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Abstract14

Tropical mountain glaciers are an important water resource and highly impacted by re-15

cent climate change. Tropical mountain glaciation also occurred in the deep past, rais-16

ing questions about their global climate significance and presenting challenges for bridg-17

ing the scales resolved by global models (100s of km) with the ≈ 1–10 km scale of glaciers18

when paleotopography is poorly known. Here we hindcast tropical mountain glaciation19

in pre-industrial time by using global climate model meteorology to force standalone sim-20

ulations in its land component that use high resolution topography to resolve selected21

tropical mountain glaciers. These simulations underestimate observed equilibrium line22

altitudes (ELA) by 237 ± 340 m, but the simulated ELA and snow lines capture observed23

inter-mountain ELA variability. Uncertainties in flow and temperature/downward long-24

wave radiation lapse rates do not fully explain ELA hindcast bias, suggesting diurnal vari-25

ability not captured by downscaling may be an important bias factor.26

Plain Language Summary27

Shrinking glaciers in mountains near the Equator are commonly used to illustrate28

present day climate change caused by greenhouse gas emissions from burning fossil fu-29

els. These glaciers are not just picturesque but also can be an important source of wa-30

ter for humans. Geologists have found the traces of larger, lower elevation glaciers from31

the most recent ice age and hundreds of millions of years ago. These glaciers could be32

big clues to how cold climate was in the past, if we knew how to interpret them. Climate33

models could help, but they generally look at what is happening at scales much bigger34

than glaciers. We would like to be able to predict how low glaciers reach in elevation in35

a particular global climate model experiment. We do this by taking the weather from36

a global climate model and putting into a model that looks at processes similar in scale37

to glaciers. This approach underestimated the elevation of several well-observed glaciers,38

even if we accounted for glaciers flowing and other potential problems in translating in-39

formation from the global to glacier scale. But our method does get right how glacier40

elevation varies from mountain to mountain, which is potentially useful.41

1 Introduction42

Mountain glaciers in the Earth’s tropics can be a striking part of the landscape,43

because their high reflectivity at all visible wavelengths and their very nature as frozen44

water can starkly contrast with the red, brown, and green colors and warmer and/or drier45

climates at nearby lower elevations. The shrinking of tropical mountain glaciers over the46

last century or so has been used as a potent illustration of the impact of anthropogenic47

climate change on an aesthetically compelling feature of the environment (e.g., Mote &48

Kaser, 2007; Thompson et al., 2011). But the shrinking of these glaciers has more prac-49

tical consequences for those who depend on them for fresh water or other climate ser-50

vices, principally in the Andes (e.g., Vuille et al., 2008; Mölg et al., 2008; Drenkhan et51

al., 2015)52

Tropical mountain glaciers make such a good and potentially misleading (see Mote53

& Kaser, 2007) illustration of anthropogenic climate change, because they are highly sen-54

sitive to changes in temperature and precipitation. The equilibrium line altitude (ELA),55

the elevation at which long-term accumulation of ice balances long-term ablation of ice,56

was typically ≈ 1 km lower at the Last Glacial Maximum (LGM) than the period around57

or just after 1850 (Porter, 2001; Hastenrath, 2009). This change was coincident with a58

2–4 K change in tropical mean temperatures (Annan & Hargreaves, 2013), which was59

likely larger on mountains due to steeper lapse rates (Tripati et al., 2014; Loomis et al.,60

2017).61
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It is important to note that the ELA is a global property of a glacier. In areas with62

steeper slopes, glaciers can flow quite deeply into valleys, emplacing terminal moraines63

at elevations > 1 km below the ELA that is rigorously obtained by taking of the mean64

elevation of the entire margin of the glacial front (Osmaston, 2004) and less rigorously65

by averaging the top and bottom elevation of the glacier (Porter, 2001).66

Global climate at the LGM was relatively cold for Phanerozoic time and highland67

environments are preferentially eroded (Larsen et al., 2014; Mills et al., 2021), so evi-68

dence for tropical mountain glaciation would not be expected to be widespread in the69

geologic record. As early as the nineteenth century, however, past glaciation was recog-70

nized in a highland environment adjacent to tropical lowlands dating from the Late Car-71

boniferous Period of France (300 Ma) (Julien, 1895). Modern techniques have confirmed72

the Late Carboniferous age and paleolatitude of glacial deposits from France as well as73

in an ancient tropical mountain range far to the west in present day Colorado (e.g., Soreghan74

et al., 2014; Pfeifer et al., 2021, and references therein). These Carboniferous deposits75

seem to record terminal moraines at altitudes < 2000 m, suggesting ELA was at least76

similar to the LGM (Soreghan et al., 2014). However, global climate model (GCM) sim-77

ulations using appropriate paleogeography and plausible greenhouse gas levels have been78

unable to reproduce stable glaciation at these elevations (Soreghan et al., 2008; Heav-79

ens et al., 2015).80

A GCM might be unable reproduce past glaciation if it is under-resolving or in-81

completely representing glacial processes. Typical GCM resolution for lengthy deep time82

climate experiments are 200–400 km at the Equator (Soreghan et al., 2008; Heavens et83

al., 2015), while even pre-industrial tropical glaciers typically were << 10 km in diam-84

eter (Kaser, 1999). And while deep time GCMs generally predict snowfall and some work85

has been done to couple deep time GCMs with models that simulate ice sheets (e.g., Hyde86

et al., 2000; Poulsen et al., 2007; Horton et al., 2012), prognostic climate simulations of87

mountain glaciation are relatively rare and require some form of downscaling from global88

GCM resolution (e.g., Kotlarski et al., 2010; Shannon et al., 2019).89

Recently, a prognostic ice sheet model, the Community Ice System Model (CISM),90

was added as a fully coupled component to the Community Earth System Model (Lipscomb91

et al., 2019). CISM takes ice mass balance information from the Community Land Model92

(CLM), which CLM predicts on the basis of atmospheric component (Community At-93

mosphere Model: CAM) temperature and precipitation information downscaled into mul-94

tiple elevation classes of potential glaciers. Thus, the ice mass balance a large grid cell95

is considered at an elevation around 3000 m, 2500 m, etc. according to model settings.96

CISM then translates that ice mass balance onto a grid with resolution as fine as 4 km97

and simulates ice flow. But CLM (with or without CISM) is not designed to simulate98

mountain glaciation realistically because of concerns that under-resolving topography99

within the atmosphere model results in excessively warm climate and excessive runoff100

(UCAR, n.d.).101

The purpose of this study is to use CESM and CLM when topography is explic-102

itly resolved to predict the ELA of tropical mountain glaciation in a limited area and103

test these predictions against observations. This hindcasting framework uses CLM forced104

by CAM to obtain ice surface mass balance (SMB) information but downscales atmo-105

spheric forcing to a high resolution topographic grid. Trying to connect global climate106

change quantitatively with the response of tropical mountain glaciation is nothing new107

(see Mölg and Kaser (2011); Roe et al. (2021) and references therein). The unique fea-108

ture of this study is modeling tropical mountain glaciation entirely within the framework109

of a latest generation global climate model and its land component. While this hindcast-110

ing framework is being developed for deep time climate studies, the validation test that111

it provides for CESM2 and CLM5 and could provide for global climate models of sim-112

ilar capability should be of broader interest.113
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2 Methods114

2.1 CESM2 and CLM Simulations115

We performed standalone CLM5 simulations forced by a data atmosphere gener-116

ated by a standard CESM2 simulation on the National Center for Atmospheric Research117

(NCAR) supercomputer Cheyenne (CISL, 2019). Because this is a non-standard con-118

figuration of CLM5, we have archived example case directories, configuration procedure119

documentation, and input files for these simulations within the data archive associated120

with this study (Heavens, 2021). CESM2 and CLM5 (its default land component) were121

particularly chosen, because CLM5 was specifically modified to improve representation122

of processes related to hydrology, snowfall, and ice mass balance (Lawrence et al., 2019).123

Except for some simulations described later, the CLM5 code was modified to remove a124

step in the downscaling of downward longwave radiation at the surface (FLDS) that re-125

normalized the downscaled radiation fields between elevation classes. This change is con-126

sistent with each point in the land model being treated as a single elevation class and127

reduces FLDS on mountain summits by ≈ 100 Wm−2.128

The CESM2 data atmosphere came from 30 years of a branch simulation from year129

1101 of the Climate Model Intercomparison Project 6 (CMIP6) standard pre-industrial130

control for CESM2 at f09 g17 resolution (0.9◦ × 1.25◦) (Danabasoglu et al., 2020). Stan-131

dalone CLM5 simulations then were run in 10 limited area domains roughly centered on132

past or presently glaciated tropical mountains with well-documented estimates of ELA133

(Table 1). Two areas with no recently glaciated mountains but with mountains that were134

glaciated at the LGM (Table 1) were simulated to make sure ELA was not substantially135

underestimated in pre-industrial climate and to set a baseline for a future study of LGM136

tropical mountain glaciation. The selected areas cover a meridional transect in the trop-137

ics of Central and South America as well as a few domains in Africa and the Maritime138

Continent to cover a range of observed ELA and proximity to the ocean. This choice of139

domains is meant to span the potential range of precipitation, though this choice can-140

not be rigorous because of the sparseness of precipitation measurements and the hete-141

orogeneity of precipitation in these areas (e.g., La Frenierre & Mark, 2017).142

Each domain was 2◦ in latitude and 1◦ in longitude. The selection of domain size143

ensured multiple glaciated mountains and topography < 2000 m could be included in144

the domain (except in the High Andes). The domain is similar in size to 1–2 global model145

grid cells in the CESM2 simulation.146

Each CLM5 simulation was initialized from high-resolution surface data and land147

domain files (nominally 100 points per degree) in which the global model resolution land148

surface properties except topography/slope were translated to the high-resolution do-149

main by nearest neighbor interpolation. High resolution topography, standard deviation150

of elevation, and slope data were then added using 30 arc-second resolution data from151

GMTED2010 (Danielson & Gesch, n.d.). (Fig. 1a). The topography was used to assign152

each grid point to one of 10 possible elevation classes and set its elevation. To ensure SMB153

could be calculated, glacial column coverage was set to a minimum of 1% (or greater where154

the original land surface dataset had greater glacial column coverage). This additional155

glacial column coverage replaced coverage by vegetation. Glacier region was set to 2 (Green-156

land). We have verified by appropriate simulations that using the different elevation class157

treatments available for glacier regions 2 and 3 (Antarctica) or using 50% glacial cov-158

erage does not affect the results of this type of simulation as long as the SMB and re-159

lated calculations are analyzed on the glaciated land units alone. In effect, these exper-160

iments impose a glacier of 50 m altitude (as evident from the documentation and ini-161

tial grid cell ice content variable, ICE CONTENT1) over a limited grid cell area, in cir-162

cumstances where glaciation has no or minimal impact on large-scale climate, and sim-163

ulate how it accumulates or ablates over a climatological normal period.164
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The experiments were cold started (because only physical climate was of interest)165

and used crop-biogeochemistry physics routines, because agricultural activity occurs in166

some of the domains and it was therefore necessary to include crop biomes. Lapse rate167

was set to the mean free air temperature lapse rate for the domain derived from the CESM2168

simulation. FLDS lapse rate was set to the standard CLM5 setting of 0.032 Wm−2 m−1
169

Van Tricht et al. (2016); Lawrence et al. (2019). (Positive lapse rate is defined here as170

decreasing with height.)171

The mean free air lapse rate in each CLM5 domain was calculated by calculating172

the mean lapse rate in the troposphere as defined by WMO (1957) for every grid point173

of each monthly mean output file of the CESM2 simulation, interpolating this onto each174

CLM5 domain in the same way as the CLM5 boundary condition files, and then aver-175

aging over 30 years. The results in all cases are between 6 and 7 K km−1 (Table 2).176

To test sensitivity to FLDS and temperature lapse rate, six simulations were per-177

formed in domain 4 (Table 1) that varied temperature lapse rate in six steps (9.8, 8, 7,178

6, 5, 3.2 K km−1) without modifying the FLDS downscaling in CLM5. These values span179

the dry adiabatic lapse rate and extreme values reported by Shen et al. (2016) for the180

mid-latitude Tianshan Mountains. An additional simulation in domain 4 was performed181

with the FLDS downscaling modified and a temperature lapse rate of 7 K km−1.182

2.2 Analysis183

The results of each simulation then were analyzed to extract ELA and ELA-related184

metrics. ELA, strictly speaking, is the elevation where ablation and accumulation are185

in balance, that is, where long-term SMB is equal to zero. Following Vizcáıno et al. (2014),186

SMB = SNOW + RAIN −RUNOFF − SUBLIMATION (1)187

This balance can be expressed in CLM5 output variables restricted to glaciated land188

units only.189

SMB = SNOW ICE + RAIN ICE −QRUNOFF ICE −QFLX SUB SNOW ICE
(2)190

where the quantities in brackets correspond to the terms of Eq. 1 and SNOW ICE,191

RAIN ICE, QRUNOFF ICE, and QFLX SUB SNOW ICE are variables output by CLM5.192

From this point onward, we will use SMB to mean the integrated SMB over the 30 year193

period of each simulation (Fig. 1b).194

ELA in the absence of flow (ELAnoflow) was estimated by dividing the domain into195

connected regions with SMB > 0. ELA then was defined as the minimum altitude of196

each region. By determining the maximum altitude of each region, it was possible to as-197

sign each region to a mountain with observed ELA estimates. In some cases, however,198

two mountain peaks with estimates were in the same connected region.199

An ELA metric accounting for flow (ELAflow) was calculated by first estimating200

the minimum possible elevation of a terminal moraine originating from each connected201

regions with SMB > 0. The product of SMB and area for each connected region as well202

as the path with steepest slope connected to the maximum altitude of the region were203

determined. The product of SMB and area in the ablation region along this path were204

integrated and subtracted from the sum of SMB and area in the accumulation zone formed205

by the connected regions. This is equivalent to determining how low in elevation could206

the accumulated ice go if ice were continuously delivered along a one grid cell wide val-207

ley originating from the region. ELAflow then was estimated as the average of the peak208

–6–
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Figure 1. Example CLM5 standalone simulation and its analysis, as labeled: (a) Topo-

graphic grid (m). Mountains of interest are labeled, but only Chimborazo and Antisana have

ELA estimates; (b) Net SMB for the simulation (m). Connected regions (accumulation zones)

are indicated by contours; (c) Topographic map (m) showing the accumulation zone for Antisana

in black and the steepest path from the peak used to find the minimum elevation for a termi-

nal moraine in blue; (d) SMB vs. topography for the entire domain with relevant estimates and

observations for Antisana labeled.

altitude of the region and the elevation of the terminal moraine in line with a typical tech-209

nique for estimating ELA in the field (Porter, 2001). This type of calculation is illustrated210

in Figs. 1c–d.211

The snow line has been used to approximate ELA under some circumstances (Porter,212

2001). So for comparison, two estimates of the permanent snow line also were calculated.213

SL and SL1m were defined as the minimum altitude at which snow and snow of 1 m depth214

were present in each month during the last month of the simulation, respectively. These215

metrics were calculated for the whole domain by averaging the minimum elevation where216

snow is present and the maximum elevation where snow is absent by analogy with the217

glaciation-threshold method (Porter, 2001). In each case, snow depth was normalized218

by the fraction of glacial coverage to obtain the true snow depth in the glacial column.219

Note that SL1m tends to highlight a small range of elevation where snow depth rapidly220

increases: a true snow line. Thus, choosing a much higher depth criterion only would marginally221

change ELA. In one simulation, SL1m is 4362 m, but SL10m is only 4405 m.222

–7–
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3 Results223

The results of this analysis are given in Table 2. The non-glaciated mountains of224

Ajusco, Cerro Chrirripo, and Kinabulu all are hindcast as non-glaciated. However, the225

simulations also hindcast Mts. Kenya and Ngaliema as being non-glaciated. This is most226

likely a resolution problem. For Mt. Ngaliema, uncertainty in the observed ELA is large227

and the upper bound of ELA it implies is greater than the height of Mt. Ngaliema re-228

solved by the model (Table 2). For Mt. Kenya, the observed ELA is within 100 m of the229

model-resolved height (Table 2). The model domains do not resolve the highest peaks230

in several other cases, but the highest elevation in the model is typically significantly greater231

than the ELA. A similar resolution problem makes it difficult to resolve Kibo from Mawenzi232

peaks on Kilimanjaro, so Kibo peak only will be considered in the remainder of the anal-233

ysis.234

For nine sufficiently resolved mountains with observed glaciation, the bias (∆) in235

the simulated ELA for each of the metrics was estimated by taking the mean and stan-236

dard deviation of the difference between the estimated and observed ELA (Fig. 2). ELAnoflow237

underestimates observed ELA by 237 ± 340 m. Accounting for flow (ELAflow) reduces238

the underestimate to 120 m but widens the uncertainty. But as noted by (Porter, 2001),239

the method used to derive ELA from terminal moraine elevation may overestimate ELA240

by up to 150 m, making ELAflow no superior to that derived based on SMB alone. The241

average simulated snow line is 1084 m below the observed ELA. However, requiring 1242

m of permanent snow depth reduces this underestimate to 318 m with comparable un-243

certainty to ELA, suggesting that the snow line illustrated in Fig. S1 is a good approx-244

imation to ELA rather than a snow line based on a minimal amount of snow. The mag-245

nitude and variability of biases in all ELA metrics are large enough that they exceed the246

largest reported uncertainties in observed ELA.247

The simulated ELA metrics follow the variability in observed ELA (Fig. 2). Higher248

observed ELA usually results in higher simulated ELA, suggesting that the simulated249

ELA is capturing the variability in observed ELA but underestimating its magnitude.250

For example, the correlation between ELAnoflow and SL1m and observed ELA is 0.92251

and 0.93 respectively (n=9), which is significant to p<0.001. This correlation is weaker252

for the other metrics but is still significant to p<0.05.253

Possible sources of error are the major free parameters of the experiments, the lapse254

rates of temperature and FLDS, particularly in domain 4. We first consider tempera-255

ture lapse rate. In domain 4, ELA is underestimated by ∼ 400 m (Fig. 2. As implied256

by the relevant simulation in Table 2, increasing the lapse rate by 1 K lowers ELAnoflow257

by 330 m. So if the free air lapse rate were considerably higher than the near-surface lapse258

rate over high terrain, this effect could explain the bias. However, Córdova et al. (2016)259

used weather station data over the Ecuadorian Andes (∼ 50 km south of domain 4 of260

Table 2) to show that mean lapse rate was 6.9 K km−1, 0.3 K km−1 greater than that261

of domain 4 and thus in the opposite direction necessary to explain the bias. It is un-262

likely that the lapse rate would decrease at elevations greater than the 4200 m elevation263

of the highest weather stations sampled by Córdova et al. (2016).264

Despite being derived from observations over Greenland (Van Tricht et al., 2016),265

the lapse rate in FLDS also agrees well with available observations in domain 4. Wagnon266

et al. (2009) measured annual mean FLDS on Antisana to be 283 Wm−2 during 2005–2006.267

We used the assumed lapse rate in FLDS to translate between the elevation of these ob-268

servations and the elevation of the nearest grid point in the high resolution grid (∼ 300269

m). We then compared the annual mean FLDS at the nearest grid point in the CESM2270

simulation with the annual mean FLDS for the period sampled by Wagnon et al. (2009)271

in the CESM2 CMIP6 historical simulation (b.e21.BHIST.f09 g17.CMIP6-historical.003)272

at the same grid point. This comparison implies FLDS was 1.4 Wm−2 greater during273

2005–2006 than around 1850. With all of these adjustments made, the expected annual274
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Figure 2. Comparison of different ELA estimates with observed ELA and their uncertain-

ties for mountains with both observed and simulated ELA. Abbreviated mountain names on

the x-axis are abbreviated and in the same order as Table 2. The estimated mean bias and 2σ

uncertainty in each metric is listed next to the legend.

mean FLDS in standalone CLM5 simulations at Wagnon et al. (2009)’s observation site275

on Antisana should be 275 Wm−2, 8 Wm−2 lower than observed. This is equivalent to276

a +8% error in the assumed FLDS lapse rate. If the standard CLM5 downscaling is used,277

the annual mean FLDS is 381.41 Wm−2. At a temperature lapse rate of 7 K km−1, the278

sensitivity in ELAnoflow to FLDS is 9.2 m (Wm−2)−1, so this would explain an ELAnoflow279

underestimate of 77 m, 21% of ∆ELAnoflow at Antisana. (Interpolating the results of280

the standard CLM5 downscaling simulations to 6.56 K km−1 and differencing with the281

6.56 K km−1 lapse rate modified downscaling simulation for domain 4 only changes this282

result to 87 m and 24%).283

4 Discussion284

Whether ELA is based on SMB or permanent snow cover, our CESM2–CLM5 frame-285

work significantly underestimates ELA, implying a cold bias in simulating tropical moun-286

tain climates in these models. This result is somewhat surprising in light of the concern287

expressed in UCAR (n.d.) that using CLM5 to study mountain glaciation would be im-288

pacted by a warm bias. On average, accounting for ice flow enhances the discrepancy289

between simulated and observed ELA, implying neglecting flow is not a major source of290

error. Nor do the lapse rate settings of the simulations seem to explain the bias between291

hindcast and observed ELA. Moreover, while the high resolution grid does not perfectly292

resolve mountain peaks and likely under-resolves the potentially smaller African glaciers293
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(areas on the order of 1 km2, Andean glacier areas are on the order of 10 km2 in area294

and should be resolved (Kaser, 1999).295

A possible source of error that cannot be easily evaluated is diurnal and spatial vari-296

ability in lapse rate at the topographic scale. Córdova et al. (2016) observed lapse rates297

in maximum temperatures of 8.8 K km−1 and 5.5 K km−1 in minimum temperatures.298

Studied of lapse rates over the mountainous regions in the mid-latitudes likewise sugggest299

that the atmospheric lapse rate can be a poor approximation for the decrease in surface300

temperature and the near-surface air temperature with elevation because of preferential301

solar heating of slopes, drainage of cold air into valleys, and variations in surface cover302

by snow or vegetation (Minder et al., 2010; Pepin et al., 2016). Thus, failure of CLM5303

to account for diurnal variability or properly represent drainage flows or asymmetry in304

surface heating might result in excessive melting and substantially raise the simulated305

ELA. Adjusting our hindcasting framework to account for this variability likely would306

require an embedded mesoscale atmospheric model, raising computational cost and fur-307

ther limiting our ability to apply this framework to other global climate states where 1308

km scale topography is unknown.309

There is a positive note for using this hindcasting framework for investigating past310

tropical mountain glaciation in other climate states. ELA based on SMB or substantial311

surface snow cover captures the variability in observed ELA. Thus, if the ELA bias is312

just an offset caused by insufficiently considering local thermal structure in the down-313

scaling or some other model bias, it still may be possible to hindcast the rise or fall in314

ELA with different global climate states by testing against an ensemble of mountains like315

those compiled for this study. It thus would be appropriate to repeat this study for LGM316

conditions and see if the observed depression in ELA between the LGM and pre-industrial317

climate is reproduced.318

5 Summary319

In this study, we have tested downscaling CESM2 global simulations in CLM5 to320

hindcast tropical mountain glaciation. Our eventual objective for developing this hind-321

casting framework is to interpret the significance of deep past tropical mountain glacia-322

tion for global climates. But this technique may be more broadly valuable for model val-323

idation for models analogous in capability to CESM2 and CLM5. While our framework324

well captures the variability in glaciation between different tropical mountains, it gen-325

erally underestimates glacier ELA by a larger margin than the uncertainty in the obser-326

vations. However, this bias is still smaller than the 1 km difference between ELA dur-327

ing the LGM and pre-industrial time, suggesting that this framework might accurately328

capture the change in ELA between different global climate states. This hypothesis could329

be verified by repeating this study for LGM conditions. Moreover, making ELA estimates330

based on snow line rather than surface mass balance looks promising for simulating ELA331

in circumstances where topography is poorly known.332

Acknowledgments333

Supporting datasets and analytical code for this research are available in Heavens (2021).334

The CMIP6 CESM2 historical simulation is available in NCAR (2018). This work was335

funded by the Sedimentary Geology and Paleobiology program of the National Science336

Foundation (EAR-1849754).337

References338

Annan, J. D., & Hargreaves, J. C. (2013). A new global reconstruction of tempera-339

ture changes at the last glacial maximum. Climate of the Past , 9 (1), 367–376.340

Retrieved from https://cp.copernicus.org/articles/9/367/2013/ doi: 10341

–11–



manuscript submitted to Geophysical Research Letters

.5194/cp-9-367-2013342

CISL. (2019). Cheyenne: HPE/SGI ICE XA System (University Community Com-343

puting). Boulder, CO: National Center for Atmospheric Research. doi: 10344

.5065/D6RX99HX345
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