics of a subduction zone (e.g. Cloos, 1982;40

Gerya & Stöckhert, 2002; Agard et al., 2018). Along the shallow interface ( 20 km), direct41

observations of the megathrust and accretionary wedge are possible through high-resolution42

seismic reflection imaging, ocean bottom seismometers, and ocean drilling projects (e.g.43

Park et al., 2002; Fagereng et al., 2019; Kimura et al., 2010). However, seismic tomography44

and earthquake seismology have limited spatial and temporal resolution (e.g. Rondenay et45

al., 2008; Calvert et al., 2011) so the geometry and internal structure of the deep interface46

(⇠20-70+ km) remain poorly understood (Platt, 1993; Chemenda et al., 1995; Gerya &47

Stöckhert, 2002; Agard et al., 2018).48

The deep interface can be studied through geologic observations of exhumed high-49

pressure/low-temperature (HP/LT) metamorphic rocks. Some of the most spectacular ex-50

amples – for example, the Franciscan Complex (e.g. Cloos, 1986; Wakabayashi, 1990), and51

the Mediterranean region (e.g. Platt et al., 1998; Jolivet et al., 2003; Brun & Faccenna,52

2008) – have profoundly shaped our understanding of subduction and exhumation processes.53

Specifically, field studies provide constraints on the structural and kinematic evolution, in-54

terface geometry, metamorphic pressure-temperature (P-T) trajectories, and timing and55

rates of subduction and exhumation (e.g. Behr & Platt, 2012; Ukar et al., 2012; Dragovic et56

al., 2015; Angiboust et al., 2016; Agard et al., 2018; Xia & Platt, 2017; Platt et al., 2018).57

Geologic observations can validate or challenge the results of geodynamic simulations that58

model the kinematics and dynamics of rock within plate boundary shear zones (e.g. Cloos,59

1982; Gerya & Stöckhert, 2002; Gerya et al., 2002; Warren et al., 2008).60

Syros Island, located in the central Aegean Sea (Fig. 1), is an ideal locality to61

study deep interface processes due to its exceptional preservation and exposure of HP/LT62

blueschist-to-eclogite facies assemblages (Dürr et al., 1978; Ridley, 1982, 1984; Okrusch &63

Bröcker, 1990). Despite decades of research on Syros, there are many disagreements re-64

garding the structural evolution, metamorphic conditions, and timing and mechanisms of65
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Figure 1: Regional tectonic map of the Cyclades, modified from Grasemann et al. (2012).
Syros is outlined by the yellow box. North Cycladic (NCDS), West Cycladic (WCDS),
Paros-Naxos (PNDS), and Santorini (SDS) Detachment Systems are outlined in white.

subduction and exhumation on the island (e.g. Ridley, 1982; Trotet et al., 2001a; Rosen-66

baum et al., 2002; Ring & Layer, 2003; Keiter et al., 2004; Schumacher et al., 2008; Soukis &67

Stockli, 2013; Bröcker et al., 2013; Laurent et al., 2016; Lister & Forster, 2016; Aravadinou68

& Xypolias, 2017; Laurent et al., 2018; Skelton et al., 2019). Furthermore, crustal-scale69

extensional detachments that accommodated the latest stages of post-orogenic exhumation70

are well-documented across the Cyclades (Avigad & Garfunkel, 1989, 1991; Gautier et al.,71

1993; Jolivet et al., 2010; Jolivet & Brun, 2010; Grasemann et al., 2012; Soukis & Stockli,72

2013; Schneider et al., 2018), but workers still debate the relative importance of major de-73

tachments during syn-orogenic exhumation from peak conditions, and whether strain was74

distributed or highly localized (Rosenbaum et al., 2002; Keiter et al., 2004; Bond et al.,75

2007; Lister & Forster, 2016; Laurent et al., 2016).76

In this work, we present new structural and petrologic data and Rb-Sr geochronology,77

and integrate our results with synthesized geochronology, to present a new model for the78

evolution of the CBU on Syros. Our results refine the island’s deformation-metamorphism79

history, and shed light on the kinematics, metamorphic conditions, and timing of subduction80

and return flow in the Hellenic subduction zone. This work has direct implications for rates81

and mechanisms of HP/LT rock exhumation, and provides a broader framework for regional82

construction of the Attic-Cycladic Complex.83
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2 Regional Geologic Setting84

The Cycladic Islands and parts of mainland Greece are part of the Attic-Cycladic85

Complex (ACC), which is divided into three units according to depositional age and meta-86

morphic history. From structural top to bottom, the units are: (1) the Upper Cycladic87

Nappe; (2) the Cycladic Blueschist Unit; and (3) the Basal Unit (e.g. Dürr et al., 1978;88

van der Maar & Jansen, 1983; Jacobshagen, 1986; Avigad & Garfunkel, 1989; Altherr et89

al., 1994) (Fig. 1). The Upper Cycladic Nappe is a suite of ophiolitic slivers, altered car-90

bonates ± serpentinites, Late Cretaceous (70-100 Ma) amphibolite-facies orthogneisses, and91

Miocene greenschist-facies meta-basalts, and correlates with the Pelagonian Unit exposed92

on mainland Greece (Papanikolaou, 1987). The Upper Nappe was the upper plate during93

Late Cretaceous-Paleogene subduction and crops out above the Cycladic Blueschist Unit94

(CBU) in the hanging wall of crustal-scale, Miocene detachment faults on several Cycladic95

Islands (Jolivet et al., 2010, 2013; Soukis & Stockli, 2013).96

The majority of the ACC is composed of the Cycladic Blueschist Unit (CBU) (Fig.97

1). The CBU comprises poly-metamorphosed tectonic slices (Dürr et al., 1978; Forster &98

Lister, 2005, 2008; Jolivet & Brun, 2010) of the following protoliths: (1) (Jurassic?-to-)99

Cretaceous (⇠80 Ma) mafic igneous crust with enriched-MORB and back-arc geochemical100

signatures ± serpentinized mantle (Bonneau, 1984; Seck et al., 1996; Tomaschek et al., 2003;101

Bulle et al., 2010; Fu et al., 2015; Cooperdock et al., 2018), (2) Triassic (⇠240 Ma) bimodal102

rift volcanics (Keay, 1998; Robertson, 2007; Löwen et al., 2015) blanketed by Triassic-to-103

Cretaceous, locally-sourced, rifted and passive continental margin siliciclastic and carbonate104

rocks (Papanikolaou, 2013; Löwen et al., 2015; Seman, 2016; Seman et al., 2017; Poulaki105

et al., 2019), and (3) peri-Gondwanan basement cross-cut by Carboniferous calc-alkaline106

granitoids (Keay, 1998; Keay & Lister, 2002; Flansburg et al., 2019).107

CBU lithologies record evidence for Eocene (⇠53-45 Ma) HP/LT metamorphism under108

blueschist-to-eclogite facies conditions (‘M1’) (Dixon, 1976; Schliestedt, 1986; Okrusch &109

Bröcker, 1990; Wijbrans et al., 1990; Tomaschek et al., 2003; Lagos et al., 2007; Laurent et110

al., 2017) and were exhumed first within the subduction channel and then in the footwalls111

of crustal-scale normal faults of the North and West Cycladic (e.g. Jolivet et al., 2003; Ring112

et al., 2003; Jolivet & Brun, 2010; Jolivet et al., 2010; Grasemann et al., 2012; Soukis &113

Stockli, 2013; Ring et al., 2020), the Paros-Naxos (Gautier et al., 1993), and the Santorini114

Detachment Systems (Schneider et al., 2018). Exhumation beneath ductile and semi-brittle115

detachments locally produced a greenschist-facies (‘M2’) overprint (Bröcker, 1990; Bröcker116

et al., 1993). As slab rollback ensued and the arc migrated southward through the for-117

mer forearc, Miocene I-type plutons intruded the exhuming CBU and led to a local high-118

temperature, amphibolite-facies (‘M3’) overprint on some islands (e.g. Paros and Naxos)119

(Andriessen et al., 1979; Pe-Piper et al., 2002; Brichau et al., 2007).120

3 The CBU on Syros Island121

3.1 Rock types and tectonostratigraphy122

Syros is a small island (⇠84 km2) in the central Cyclades and is dominantly composed123

of CBU with a klippe of UU in the southeast in the hanging wall of the Oligo-Miocene124

Vari Detachment (Ridley, 1984; Ring et al., 2003; Keiter et al., 2011; Soukis & Stockli,125

2013) (Fig. 1). In the context of the Cyclades, Syros best preserves the regional HP/LT126

metamorphic event (Ridley, 1982; Okrusch & Bröcker, 1990).127

Within the CBU on Syros, mafic blueschists and eclogites crop out along three tectonos-128

tratigraphic horizons: Kampos Belt, Kini-Vaporia-Kalamisia, and Galissas-Fabrikas. Each129

horizon exposes ⇠300-500 m (structural thickness) of blueschist-to-eclogite facies meta-130

basalts and gabbros, serpentinites, and bimodal blueschist-quartz schist meta-volcanics131

in varying proportions. Along Kampos Belt, eclogitic meta-gabbros, blueschist facies bi-132

modal meta-volcanics, and serpentinite/chlorite-talc schists are most abundant (Ridley,133
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Figure 2: Geologic and structural map of Syros Island, modified from Keiter et al. (2004,
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et al. (2011). Constraints on protolith ages are from the references discussed in Section 3.1.
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1982; Dixon & Ridley, 1987; Keiter et al., 2011) (Fig. 2). Kini, Vaporia (north of Er-134

moupoli), and Kalamisia are primarily composed of fine-grained mafic blueschist, and con-135

tain pods and lenses of eclogite (centimeters-to-decimeters in diameter) and meters-thick136

layers of serpentinite/talc schist (Keiter et al., 2011; Kotowski & Behr, 2019). Fabrikas137

comprises coarse-grained glaucophane-bearing eclogites (centimeters to meters in diameter)138

within a fine-grained matrix of mafic blueschists and quartz-mica schists, capped by meta-139

carbonate (Skelton et al., 2019; Kotowski & Behr, 2019; Ring et al., 2020). Keiter et al.140

(2011) suggested that mafic blueschists and eclogites are genetically related, and changes in141

volume proportions of lithologies reflect primary lateral and/or vertical ‘facies changes’ of142

an enriched-MORB or back-arc igneous suite.143

The majority of the CBU comprises a ⇠6-8 km section of intercalated meta-volcanic144

and meta-sedimentary schists, and calcite- and dolomite-marbles with Jurassic-to-Cretaceous145

depositional ages (Keiter et al., 2004; Papanikolaou, 2013; Löwen et al., 2015; Seman et al.,146

2017) (Fig. 2). Keiter et al. (2004, 2011) documented a series of boudinaged marbles, cherts,147

and albite-bearing quartzite, which they named the Syringas Marker Horizon (orange dots148

on Fig. 2). The sequence crops out at 3 or 4 structural levels and appears to never be149

overturned, suggesting it marks several km-scale thrust sheets as opposed to megafolds,150

and may reflect relict primary sedimentary layering (Ridley, 1982; Dixon & Ridley, 1987;151

Keiter et al., 2011). Keiter et al. (2011) also documented repetition of distinct packages152

of bimodal, rift-related meta-volcanics (also mapped as “banded tu�tic schists”) that have153

Triassic magmatic protolith ages (Keay, 1998; Pe-Piper et al., 2002; Löwen et al., 2015;154

Seman, 2016) (Fig. 2), which appears to be further evidence for imbrication.155

Detrital zircon (DZ) U-Pb geochronology and Maximum Depositional Ages (MDAs)156

of meta-sediments support that ‘cryptic thrusts’ exist. With dense sampling throughout157

the structural pile, Seman (2016) documented: (1) A conformable relationship between158

Kampos Belt meta-igneous rocks and the overlying Gramatta meta-sedimentary package;159

and (2) three horizons in the underlying CBU where old-on-young MDA inversions occur.160

For example, Triassic meta-volcanics of Kampos Belt are thrust on top of Cretaceous meta-161

sediments south of Aetou, and Triassic meta-volcanics at Delfini are thrust atop Cretaceous162

meta-sediments east of Kini (Fig. 2). Seman (2016) concluded that Syros comprises 3 or 4,163

⇠3 km thick slivers of imbricated meta-sedimentary rocks.164

3.2 Previously proposed P-T-D-t paths165

Previously published P-T-D evolutions for Syros fall into two categories. Some work-166

ers have argued that the majority of deformation and metamorphism on the island is167

exhumation-related (Trotet et al., 2001a; Laurent et al., 2016; Lister & Forster, 2016)168

(Fig. 3A). These studies interpret mafic blueschists and eclogites to occupy the top of169

the structural pile and separate them from underlying meta-sedimentary rocks along ex-170

tensional shear zones (Trotet et al., 2001b; Forster & Lister, 2005; Laurent et al., 2016,171

2018). An implication of this model is that distinct rock types were juxtaposed late in their172

histories during syn-orogenic exhumation (Forster & Lister, 2005; Laurent et al., 2016).173

Therefore, lithologic packages that currently occupy di↵erent structural depths could have174

followed di↵erent P-T paths (cf. Trotet et al., 2001b, 2001a; Laurent et al., 2018), and/or175

could have been subducted at di↵erent times (Lister & Forster, 2016; Laurent et al., 2017).176

This model could potentially explain reported di↵erences in P-T estimates across Syros;177

mafic blueschists and eclogites may have been subducted deeper, earlier, compared to meta-178

sedimentary lithologies (as discussed by Schumacher et al. (2008)).179

Alternatively, other work has suggested that prograde deformation and metamorphism180

on the island are locally preserved, and exhumation-related strain was partitioned into181

weaker lithologies (Ridley, 1982; Rosenbaum et al., 2002; Keiter et al., 2004; Bond et al.,182

2007; Keiter et al., 2011) (Fig. 3A). These studies interpret mafic blueschist and eclogites183

to record primary relationships with surrounding schists and marbles, or to have been jux-184
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taposed with the schists and marbles during early thrusting (Blake Jr et al., 1981; Ridley,185

1982; Hecht, 1985; Keiter et al., 2004). Either way, mafic blueschists and eclogites need186

not be separated from surrounding CBU by faults or shear zones, but instead could oc-187

cupy a range of structural depths throughout the structural pile (Keiter et al., 2004). This188

model implies that meta-mafic and meta-sedimentary rocks that occupy similar structural189

levels were subducted together and experienced similar P-T histories through subduction190

and exhumation (Schumacher et al., 2008; Keiter et al., 2011).191

Existing metamorphic ages do not help distinguish prograde from retrograde fabrics,192

nor the timing of subduction vs. exhumation, so di↵erentiating between these P-T-D evolu-193

tions has been challenging (Fig. 3B). Two age clusters are commonly cited for the timing of194

peak subduction on Syros: ⇠53-50 Ma (U-Pb zircon, Ar/Ar and Rb-Sr white mica, Lu-Hf195

garnet; Tomaschek et al. (2003); Lagos et al. (2007); Lister and Forster (2016); Cli↵ et al.196

(2016)), and both ⇠52 Ma and ⇠45 Ma for di↵erent underplated slices (Ar/Ar white mica;197

Forster and Lister (2005); Lister and Forster (2016); Laurent et al. (2017)). Garnet Sm-Nd198

and Lu-Hf ages span the proposed range, thus raising the question of whether garnet growth199

reflects two pulses or continuous growth at peak conditions (cf. Kendall, 2016). Further-200

more, Ar/Ar and Rb-Sr ages span the entire Eocene. Maximum temperatures do not appear201

to have exceeded those required for di↵usional resetting of the Ar/Ar and Rb-Sr systems,202

but it is unclear whether retrograde blueschist-to-greenschist facies white mica ages record203

incomplete isotopic mixing or continuous recrystallization (Fig. 3B) (e.g. Bröcker et al.,204

2013; Rogowitz et al., 2015; Cli↵ et al., 2016; Laurent et al., 2017; Uunk et al., 2018). An205

additional challenge is that many geochronologic data points in Figure 3B were collected206

without a clear framework for linking the ages to specific fabric-forming events.207

Much e↵ort has been made to synthesize structure, petrology, and geochronology across208

Syros (e.g. Keiter et al., 2011; Laurent et al., 2018) and the Cyclades (e.g. Forster & Lister,209

2005, 2008; Philippon et al., 2012; Laurent et al., 2017). However, several key components210

of the subduction history remain unclear, including the structural relationships between211

mafic blueschist and eclogites and surrounding schists and marbles, the P-T-D evolution212

recorded in the CBU nappes, and the timing of subduction and exhumation as a function213

of structural depth. Herein, we address these issues by combining structural observations,214

petrology, and new petrochronology supplemented by synthesized age constraints.215

4 Structures and Deformation Fabrics216

The CBU on Syros records evidence for three main phases of deformation and meta-217

morphism, herein referred to as DR, DS , and DT1�2 (Table 1). Each phase led to spaced to218

penetrative foliation development, and/or ductile folding of older foliations. Kinematic in-219

dicators, metamorphic mineral assemblages, and porphyroblast zonations demonstrate that220

DR and DS developed on the prograde path and are best preserved in mafic blueschists and221

eclogites (but are locally preserved as textural relicts in bimodal meta-volcanics and meta-222

sediments), and DT developed on the retrograde path and is best recorded by meta-volcanic223

and meta-sedimentary schists.224

4.1 DR – Prograde fabric development during subduction under blueschist-225

facies conditions226

DR is the earliest recognizable prograde event but it is not visible at the outcrop-scale.227

DR likely formed a strong, penetrative SR foliation that is locally recorded as inclusion trails228

in garnet porphyroblasts at Kampos (Fig. 6A,B) and is tightly folded during DS . Inclusion229

trails are orthogonal to the external foliation and are defined by glaucophane, omphacite,230

and white mica.231
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Figure 4: Continued. Geology and structural elements of Central Syros.
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Event Context Diagnostic Structures   Metamorphism Best Exposure 
        
 

DR 
 

Subduction 
 

• Only preserved as inclusion trails in garnets and as early 
fabric (SR) that is tightly folded during DS 
 
 
  

   

lawsonite-blueschist  
 

N/A  

        
DS Subduction to 

near-peak 
conditions 

• Axial plane schistosity (SS) associated with tight to 
isoclinal folds (FS) that transpose the SR foliation, with S-
SW-plunging fold axes 
• S-SW mineral and stretching lineations 
• Dominantly non-coaxial, locally non-penetrative in mafic 
lenses (e.g. Grizzas) 
 
  

 

lawsonite blueschist-
to-eclogite  

Grizzas  
Kini 

  
  

  

 

DT1-2 
 

Exhumation 
 

• Crenulation cleavage (ST) associated with upright, open-
to-tight folds (FT) that fold SS 
• Fold axes and mineral lineations rotate from N-NE (DT1) 
to E-W (DT2) as a function of strain 
• Dominantly coaxial, but locally non-coaxial near the Vari 
Detachment (e.g. Fabrikas, Kalamisia) 
• Ductile to semi-brittle boudinage in later stages 
  

   

epidote-blueschist 
progressing to 
greenschist 

 

Kampos (early) 
Azolimnos (early) 
Delfini (later)        
Lotos (later) 

            

 

SR

mm

FS SR

cm
SS 

m

Fs

FT

ST SS

Table 1: Summary of interpreted deformation-metamorphism events in the CBU on Syros.

4.2 DS – Prograde-to-peak fabric development during subduction under232

blueschist- to eclogite-facies conditions233

Deformation stage DS captures peak metamorphic conditions, and produced: (1) an234

axial plane schistosity, SS , associated with tight to isoclinal folds (FS) that have S-SW-235

plunging fold axes and fold SR; (2) SSW-to-S-plunging mineral lineations; (3) a blueschist-to-236

eclogite facies fabric containing syn-kinematic garnet, omphacite, and (now pseudomorphed)237

lawsonite porphyroblasts; and (4) chemical zonations in glaucophane and omphacite that238

record syn-kinematic increase in pressure and temperature.239

4.2.1 DS Structures240

DS is best recorded at Grizzas and Kini (Fig. 4E), with relicts preserved on Kampos241

Belt (Fig. 4C), at Lia Beach, and at Azolimnos (Fig. 4J). DS produced a dominant SS242

foliation in mafic blueschists, meta-cherts, and bimodal meta-volcanics at Grizzas that is243

parallel to the axial planes of intrafolial folds (FS), and transposed and boudinaged quartz244

veins. This folding event is characterized by shallowly to moderately plunging SW-trending245

fold axes clustering around 205-251�/15-35�; glaucophane mineral lineations are similarly246

oriented (Fig. 4B). In rare cases, outcrop-scale prograde metamorphism was not associated247

with penetrative deformation, indicated by preservation of igneous protolith features such248

as pillow lavas (Grizzas, cf. Keiter et al. (2011)) and magmatic breccias (e.g. at Grizzas,249

Episkopi, Fig. 5A).250

Kini is bounded by high-angle normal faults and is structurally discordant with respect251

to the surrounding CBU (Fig. 4E; cf. Keiter et al. (2011)). In one location, serpentinite252

wraps around the base of massive meta-gabbros, which transitions upward into fine-grained253

blueschists, suggesting local preservation of an attenuated section of metamorphosed oceanic254

lithosphere (Fig. 5B). Similar to Grizzas, the DS fabric in Kini blueschists contains isoclinal255

folds (FS) with shallowly south-plunging fold axes. This fold generation is recorded by a256

182�/33� fold axis in Kini schists (Fig. 4E; Fig. 5D). The SS axial planar cleavage (e.g.257

Fig. 5E) seen in Kini mafic blueschists (e.g. Fig. 5E) is also seen as textural relicts in258

quartz-mica rich lithologies, as at Azolimnos (Fig. 5G). In some localities, glaucophane259
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Figure 5: (Previous page.) Selected field photos showing prograde (A,B,D) and retrograde
(C,F-K) deformation and metamorphism. (A) Preservation of primary igneous breccias
at Grizzas. (B) Right-side-up sequence of oceanic lithosphere at Kini. (C) Prograde fo-
liations are folded into upright, open-to-tight folds with NE-SW-oriented hinge lines at
Kalamisia during DT1. (D,E) SS at Kini contains lawsonite pseudomorphs and omphacite
with glaucophane- and garnet-filled pressure shadows. Black arrows in the close-up photo of
(D) point to pseudomorphs with garnet inclusions. (F) DT1 retrogression under blueschist-
facies conditions is marked by local static glaucophane coronas formed around pinched
eclogite lenses at Vaporia. (G,H) SS is cut by ST1 crenulation cleavage at Azolimnos. (H)
Two glaucophane lineations record transposition of SS (black arrow, parallel to pen) into
alignment with crenulation hinges (white arrow) during DT1. (I-K) DT2 greenschist facies
retrogression and upright folding at Delfini (I) and Lotos (J,K). (I) White arrows point to
FS folds along the limbs of FT fold. Dashed white lines mark the axial planar ST cleavage.
(J) SS cross-cut by DT folding; fold axes trend E-W. (K) Coaxial, lineation-parallel DT2

brittle boudinage of epidote-rich lenses in greenschists.

lineations define great circles, likely reflecting folding of earlier (DR) fabric during DS (Fig.260

4C, 4E; relicts at Azolimnos in Fig. 4J). In other localities, glaucophane lineations appear261

to be reoriented into moderately S- or SW-plunging clusters (e.g. Grizzas and Kini, Fig.262

4B,E).263

Centimeter-sized, prismatic pseudomorphs after lawsonite indicate that lawsonite grew264

at the culmination of DS but did not survive peak conditions. Syn-to-post-kinematic blasts265

overgrow the mafic blueschist foliation at Grizzas and Lia, decorate foliation-parallel com-266

positional layers at Kini (Fig. 5C), and commonly contain inclusions of garnet, and are267

included by garnet (Fig. 5D, closeup). Pseudomorphs are weakly attenuated along the268

limbs of folds, but preserve their diamond-like shapes in fold hinges (Fig. 5C,D).269

4.2.2 DS Microstructures and Mineral Chemistry270

DS micro-textures in meta-sedimentary rocks are characterized by strong quartz-mica271

cleavage-microlithon SS fabrics and rotated inclusion trails in garnets that are mostly con-272

tinuous with external foliations (Fig. 6C). Quartz-rich microlithons have strong lineation-273

parallel shape-preferred orientations, and mica-rich cleavages comprise intergrown phengite274

and paragonite (Fig. 6C, Fig. 7C). Lawsonite pseudomorphs preserved as inclusions in275

garnet comprise intergrown epidote and white mica, recording the up-temperature reaction276

lawsonite = epidote + paragonite + H2O (Fig. 6D).277

DS micro-textures in mafic blueschists are characterized by compositional segregation278

defined by glaucophane-rich and epidote-rich layering alternating on the mm-scale (⇠50-200279

µm grain size) (Fig. 6E). The SS foliation contains syn-kinematic porphyroblasts of garnet280

and omphacite (⇠300 µm-5 mm), and rutile with minor titanite overgrowths (Figs. 6F,281

7A). Syn-kinematic phengitic white mica is chemically homogeneous and has 3.35-3.45 Si282

atoms p.f.u. (Fig. B1). Omphacite and garnet deflect local foliations, and have pressure283

shadows and strain caps composed of glaucophane, phengite and paragonite, and/or more284

omphacite (Fig. 5E, 7A). Omphacite porphyroblasts in Kini blueschists have cores of low-285

Na, high-Mg omphacite, fringed by asymmetric, syn-kinematic pressure shadows of high-286

Na, low-Mg omphacite (Fig. 7A). DS amphibole is glaucophane (Figs. 7A, 8A). Rare287

examples reveal glaucophane cores with thin, patchy rims (Fig. 7B) that trend towards288

lower Aliv/(Aliv+Fetot) values and higher (Na+K)A (Fig. 8A, Fig. B1).289
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Figure 6: (Previous page.) Selected photomicrographs showing prograde (A-F) and ret-
rograde (E, G-K) deformation and metamorphism. (A,B) Internal SR inclusion trails from
Lia Beach (A, PPL; B, XPL). (C) SS contains syn-kinematic garnet porphyroblasts with
foamy quartz inclusion trails that are rotated but continuous with respect to the dominant
external SS foliation. (D) DS garnets include pseudomorphs after lawsonite (comprising
epidote and white mica). (E, F) SS in mafic blueschists. (E) SS is cut by DT1 crenulation
under glaucophane-stable conditions in mafic blueschists. (F) Omphacite and garnet in DS

Kini blueschists have asymmetric pressure shadows filled with high-pressure minerals. (G-I)
DT1 retrogression in bimodal meta-volcanics at Kampos (H), Azolimnos (H) and Kalamisia
(I). (H) DT2 crenulation transposes SS , and strengthens as albite, chlorite, and actinolite
stabilize. (I) Omphacite and paragonite break down to epidote, blue amphibole, and albite.
(J,K) DT2 in Lotos greenschists. (J) Brittle micro-boudinage of epidote porphyroblasts. (K)
Final stages of DT2 are characterized by post-tectonic albite growth.

4.3 DT – Retrograde fabric development, crenulation, and re-folding through290

blueschist-to-greenschist facies conditions291

DT represents retrograde deformation under blueschist-to-greenschist facies conditions292

during exhumation. DT is distinguished by: (1) transposition of the SS foliation during293

formation of upright, open to tight FT folds and progressive new (ST ) fabric development;294

(2) lineation orientations that rotate from N-NE (DT1) to E-W (DT2) with progressive295

strain and (in general) increasing greenschist facies retrogression; (3) dominantly coaxial,296

but locally non-coaxial deformation; and (4) chemical zonations in amphibole tracking syn-297

kinematic decrease in pressure and temperature.298

4.3.1 DT Structures299

DT1 captures incipient deformation and retrogression during exhumation, and is best300

recorded at Kampos Belt and Palos (Fig. 4A,C), Azolimnos (Fig. 4J), and Kalamisia (Fig.301

4I), and locally at Kini (Fig. 4E). DT1 structures refold older SS foliations into inclined-to-302

upright, open-to-tight, shallowly to moderately N- and NE-plunging folds (Fig. 4C, 4G,H,303

4I,J; 5C)). Glaucophane, calcite, and quartz mineral and stretching lineations are oriented304

parallel to FT fold hinge lines (Fig. 4C,I,J). Along Kampos Belt, DT1 fold axes span ⇠335-305

055�/15-45�, with a cluster of moderately N-plunging folds (e.g. Fig. 4C). At Azolimnos,306

DT1 folding locally develops an upright crenulation cleavange (ST ) that cuts the SS foliation307

(Fig. 4I,J; 5G). Cm-scale spaced cleavages are parasitic to larger open folds with 045�/5-308

10� fold axes and steep axial planes. At Azolimnos, glaucophane lineations define a great309

circle and swing from N to NE into alignment with FT1 crenulation hinge lines (Fig. 5H).310

Crenulation of Kini rocks is defined by a vertical, NE-striking ST1 cleavage that cross-cuts311

mafic blueschists (Fig. 4E).312

DT2 captures E-W orientated mineral and stretching lineations that are primarily313

indicative of greenschist facies conditions (e.g., Lotos, Delfini; Fig. 4D,F) but locally preserve314

blueschist facies conditions where strain was highly non-coaxial (i.e., Fabrikas; Fig. 4K),315

and can be seen in a wide range of rock types throughout central and southern Syros. At316

Vaporia, the mafic blueschists and eclogites and the surrounding meta-sedimentary rocks317

develop identical DT2 structures (Fig. 4G,H). Single greenschist facies FT2 folds range in318

geometry from open to tight and have near-vertical, E-NE- to E-W striking axial planes.319

FT2 fold axes cluster strongly around ⇠070-110�/5-30� (Figs. 4D,F; 5I,J), and mineral320

and stretching lineations defined by actinolite, quartz, calcite, and relict glaucophane are321

oriented parallel to FT2 hinge lines (Fig. 4D,F,H). Older SS foliations are visible as S- and322

Z-folds (e.g. Fig. 5I,J) with hinge-limb layer thickness variations locally exceeding 20:1 (Fig.323
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Figure 7: False-colored X-Ray maps and representative BSE images of DS in Kini blueschists
(A,B) and Azolimnos bimodal meta-volcanics (C,D), DT1 in Kalamisia blueschists (E,F),
and DT2 in Fabrikas quartz-mica schists (G,H). Quantitative analyses of sodic amphiboles
in (B, KCS53) and (F, KCS12B) are shown in Fig. 8; white mica analyses from (H, KCS65)
are shown in Fig. B1.
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Figure 8: Amphibole mineral chemistry and micro-textures. (A) Quantitative amphibole
EPMA analyses (Leake et al. (1997) classification scheme). All analyses have NaB > 1.5 apfu
except for those indicated with an asterisk. (B) DT1 static growth zonations in glaucophane
contained in retrogressed eclogite pod. (C) DT1 lineation-parallel zonations developed in
glaucophane-filled strain shadow fringing garnet porphyroclasts. (D) Greenschists preserve
relict DT1 sodic amphibole as inclusions in epidote, and matrix amphibole records lineation-
parallel compositional changes during DT2 retrogression.

C1). FT2 folds have axial planar cleavages decorated with actinolite, epidote, and chlorite.324

Coaxial stretching parallel to FT2 fold hinges is common, resulting in semi-brittle to brittle325

boudinage of epidote-rich lenses visible from the meso- to the micro-scale, as competent326

lithologies become brittle during exhumation (Fig. 5K).327

Pulses of DT metamorphism that are not associated with penetrative strain are seen328

at Vaporia where pinched eclogite pods are rimmed by roughly even-thickness inky blue329

coronas of glaucophane (Fig. 5F), and along Kampos Belt where the margins of meta-330

gabbros develop radiating clusters of blue and green amphibole needles (Fig. C1). Although331

DT strain is primarily coaxial, strongly asymmetric strain occurs locally on the E-SE side332

of the island. Non-coaxial DT1�2 is best preserved at Kalamisia and Fabrikas, respectively.333

At Fabrikas for example, outcrop-scale extensional shear bands and boudinage cross-cut334

eclogite pods and are decorated by glaucophane (partially replaced by actinolite) and quartz335

(Kotowski & Behr, 2019).336
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4.3.2 DT Microstructures and Mineral Chemistry337

DT1 microstructures transpose and retrogress older SS foliations, record geochemical338

evidence for retrogression from peak conditions through primarily blueschist facies condi-339

tions, and are primarily coaxial. Crenulation hinges that record DT1 in mafic blueschists are340

defined by high-Si white mica and glaucophane that has an identical composition to glau-341

cophane defining the SS foliation (Lia Beach, Fig. 6E; Fig. B1). Coaxial DT1 deformation342

in mafic blueschists is evidenced by symmetric strain shadows around partially chloritized343

garnets. During DT1, SS-defining blue amphibole grows in the symmetric strain shadows344

and records lineation-parallel growth zonations trending from glaucophane to magnesio-345

riebeckite (Vaporia, Fig. 8A,C) and locally becomes actinolitic (e.g. Kampos, Fig. 6G).346

Some static textures record the same compositional trend (e.g. Fig. 8A,B). At Kalamisia,347

extensional C-C’ fabrics are well-developed in thin section, and C’ top-to-the-ENE shear348

bands are decorated with albite, paragonite, and phengite (Fig. 7E,F). C’ cleavages are also349

defined by finely recrystallized blue amphibole that records lineation-parallel core-to-rim350

zonations from high-Al riebeckite to low-Al (and lower (Na+K)A) riebeckite (Figs. 6I, 7F,351

8A). Omphacite and paragonite porphyroblasts record the breakdown reaction omphacite +352

paragonite + H2O = sodic amphibole + epidote + albite (Fig. 6I), and rutile is overgrown353

by syn-kinematic titanite (Figs. 7E). In quartz-mica schists, the retrogressed SS foliation354

comprises alternating glaucophane-rich and quartz-mica ± albite-calcite layering; the syn-355

DT1 axial planar cleavage, ST1, is defined by actinolite, albite, phengite and paragonite in356

the cores of upright FT1 folds (Fig. 6H).357

DT2 microstructures transpose and retrogress older SS foliations, and are primarily358

coaxial and record geochemical evidence for retrogression under greenschist facies condi-359

tions (e.g. Delfini and Lotos). Locally DT2 was non-coaxial and developed under blueschist360

facies conditions (e.g. Fabrikas). Mafic greenschists that record DT2 comprise strongly361

retrogressed SS foliations that are defined by fine-grained white mica, albite, epidote, acti-362

nolite, chlorite, calcite, and titanite (⇠50-500 µm grain size), and contain lineation-parallel363

epidote porphyroblasts (⇠2-5 mm) and unoriented, mat-like albite porphyroblasts (⇠1-5364

mm) (Fig. 6J,K). Amphibole occurs in two distinct contexts: as inclusions in epidote and365

albite porphyroblasts, and as a dominant SS foliation-forming phase. Amphibole inclusions366

record core-rim zonations evolving from magnesio-riebeckite to winchite, and matrix am-367

phibole record core-rim zonations evolving from ferro-winchite to actinolite (Figs. 8A,D).368

SS-defining, syn-DT2 epidote porphyroblasts have pressure shadows filled with white mica,369

calcite and albite, and are boudinaged, with necks filled by quartz and calcite (Fig. 6J,370

8D). In blueschist facies fabrics at Fabrikas, the retrogressed SS foliation comprises syn-371

DT2 epidote porphyroblasts that contain rotated inclusion trails of quartz and glaucophane372

and inclusions of garnet that preserve syn-DS spessartine-to-almandine zonations (Figs.373

7G,H). Phengite and paragonite define C- and C’-planes of an extensional, top-to-the-E374

shear fabric. Phengitic white mica reveals a tight range of Si atoms p.f.u. (⇠3.33-3.39375

a.p.f.u, Fig. B1), and Si content of C- and C’-defining phengite is identical (Fig. 7G, Fig.376

B1). Lineation-parallel brittle micro-boudinage of epidote and amphibole porphyroblasts377

is common; epidote boudin necks are filled with quartz, and blue amphibole boudin necks378

contain green amphibole needles. A planar ST2 fabric that cuts SS is only found in the core379

of FT2 folds (i.e. ST2 crenulation cleavage at Delfini, Cisneros et al. (submitted)).380

5 Synthesis of P-T Conditions for Each Deformation Stage381

5.1 DR P-T conditions382

We interpret the DR fabric in the CBU to have passed through lawsonite-blueschist383

facies conditions based on several lines of evidence, including: (1) DR inclusion trail mineral-384

ogy (e.g. glaucophane, omphacite, phengite); (2) pseudomorphs of DR�S lawsonite included385

in DS garnets from meta-basites on Syros (also seen on Sifnos) (Ridley, 1982; Okrusch &386

Bröcker, 1990); and (3) syn-kinematic DR�S omphacite blasts recording up-pressure, core-387
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results from this study. The shape of the path is modified from (Schumacher et al., 2008).
Amphibole stability fields constraining DT2 temperatures are from Otsuki and Banno (1990).
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to-rim zonations marked by increasing jadeite component (Fig. 7A) (cf. Thompson, 1974).388

Lawsonite and epidote appear to have both been stable in mafic bulk compositions during389

DR, with lawsonite growing later on the prograde path under higher-pressure conditions (cf.390

Ballevre et al., 2003). This is consistent with textural observations of lawsonite growing391

late, syn- and post-tectonic with respect to the SR foliation, incorporating inclusions of gar-392

net (which also grows near peak pressures, cf. Dragovic et al. (2012); Baxter and Caddick393

(2013); Dragovic et al. (2015)), and being included by garnet.394

5.2 DS P-T conditions395

Peak P-T conditions for the DS deformation fabric are justified as follows: Peak tem-396

peratures have been calculated from garnet-omphacite major element exchange for mafic397

blueschists and eclogites (450-500�C) (Schliestedt, 1986; Okrusch & Bröcker, 1990; Rosen-398

baum et al., 2002); the upper limit of glaucophane stability in marble (⇠500�C at ⇠15-16399

kbar; Schumacher et al. (2008)); and calculated lawsonite-out reaction lines (⇠400-500�C400

over ⇠12-20 kbar, depending on bulk rock and fluid composition) (Liou, 1971; Evans, 1990;401

Schumacher et al., 2008) (Fig. 9). Raman Spectroscopy of Carbonaceous Material from402

graphite schists suggests slightly higher temperatures of ⇠540-560�C (Laurent et al., 2018).403

Reported peak pressures for DS are variable in the literature, and challenging to rec-404

oncile. Early conventional thermobarometry suggested peak P of ⇠12-18 kbar in mafic405
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blueschists and eclogites (Dixon, 1976; Schliestedt, 1986; Okrusch et al., 1978; Okrusch &406

Bröcker, 1990). These pressures are supported by recent solid inclusion quartz-in-garnet407

barometry constraining garnet growth at Kini, Kalamisia, Delfini, and Lotos to ⇠13-17408

kbar (Behr et al., 2018; Cisneros et al., submitted). However, more recent thermodynamic409

modeling accounting for garnet fractionation suggests rocks reached ⇠20-24 kbar (Trotet et410

al., 2001a; Laurent et al., 2018; Skelton et al., 2019). We consider this unlikely based on411

the abundance of SS paragonite and absence of kyanite in meta-mafic rocks, which suggests412

that the upper stability limit of paragonite at ⇠20-23 kbar was not reached (Schliestedt,413

1986; Okrusch & Bröcker, 1990; Skelton et al., 2019) (Fig. 9). Large di↵erences in P-T414

estimates between traditional phase equilibria and recent thermodynamic modeling may re-415

flect arbitrary choices of thin section domains selected as representative bulk compositions416

(e.g. Lanari & Engi, 2017). This is especially likely in garnet-bearing lithologies, due to the417

strong disequilibrium e↵ect that garnet exerts on local bulk composition (Lanari et al., 2017;418

Lanari & Engi, 2017; Lanari & Duesterhoeft, 2018). It is also possible that higher-P con-419

ditions are real, but have not yet been sampled by solid inclusion techniques or traditional420

phase equilibria.421

5.3 DT P-T conditions422

During DT , foliation-forming amphiboles transition from glaucophane to (magnesio)423

riebeckite, to winchite, to actinolite. The progressive decrease of total Al, NaB , and424

(Na+K)A in amphibole indicates that P and T decreased as DT evolved. Glaucophane425

coronas that develop around eclogite pods during DT1 are chemically similar to syn-DS426

glaucophane, and retrogressed glaucophane records decreasing Alvi (KCS53, KCS52B) and427

NaB (KCS53) from core to rim, and a minor increase in (Na+K)A as (Fig. 8, Fig. B1).428

These signatures indicate decompression and potentially slight warming (Raase, 1974; Laird429

& Albee, 1981; Robinson, 1982; Moody et al., 1983; Ernst & Liu, 1998), at the subduction-430

to-exhumation transition.431

DT2 is characterized by foliation-forming calcic amphiboles, and local relicts of sodic432

amphiboles are found as inclusions in porphyroblasts. The transition from sodic-to-calcic433

amphibole recorded here indicates cooling during decompression (Thompson, 1974; Brown,434

1977; Laird & Albee, 1981; Moody et al., 1983; Maruyama et al., 1983; Otsuki & Banno,435

1990; Schmidt, 1992; Ernst & Liu, 1998) through albite-epidote blueschist facies and even-436

tually greenschist facies conditions (Fig. 9). This P-T trend is supported by the abundance437

of albite and titanite overgrowths on rutile, and boudin neck quartz-calcite oxygen isotope438

temperatures and quartz-in-epidote inclusion barometry presented by Cisneros et al. (sub-439

mitted). We have not observed amphibole chemistry that supports isothermal decompres-440

sion nor a positive thermal excursion into the epidote-amphibolite facies field (e.g. edenite,441

pargasite, crossite), as suggested by Trotet et al. (2001a), Lister and Forster (2016), and442

Laurent et al. (2018) P-T-D paths.443

6 Geochronology444

6.1 New multi-mineral Rb-Sr isochron petrochronology445

Multi-mineral Rb-Sr Isochron Geochronology has been applied to exhumed HP/LT446

metamorphic rocks for dating deformation and metamorphism with great success (Freeman447

et al., 1997; Glodny et al., 2005; Ring et al., 2007; Glodny et al., 2008; Kirchner et al.,448

2016; Angiboust et al., 2016; Cli↵ et al., 2016). The primary assumption required to449

construct a multi-mineral isochron is that the phases defining the isochron were co-genetic,450

so they all inherited the same initial Sr composition. We separated and picked minerals that451

we hypothesized were co-genetic based on structural and microstructural arguments posed452

above, and quantitatively tested this hypothesis by identifying phases that were in isotopic453

disequilibrium (i.e. fell o↵ the isochron) (Cli↵ & Me↵an-Main, 2003). Strong foliations454

support the assumption of syn-kinematic recrystallization of selected minerals, which can455
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reset the Sr isotopic signature between mica and co-genetic phases to temperatures as low456

as 300�C (Müller et al., 1999). Furthermore, di↵usional resetting of the Rb-Sr system is457

thought to begin at ⇠550-600�C (Inger & Cli↵, 1994; Glodny et al., 2008), which exceeds458

maximum temperatures in the CBU. Therefore, we consider our Rb-Sr ages reported herein459

are interpreted as (re-)crystallization ages associated with deformation.460

Following Glodny et al. (2003, 2008), we used a bulk mineral separation technique and461

cut out ⇠5 cm3 cubes of rock from hand samples to isolate specific fabrics (one DS , one DT1462

and three DT2). Samples were crushed with a small hammer between sheets of paper, ground463

gently with a rock crusher, and sieved and separated by grain size. Grain size fractions 125-464

250 µm and 250-500µm were frantzed to separate minerals based on magnetic susceptibility.465

Mineral separates were picked by hand under a microscope, and white mica separates were466

cleaned of inclusions by gently smearing them in a mortar and pestle and washing them467

through a sieve with ethanol. All Rb and Sr isotopic separation and analyses were done468

at the University of Texas at Austin in the Radiogenic Isotopic Clean Lab. All separates469

(except apatite) were cleaned in 2 N HCl to remove surficial contamination and spiked with470

mixed high Rb/Sr and low Rb/Sr spikes. We followed methodology for mineral dissolution,471

isotope column chemistry, Thermal Ionization Mass Spectrometry (Sr analyses), Solution472

Inductively Coupled Plasma Mass Spectrometry (Rb analyses), and estimating uncertain-473

ties in isotopic ratios as described in Kirchner et al. (2016). Reproducibility on replicate474

USGS Standard Hawaiian Basalt (BHVO) Rb measurements determine the uncertainty of475

the Rb-Sr ratio, and long-term reproducibility on the NBS987 Sr standard determines the476

uncertainty of the Sr ratio (Table 2). Ages were calculated using the IsoplotR toolbox477

(Vermeesch, 2018) with the 87Rb decay constant of 1.3972 ± 0.0045 x 10 �11 per year (Villa478

et al., 2015).479

6.1.1 Results480

All of the isochrons described herein have Mean StandardWeighted Deviations (MSWDs)481

greater than 1, which suggests that the data dispersion exceeds that predicted by analytical482

uncertainties (i.e., the data are overdispersed) (cf. Wendt & Carl, 1991). However, MSWDs483

are a reflection of analytical precision (e.g. Kullerud, 1991; Powell et al., 2002), and reflect484

the goodness of fit of a regression line to the datapoints, which includes their analytical un-485

certainties. Our dataset has a very high analytical precision (calculated from reproducibility486

of standards measurements), which leads to a significant increase in the MSWD of a Rb-Sr487

isochron when the regression line does pass through a datapoint’s uncertainties (e.g. Fig.488

10B). However, we consider our Rb-Sr ages reliable records of true deformation and meta-489

morphism events, after closer evaluation of our isochrons (see Table A1), despite their high490

MSWDs. This is because the isochrons were contructed from mineral suites that our struc-491

tural and petrographic observations suggest are co-genetic, and the co-linearity of the data492

are striking (with some justifiable exceptions discussed below). The high MSWD values may493

reflect underestimation of our analytical uncertainties, or minor Rb-Sr disequilibrium during494

metamorphism (perhaps due to incomplete recrystallization, e.g. Halama et al. (2018)) that495

does not significantly a↵ect our Rb-Sr ages (Table A1).496

Sample SY1616 is an omphacite-blueschist collected at Kini Beach and records DS497

(texturally identical to Fig. 7A). This sample yielded an age of 53.48 ± 0.65 Ma (MSWD =498

5) based on a 10-point isochron defined by epidote, glaucophane, omphacite, five paragonite499

separates, garnet, and one phengite separate (Table 2, Fig. 10). To test the robustness of500

the isochron, several two- to five-point isochrons were calculated from combinations of the501

co-genetic phases; the age does not change but the MSWD is reduced (=1 for 2-pt isochrons502

by definition; <1 for 3- and 4-pt, and 1.4-1.7 for 5-pt).503

Sample KCS1617 is a bimodal meta-volcanic schist collected at Azolimnos and records504

DT1 (similar to sample in Fig. 7C). This sample yielded an age of 45.51 ± 0.29 Ma (MSWD505

= 8) based on a 7-point isochron defined by glaucophane, four paragonite separates, and506
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Figure 10: Multi-
mineral Rb-Sr isochrons
from a Kini omphacite-
blueschist (SY1616),
Azolimnos quartz-mica
blueschist (KCS1617),
and Delfini quartz-mica
greenschist (KCS1621).
Grey insets are zoom-ins
of low Rb/Sr separates
outlined in black boxes.
Faded grey symbols were
excluded from isochron
calculations. Multiple
paragonite separates for
each isochron are shown
in black symbols. Sam-
ple SY1616 records DS

in the northern nappe,
KCS1617 records DT1 in
the central nappe, and
KCS1621 records DT2 in
the central nappe. DT

retrogression pre-dates
the onset of regional
core complex capture.
Mineral abbreviations:
ep = epidote, glc =
glaucophane, om =
omphacite, grt = garnet,
parag = paragonite,
ph = phengite, chl =
chlorite.

Azolimnos bimodal meta- 
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two phengite separates (Table 2, Fig. 10). Two garnet separates fell o↵ of the isochron and507

are discarded in the age calculation. We justify this based on microstructural observations508

shown in Figure 7D; garnets preserve complex Ca-zonation patterns and may record pulsed509

growth. Furthermore, garnets are DS porphyroblasts and are not expected to be in iso-510

topic equilibrium with the DT1 fabric during incipient retrogression. Adding epidote to the511

isochron does not change the age (45.43 ± 0.46 Ma, n=8), but increases the MSWD to 23.512

Epidote is stable throughout subduction and exhumation and could record subtle zonations513

that grew during subsequent deformation events and therefore may not be co-genetic (e.g.514

Cisneros et al., submitted).515

Sample KCS1621 is a quartz-mica schist collected from Delfini and records DT2 in516

meta-sedimentary schists. It was collected from a fold limb of a structure like the one in517

Fig. 5I, and is interlayered with quartz-schists on the decimeter-scale that locally preserve518

blue amphibole lineations. This sample yielded an age of 37.06 ± 0.12 Ma (MSWD =519

13) based on a 7-point isochron defined by epidote, chlorite, 3 paragonite separates, and520

2 phengite separates (Table 2, Fig. 10). For this sample, various combinations of 2- to521

6-pt isochrons all yield ages of ⇠35-37 Ma with MSWD varying from << 1 (e.g. 3-pt522

epidote-chlorite-paragonite), to 1 (e.g. 2-pt paragonite-chlorite) to 21 (e.g. 4-pt epidote-523

chlorite-phengite-phengite). Even the isochrons that are not defined in high-Rb space (i.e.524

do not contain phengite) yield nearly identical ages to the 7-point isochron (Table A1).525

Sample SY1644 is a collection of minerals precipitated in the neck of a brittlely-526

boudinaged epidote-rich lens from Delfini, and sample SY1402 is a greenschist facies reaction527

rind at the margin of an epidote-rich lens from Lotos. These samples are representative of528

semi-brittle boudinage associated with DT2 stretching (e.g. Fig. 5K). These samples yield529

ages with reasonable uncertainties, but extremely high MSWDs. Sample SY1644 yielded530

an age of 36.1 ± 2.6 Ma (MSWD = 82) based on a 3-point isochron defined by epidote,531

actinolite, and phengite, and sample SY1402 yielded an age of 34.9 ± 5.8 Ma (MSWD =532

76000) based on a 5-point isochron defined by apatite and 4 phengites (Table 2). For both533

samples, 2-pt isochrons yield ⇠36 Ma and ⇠29-36 Ma, respectively (MSWD=1; Table A1).534

We consider these data qualitative, but these ages are similar to and trend slightly younger535

than KCS1621, which is consistent with our structural observations.536

6.2 Synthesis of previously published metamorphic geochronology537

We compiled all available metamorphic geochronology (to our knowledge, from 1987538

through 2019) for Syros to date, and took inventory of the descriptions of deformation fabrics539

and metamorphic textures provided by the authors, to re-evaluate the significance of Eocene540

ages in the context of subduction vs. exhumation. We applied several qualitative filters to541

the dataset to derive a subset of ages that we can confidently attribute to fabric-forming542

events. The filters are justified as follows:543

Zircon U-Pb ages are robust records of igneous crystallization, but as metamorphic544

ages, can be di�cult to place in pro- or retrograde context (Tomaschek et al., 2003; Liu et545

al., 2006; Yakymchuk et al., 2017). We include U-Pb ages from Tomaschek et al. (2003)546

for comparison with other ages, but we do not rely on it for island-scale interpretations.547

Garnet Lu-Hf and Sm-Nd are considered reliable indicators of ‘peak’ subduction ages (i.e.,548

maximum depths) (Lagos et al., 2007; Kendall, 2016), because HP/LT garnets tend to grow549

rapidly following reaction overstepping (Dragovic et al., 2012; Baxter & Caddick, 2013;550

Dragovic et al., 2015). White mica Ar/Ar has potential to capture timing of metamorphism551

during fabric development. However, this system is highly susceptible to disequilibrium,552

partial (re-)crystallization and mixed ages, and/or unpredictable loss or gain of radiogenic553

products, making it di�cult to interpret the geological significance of an age (Maluski et554

al., 1987; Bröcker et al., 2013; Lister & Forster, 2016; Laurent et al., 2016). For the final555

dataset, we only included five Ar/Ar step-heating ages with strong plateaus from micro-556

drilled grains, one 10-pt inverse isochron derived from in-situ analyses, which all had clear557

–25–
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micro-textural context (Laurent et al., 2017), and one strong plateau age from a well-558

characterized marble shear zone (Rogowitz et al., 2015). Rb-Sr isochrons are considered559

good indicators of fabric ages when the selected fabrics, and minerals defining them, are560

well-characterized by respective authors (Bröcker & Enders, 2001; Bröcker et al., 2013;561

Skelton et al., 2019). Micro-drilling of white micas and co-genetic Sr-rich phases (epidote562

or calcite) also provide strong textural context for regressed ages (Cli↵ et al., 2016).563

In some cases, we propose di↵erent interpretations of published data based on our own564

structural observations. Skelton et al. (2019), for example, interpreted three of their Rb-Sr565

isochrons from Fabrikas as peak metamorphic ages (i.e., DS), but we interpret Fabrikas566

fabrics to relate to DT1�2, associated with early exhumation (cf. Fig. 4K,L).Cli↵ et al.567

(2016) analyzed micro-drilled phengites from blueschist-to-greenschist facies (i.e., DT1 to568

DT2) extensional fabrics in calc-schists and quartz-mica schists. Four of their samples from569

Delfini were described as blueschist-facies (black stars in Fig. 11); however, our observations570

point to penetrative greenschist facies deformation at Delfini (DT2). Glaucophane is locally571

preserved in abundance in calc-schists at Delfini, and elsewhere on Syros. Rather than572

reflecting blueschist facies conditions during deformation, this may be due to a glaucophane-573

stabilizing, CO2-bearing fluid under greenschist facies P-T conditions (Kleine et al., 2014).574

Finally, Rogowitz et al. (2015) dated phengites from a top-E extensional greenschist facies575

marble shear zone, and hypothesized the ages would be Miocene in accordance with the576

regional ‘M2’. They interpreted their Eocene ages as evidence that Miocene deformation577

did not reset the isotopic signature. However, our results suggest their ages capture a true578

Eocene recrystallization event (e.g. strong E-W stretching during greenschist facies DT2).579

In Figure 11, the refined compilation (n=44) and new Rb-Sr geochronology (n=5) are580

projected onto the cross-section line drawn in Figure 2. Where possible, ages are labeled581

according to fabric generation. Faded data points were assigned textural identities but do582

not record penetrative strain (e.g. randomly oriented, radiating cluster). Key observations583

from new and compiled geochronology include:584

1. DS , blueschist-to-eclogite facies deformation-metamorphism spans ⇠53 to ⇠47 Ma,585

and is captured by a multi-mineral Rb-Sr isochron (this study, Kini), Lu-Hf and Sm-586

Nd garnet ages, and an Ar/Ar white mica age from glaucophane-bearing eclogites.587

2. DS ages are oldest and well-clustered at Grizzas and Kini (⇠53-52 Ma), and younger588

and potentially more widespread at Fabrikas (⇠50-44 Ma).589

3. DT1, retrograde blueschist facies deformation-metamorphism spans ⇠50-40 Ma (Rb-590

Sr isochrons and Ar/Ar single grain analyses) and youngs with structural depth, i.e.591

from Kampos, to Azolimnos, to Fabrikas.592

4. DT2, retrograde greenschist facies deformation-metamorphism spans ⇠42-20 Ma (all593

Rb-Sr) and youngs with structural depth, i.e. from Palos (⇠43-35 Ma), to Delfini594

(⇠35-28 Ma), to Posidonia (⇠28-20 Ma)595

5. Rocks that presently occupy di↵erent structural levels developed distinct fabric gen-596

erations contemporaneously. Examples include: Fabrikas DS and Kampos DT1 (⇠50-597

45 Ma), Fabrikas DT1 and Palos DT2 (⇠43-38 Ma), and Posidonia DT2 and non-598

penetrative greenschist metamorphism in the north (faded symbols, ⇠25-20 Ma).599

7 A new tectonic model for the CBU on Syros600

Here we synthesize protolith age constraints, and our structural, petrologic, and geochrono-601

logic data, and propose a revised tectonic model for the CBU on Syros. First we present a602

pre-subduction configuration, then discuss a stepwise reconstruction capturing progressive603

subduction, underplating, and exhumation, leading to the three-part tectonic stack exposed604

on Syros today.605
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Figure 11: Metamorphic age vs. structural depth for the Syros nappe stack. The cross-
section line A-A’-A” is shown in Figure 2. Only ages that were confidently linked to the
deformation scheme outlined in this paper are included. Clusters of ages outlined in black
boxes are derived from the same locality, and collapse onto a single point on the cross section.
Delfini symbols marked with stars were reported as blueschist-facies fabrics by (Cli↵ et al.,
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7.1 Pre-subduction configuration606

Figure 12 builds on previous work (e.g. Papanikolaou, 1987, 2013; Ring et al., 2010;607

Van Hinsbergen et al., 2020) and illustrates a schematic paleogeographic setting for the608

CBU on Syros and Southern Cyclades immediately prior to subduction at ⇠60 Ma. Peri-609

Gondwanan Cycladic Basement, cross-cut by Carboniferous magmatism (⇠315 on Syros,610

Tomaschek et al. (2008); 330-305 in Southern Cyclades, Flansburg et al. (2019)), was rifted611

in the Triassic (⇠240 Ma, Keay (1998); Löwen et al. (2015)). Syn-rift bimodal volcanics612

and sediments intruded and blanketed the hyper-extended margin; these will become the613

diagnostic marker horizons referred to as banded tu�tic schists and bimodal meta-volcanics614

mapped by Keiter et al. (2011) (orange and dark grey in Fig. 12; cf. Fig. 2). Rifting was615

followed by passive margin sedimentation of psammites, debris flows, and carbonates from616

the Triassic (⇠230) through the Cretaceous (⇠75 Ma) (Löwen et al., 2015; Seman, 2016;617

Seman et al., 2017; Poulaki et al., 2019). Carbonates interbedded with clastic sediments may618

be the protolith for the Syringas Marker Horizon (Keiter et al., 2011). Cretaceous rifting619

(⇠80 Ma, Tomaschek et al. (2003)) dissected the hyper-extended basement and passive620

margin sedimentary sequence, forming a small oceanic-a�nity (backarc?) basin (Bonneau,621

1984; Keiter et al., 2011; Fu et al., 2012; Cooperdock et al., 2018).622

–27–



manuscript submitted to Tectonics

Palos, Gramatta, and Kampos Belt Intervening CBU  repeated 2-3x Fabrikas

Syros Cycladic Blueschist Unit protoliths
to Pelagonia (future Upper Unit) and Pindos Ocean to Tripolitza (future Basal Unit) and Ionian Basin (future Plattenkalk Unit)

80 Ma oceanic crust
~240 Ma bimodal rift volcanics

serpentinite syn-rift intrusives, volcanics,post-rift TR-to-K clastic 
sediments & carbonates

peri-Gondwanan Cycladic Basement

CBU: Syros and Southern Cyclades

Syringas Marker?

Southern Cyclades CBU

cross-cut by Carboniferous granitoidsand sediments

10

20

25

15

5

0

50100150200250300350

Pindos Ocean

Depth (km
, ~2x V.E.)

Distance (km)

Pelagonian Unit

Figure 12: Schematic paleogeographic reconstruction of the CBU, with emphasis on litholo-
gies exposed on Syros at ⇠60 Ma. The zoomed-in cross section is modified from Seman
(2016). Stepwise evolution of the CBU during subduction is shown in the next figure.

The most interpretive part of Figure 12 is the locations of mafic igneous rocks. These623

rocks could reflect o↵-axis, shallow intrusions related to Cretaceous rifting, or older mafic624

igneous rocks related to Triassic rifting; protolith ages have not been determined for Kini,625

Vaporia, Kalamisia, or Fabrikas mafic rocks. Regardless of their origin, the key point is that626

protoliths for mafic blueschists and eclogites were distributed throughout the CBU before627

subduction, rather than only coming from the small ocean basin in the north.628

This paleogeographic interpretation allows us to split the CBU on Syros into three629

sub-domains characterized by distinct, but related, protolith assemblages (dashed boxes in630

Fig. 12). These sub-domains are the precursors to each of three main tectonic slices that631

comprise the structural pile on Syros today.632

7.2 Peak subduction of the Palos-Gramatta-Kampos nappe (⇠53 Ma)633

The Palos-Gramatta-Kampos nappe (northern nappe) comprises Cretaceous oceanic634

lithosphere intruded into Triassic bimodal rift volcanics and Triassic-to-Cretaceous sedi-635

ments (Fig. 12). Garnet Lu-Hf and new Rb-Sr isochrons sugguest that Kini was originally636

subducted as part of the northern nappe (Fig. 11), and was down-dropped by late-stage,637

high-angle normal faults to its present position (cf. Ridley, 1984; Keiter et al., 2011).638

Prograde-to-peak subduction was characterized by extremely high asymmetric shear639

strain and at least two stages of foliation development under blueschist-to-eclogite-facies con-640

ditions (DR and DS ; Fig. 13A). Yet, subduction-related strain was very heterogeneous. This641

is evidenced by rheologically strong meta-gabbros at Grizzas and Kini that preserve primary642

igneous features (Kotowski & Behr, 2019). Furthermore, early prograde SW-plunging fold643

axes and mineral lineations are preserved at Grizzas, Kini, and locally along Kampos Belt.644

Girdled glaucophane lineations (e.g. Kini, Kampos) record continuous kinematic rotation645

–28–



manuscript submitted to Tectonics

55 km

75 km

100 km

N

SE

W

~53 Ma: Subduction of the northern nappe to peak conditions (DS). 

small thrust smearing Tr-K 
sediments over Tr-K Belt rocks

Palos & Gramatta

Kampos Belt
Grizzas

large accretionary thrust juxtaposing 
Northern Syros with intermediate CBU

serpentinized mantle wedge

Upper Unit 
(undi!erentiated)

Diagnostic Structural Elements:
1. Top-to-the-SSW fold axes, asymmetric shearing
2. Isoclinal folding, attenuation, boudinage
3. Foliation-parallel ductile thrusting and ‘smearing’ 

1

23

upper plate Moho

~50 Ma: Subduction-and-imbrication of the central nappe (DS), and exhumation of the northern nappe (DT1). 

Diagnostic Structural Elements:
1. Upright folding, top-NE bulk shear (exhumation)
2. Isoclinal folding, foliation-parallel ‘smearing’
3. Repetition of marker assemblages (Syringas        )

small-scale (km’s) thrusts repeating intermediate CBU 
meta-sediments and meta-volcanics (~3 nappes)

large accretionary thrust 
juxtaposing intermediate and 

lower CBU nappes

exhuming sheet

subducting sheet

3

2

1

distributed top-NE

 extensional shear zone

~36 Ma: Exhumation of central and southern nappes (DT2), and progressive strain localization.

Diagnostic Structural Elements:
1. Upright folding and E-W stretching

3. Bulk shear localizes towards base, so

2. Gradient of coaxial to non-coaxial 
top-E shear from west to east

older structures are preserved at top

trench axis

incipient trench retreat
(rapid retreat begins ~22 Ma)

Fabrikas reaches peak at 47 Ma

CBUUpper Unit 
Vari Unit

(mylonites form during

 Miocene extension)
Pelagonian Unit

accreted CBU

exhuming CBU

future Tinos Detachment

captures CBU on Tinos ~22 Ma

future LANF1
captures UU ~ 22 Ma

future Vari Detachment (LANF2)
exhumes CBU from middle-upper crust ~8-10 Ma

subducting Basal Unit< 5 mm/yr

~2-3 cm/yr

~2-3 cm/yr

~2-3 cm/yr

simple shear

2
1

3

A

B

C

upper plate thickened 
by addition of CBU

Fabrikas

Mavra Vounakia

Kini

Grizzas

Del"ni

future extension (Miocene)

sub-unit boundaries will be 
reactiavated during backarc extension

pure shear

cryptic, folded thrusts

future high-angle 
normal fault

Ag. Dim

Kini?

megathrust

Figure 13: Caption on next page.

–29–



manuscript submitted to Tectonics

Figure 13: (Figure on previous page.) Block diagrams illustrating the structural evolution
and timing of subduction and exhumation recorded by the three tectonic slices in the Syros
nappe stack. Compare stepwise subduction of sub-units to the paleogeography in Figure
12. Horizontal scaling is equivalent to subduction rates of ⇠2-3 cm/yr and diagrams are
roughly 2x vertically exaggerated. The thickness of the interface is exaggerated for clarity.

from SW to N-S during subduction. Top-to-the-SW and top-to-the-S asymmetric thrusting646

are diagnostic of subduction kinematics (Blake Jr et al., 1981; Ridley, 1984; Keiter et al.,647

2004; Philippon et al., 2011; Laurent et al., 2016), indicated by SW-verging thrusts on main-648

land Greece (Jacobshagen, 1986). Furthermore, the preservation of a primary, young-on-old649

depositional relationship between Gramatta and Kampos indicates that the contact between650

the two has not been substantially disturbed during subduction and exhumation. However,651

some small-o↵set ductile thrusting likely ‘smeared’ the Palos-Gramatta meta-sedimentary652

rocks along the top of Kampos Belt volcanics (e.g. small thrust in Fig. 13A).653

The northern nappe was underplated after DS development and before DT exhumation,654

removing it from the active subduction interface. DZ U-Pb data suggests that a large thrust655

separates the northern nappe from the central nappe beneath it (Seman, 2016) (Fig. 13A;656

structurally highest pink thrust in Fig. 11). This thrust placed Triassic and Cretaceous657

igneous rocks (Kampos) atop Cretaceous (Syringas) sediments and allowed the underplated658

nappe to exhume, while subduction of the intermediate nappe occurred beneath it.659

7.3 Subduction-and-imbrication of the Syringas-Azolimnos nappe and660

blueschist facies exhumation of the northern nappe (⇠50 Ma)661

The Syringas-Vaporia-Azolimnos nappe (central nappe) occupies the central portion662

of the island and comprises interbedded Triassic-to-Cretaceous meta-sedimentary schists,663

meta-volcanic schists, and meta-carbonates (Fig. 12). The timing of peak DS during sub-664

duction of the central nappe is unknown, but based on this tectonic model and the well-665

constrained ages of peak subduction in the northern and southern nappes, it likely reached666

peak conditions at ⇠50 Ma (this is testable with garnet geochronology from Delfini, Agios667

Dimitrios, or Kalamisia). DS in the central nappe is largely overprinted during subsequent668

exhumation-related deformation, but early fabrics are reminiscent of DS in the northern669

nappe and similarly consist of isoclinal folds and strong cleavage development (e.g. textural670

relicts at Azolimnos). While DS developed in the central nappe, DT1 exhumation-related671

blueschist facies fabrics formed at the same time in the northern nappe (Fig. 11, 13B).672

MDAs calculated from DZ U-Pb of meta-sedimentary rocks in the central nappe reveal673

old-on-young stratigraphic inversions, which suggests imbrication occurred during subduc-674

tion (Seman, 2016) (Fig. 13B). The locations of inferred thrusts are supported by the675

repeated Syringas Marker Horizon (pink stars in Fig. 11 and 13B) and Triassic bimodal676

meta-volcanic sequences (orange and dark grey in Figs. 2 and 13B). Thus, the central nappe677

is bounded by larger nappe-delimiting thrusts to its north and south, and also comprises678

smaller-scale thrusts accommodating internal imbrication of CBU meta-sedimentary rocks.679

During subduction of the central nappe (DS), DT1 deformation occurred in the north-680

ern nappe, and was characterized by upright folding, crenulation cleavage development, and681

NE-trending fold axes and mineral lineations. Continuous rotations of mineral lineations682

from the SW to the NE record this kinematic transition. We interpret the crenulation cleav-683

age formed during DT1 to be a signature of the ‘subduction-to-exhumation transition,’ when684

rocks ‘turn the corner’ in the subduction channel, based on the observation that crenula-685

tion lineations are decorated by high-pressure phases with compositions similar to peak DS686

blueschist-to-eclogite facies conditions (Kini, Figs. 6E). DT1 and subsequent strain localized687
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in weaker CBU meta-sediments during exhumation (e.g. Palos, Gramatta), whereas pro-688

grade subduction-related fabrics are locally preserved in rheologically strong meta-gabbros689

at Grizzas and Kini.690

The structural base of the central nappe is di�cult to pinpoint. However, it is some-691

where below Azolimnos and must be above the Fabrikas tectonostratigraphic horizon, which692

comprises the third and lowermost nappe. The presence of a nappe-bounding thrust is also693

consistent with progressive southward facies changes in the rock types, as carbonate horizons694

thin substantially, and gneissic material crops out at the island’s southern tip. This ductile695

nappe-bounding structure accommodated underplating of the central nappe ⇠50 Ma, while696

the southern nappe was subducting.697

7.4 Peak subduction of the Fabrikas nappe and blueschist facies exhuma-698

tion of the central nappe (⇠47-45 Ma)699

The Fabrikas nappe (southern nappe) comprises Triassic meta-sedimentary schists,700

meta-volcanic schists, and thinner meta-carbonate horizons compared to the central nappe701

(cf. Keiter et al., 2011); this meta-sedimentary sequence was spatially associated with mafic702

igneous rocks with unknown crystallization ages (Fig. 12). Peak subduction of the Fabrikas703

nappe is well-constrained at ⇠47-45 Ma by garnet Sm-Nd crystallization ages (Kendall,704

2016) and Ar/Ar of white micas in eclogites (Laurent et al., 2017) (Fig. 11) and is distinctly705

younger than peak subduction at ⇠53 Ma of the northern nappe706

Between⇠47-45 Ma, mafic blueschists and eclogites and surrounding meta-sedimentary707

schists in the central nappe developed identical DT1�2 structures (e.g. Vaporia and overlying708

meta-sedimentary rocks, and Kalamisia and Azolimnos, Fig. 4). This indicates that dur-709

ing DT1�2, mafic blueschists and eclogites and surrounding meta-sedimentary rocks were710

exhumed together, and in some places, strain was partitioned between them. Therefore,711

even if mafic blueschists and eclogites reached higher pressures on their prograde path, they712

must have been partially exhumed and juxtaposed with CBU meta-sediments by ⇠45 Ma713

to explain concordant exhumation-related structures.714

7.5 Exhumation of the Syros nappe-stack in the subduction channel under715

greenschist facies conditions (44-20 Ma)716

Between ⇠44-20 Ma, greenschist facies DT2 fabrics continuously developed through-717

out the accreted CBU stack, younging systematically with structural depth, as each under-718

plated nappe was exhumed in series from north to south. Exhumation imparted penetrative719

deformation that progressively transposed older fabrics under blueschist facies (DT1) and720

eventually greenschist facies (DT2) conditions. Exhumation-related DT1 and DT2 strain721

was dominantly coaxial and well-distributed. This is evident from symmetric strain shad-722

ows on garnets, ductile pinching of partially retrogressed eclogites at Agios Dimitrios, and723

outcrop-scale greenschist facies folds with sub-horizontal E-W trending hinge lines with724

hinge-parallel symmetric boudinage of competent blueschist and epidote-rich lenses (e.g.725

Delfini and Lotos; Figs. 5, C1).726

The youngest dynamic DT2 greenschist facies fabrics associated with subduction chan-727

nel exhumation are ⇠25-20 Ma and are recorded in the southern nappe (Fig. 11). Mean-728

while, in the northern and central nappes, greenschist facies metamorphism occurred locally,729

but was not associated with penetrative strain (e.g. random grains, radiating clusters, decus-730

sate textures; Cli↵ et al. (2016)). These observations indicate strain progressively localized731

towards the base of the stack through time. Patchy metamorphism in the northern and732

central nappes may reflect local fluid availability as the active interface migrated south.733
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7.6 Upper plate extension and core complex capture734

Slab rollback began ⇠22-18 Ma (Bröcker et al., 2004), leading to upper plate extension,735

core complex capture, and southward migration of the volcanic arc through the former736

forearc (e.g. the Tinos granite, 14-18 Ma, Altherr et al. (1982)). CBU rocks were exhumed737

in the footwall of the North and West Cycladic Detachment Systems and related smaller-738

scale structures during ‘post-orogenic’ exhumation (Jolivet et al., 2010; Soukis & Stockli,739

2013). On Syros, this deformation is recorded by the Vari Detachment (Fig. 2).740

Soukis and Stockli (2013) presented low-temperature zircon and apatite (U-Th)/He741

thermochronology, and concluded that the southern Syros CBU was juxtaposed with two742

structurally higher upper-plate units, the Upper Unit (intermediate structural level) and743

Vari Unit (structurally highest), along at least two semi-brittle detachment faults (Fig. 13C,744

labeled as future structures). While the Tinos Detachment exhumed CBU rocks between745

⇠22-19 on what would become neighboring Tinos Island, low-angle normal faults juxtaposed746

the Vari and Upper Units on Syros. Exhumation of the Vari and Upper Units at ⇠13-15 Ma747

was roughly coeval with magmatism on Tinos but the Syros CBU exhumed later, ⇠8-10 Ma,748

beneath the Vari Detachment (Soukis & Stockli, 2013). Final exhumation of the CBU on749

Syros occurred in multiple, temporally distinct, rapid episodes of unroofing. Exhumation750

beneath the Vari Detachment was rapid, but only accommodated the final ⇠6-9 km of751

vertical exhumation (Ring et al., 2003).752

8 Implications753

The tectonic model described above has several similarities and di↵erences compared to754

previous tectonic models. First, our results agree with Lister and Forster (2016) and Laurent755

et al. (2017) that Syros is composed of distinct tectonic slices that reached peak conditions756

at di↵erent times. Our study places quantitative constraints on the timing of subduction of757

each slice, and demonstrates that deformation occurred continuously throughout the Eocene758

and subduction- and exhumation-related fabrics developed contemporaneously at di↵erent759

structural levels. We argue that mafic blueschists and eclogites do not exclusively occupy760

the structurally highest tectonic slice, in contrast to Trotet et al. (2001a) and Laurent et al.761

(2016). Rather, protoliths for mafic blueschists and eclogites were present throughout the762

CBU before subduction and therefore appear to record primary relationships (cf. Keiter763

et al., 2011). This implies that the mafic blueschists and eclogites are not separated from764

surrounding schists and marbles by shear zones and/or detachments.765

Our observations indicate that prograde textures are locally preserved in mafic blueschists766

and eclogites (cf. Keiter et al., 2004), but the majority of the Syros CBU has been over-767

printed during subduction channel exhumation (cf. Trotet et al., 2001b; Rosenbaum et768

al., 2002; Bond et al., 2007). Heterogeneous rock types that occupy a given nappe were769

subducted and exhumed together, and therefore experienced identical P-T paths (in con-770

trast to Trotet et al. (2001b, 2001a)). Therefore, di↵erences in strain, metamorphic min-771

eral assemblages, and/or preserved kinematics between mafic blueschists and eclogites and772

meta-sedimentary rocks can be attributed to relative strengths, bulk composition, and fluid773

availability (and composition) during metamorphism.774

Exhumation from peak depths was accommodated by well-distributed, ductile coaxial775

thinning throughout the bulk stack (cf. Rosenbaum et al., 2002; Bond et al., 2007) and776

resulted in penetrative Eocene-Oligocene blueschist and greenschist facies retrogression, un-777

related to regional Miocene greenschist facies deformation. Non-coaxial deformation on the778

eastern and southeastern side of the island can be attributed to proximity to the Vari De-779

tachment, which is thought to have operated as the extensional subduction channel roof780

(Laurent et al., 2016; Aravadinou & Xypolias, 2017). Compiled metamorphic geochronol-781

ogy and new Rb-Sr ages allow us to calculate exhumation rates of 1.5-5 mm/yr (= 1.5-5782

km/Myr) for each underplated nappe. These rates are roughly an order of magnitude slower783
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than subduction for the Hellenides, and are consistent with buoyancy-driven, channelized784

return flow in a distributed shear zone (Gerya et al., 2002; Warren et al., 2008; Burov et785

al., 2014). Furthermore, mm/yr exhumation rates are not consistent with fast rates (com-786

parable to subduction rates) predicted for exhumation along deep-reaching, highly-localized787

detachments in an ‘extrusion wedge’ (e.g. Ring & Reischmann, 2002; Ring et al., 2020),788

nor with forced return flow and melange-like mixing in a low-viscosity wedge (Cloos, 1982;789

Gerya et al., 2002). Thus, between ⇠50 and ⇠25 Ma, return flow in the subduction channel790

accomplished at least 35 km, and potentially as much as 55 km of vertical exhumation from791

maximum depths to the greenschist facies middle crust (⇠4 kbar, ⇠15 km), accounting for792

⇠75-80% of CBU exhumation.793

On a regional scale, subduction, underplating, and syn-subduction exhumation were794

fundamental processes during construction of the greater Attic-Cycladic Complex (e.g.795

Trotet et al., 2001a; Jolivet et al., 2003; Ring & Layer, 2003; Lister & Forster, 2016; Lau-796

rent et al., 2017; Ring et al., 2020). CBU rocks on Sifnos have garnet crystallization ages797

of ⇠47-45 Ma (Dragovic et al., 2012, 2015), comparable to the base of the Syros stack. The798

Basal Unit reached peak conditions at ⇠33-27 Ma (Ring et al., 2007), contemporaneous799

with syn-subduction greenschist facies exhumation of the CBU on Syros (Fig. 11). The800

structurally deeper Phyllite-Quartzite Nappe and Plattenkalk unit exposed on Crete expe-801

rienced HP/LT metamorphism between ⇠20-24 Ma (Seidel et al., 1982; Thomson et al.,802

1999), which also overlaps with latest stages of greenschist facies exhumation on Syros (Fig.803

11). Extension and core complex capture that initiated during trench rollback reworked804

the ACC to its present configuration, and locally reactivated nappe-bounding thrusts as805

extensional structures (e.g. Vari Detachment on Syros).806

9 Conclusions807

Structural analysis, metamorphic petrology, and new and compiled geochronology808

demonstrate that exhumed HP/LT rocks on Syros Island (Cyclades, Greece) record progres-809

sive subduction, underplating, and return flow of three separate tectonic slices. Each nappe810

records a similar structural and metamorphic history, despite subducting at di↵erent times.811

Prograde subduction and underplating of each tectonic slice was characterized by asym-812

metric top-to-the-SSW and top-to-the-S shear strain, and was reached at ⇠53 Ma (northern813

nappe), ⇠50 Ma? (central nappe) and ⇠47 Ma (southern nappe). Prograde deformation and814

metamorphism is locally preserved in the northern and central nappes, but the majority of815

the island’s meta-sedimentary lithologies were retrogressed during syn-orogenic blueschist-816

to-greenschist facies exhumation. The subduction-to-exhumation transition in each nappe817

is marked by systematic kinematic changes: dominant transport directions rotated from818

roughly N-S (syn-subduction), to NE (post-underplating, at the subduction-to-exhumation819

transition), to E-W (return flow) and the strain geometry switched from asymmetric to820

coaxial. Progressive subduction of structurally deeper nappes occurred contemporaneously821

with exhumation of structurally higher nappes throughout the Eocene and Oligocene, cap-822

turing syn-subduction exhumation in the Hellenic subduction zone. Subduction channel823

return flow proceeded at ⇠1.5-5 mm/yr (an order of magnitude slower than subduction),824

and accounted for ⇠80% of the vertical exhumation of the CBU. Continuous subduction,825

underplating, and syn-subduction exhumation appear to be fundamental processes during826

construction of the Attic-Cycladic Complex in the Central and Southern Cyclades.827
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Bröcker, M., Baldwin, S., & Arkudas, R. (2013). The geological significance of 40Ar/39Ar1021

and Rb-Sr white mica ages from Syros and Sifnos, Greece: A record of continuous1022

(re)crystallization during exhumation? Journal of Metamorphic Geology , 31 (6), 629–1023

646. doi: 10.1111/jmg.120371024
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Dürr, S., Altherr, R., Keller, J., Okrusch, M., & Seidel, E. (1978). The median Aegean1106

crystalline belt: stratigraphy, structure, metamorphism, magmatism. Alps, Apen-1107

nines, Hellenides, 38 , 455–476.1108

Ernst, W., & Liu, J. (1998). Experimental phase-equilibrium study of Al-and Ti-contents1109

of calcic amphibole in MORB—a semiquantitative thermobarometer. American min-1110

eralogist , 83 (9-10), 952–969.1111

Evans, B. W. (1990). Phase relations of epidote-blueschists. Lithos , 25 (1-3), 3–23. doi:1112

10.1016/0024-4937(90)90003-J1113
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Glodny, J., Ring, U., Kühn, A., Gleissner, P., & Franz, G. (2005, may). Crystal-1154

lization and very rapid exhumation of the youngest Alpine eclogites (Tauern1155

Window, Eastern Alps) from Rb/Sr mineral assemblage analysis. Con-1156

tributions to Mineralogy and Petrology , 149 (6), 699–712. Retrieved from1157

http://www.springerlink.com/index/U5PW505180300421.pdfpapers3://1158

publication/doi/10.1007/s00410-005-0676-51159

Grasemann, B., Schneider, D. A., Stockli, D. F., Iglseder, C., Stöckli, D. F.,1160
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