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Text S1. 

1 Analytical expression for focusing correction due to geometrical spreading, 𝛁𝟐𝝉𝑮𝑺 
 

Here we derive an expression for the focusing/defocusing correction term (or wavefront 
curvature) due to geometrical spreading of a surface wave on a sphere. For simplicity, we 
consider the great-circle angular distance from an earthquake at the origin (0,0) to a point on 
Earth’s surface at latitude, 𝜆, and longitude, 𝜑: 

 
𝑋 =	 cos!"(cos 𝜆 cos𝜑) (S1) 

 
The travel time of a Rayleigh wave propagating with average phase velocity 𝑐 from the origin to 
the point (𝜆, 𝜑) is then expressed simply as 

 

𝜏 =
𝑅𝑋
𝑐

 (S2) 

 
where 𝑅 = 6371 km is the radius of the Earth. The Laplacian operator in spherical coordinates is 
applied to equation (S2), realizing that the term containing ∂/ ∂𝑟 goes to zero. After simplifying, 
we obtain the expression: 

∇#𝜏	 = 	
cos𝜑 cos 𝜆
𝑐𝑅 sin𝑋

	 (S3) 

 
Because we are considering geometrical spreading on a sphere, we can further simplify equation 
(S3) by assuming propagation along the equator (𝜆 = 0): 
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∇#𝜏	 = 	
cos 𝑋
𝑐𝑅 sin𝑋

	 (S4) 

 
Equation (S4) provides an expression for the wavefront curvature of a surface wave at an 
epicentral distance 𝑋 from the earthquake source. 
 

2 Analytical expression for apparent amplitude decay due to geometrical spreading 
 
Similarly, we can derive an analogous expression for the apparent amplitude decay term (see 
equation (2) in the main text). The amplitude variation due to geometrical spreading of a surface 
wave across a sphere (ignoring attenuation) is expressed as 

 

𝐴 =
𝐴$

√2𝜋𝑅 sin𝑋
	 (S5) 

 
where 𝐴$ represents Rayleigh-wave source excitation. By applying the gradient operator to 
equations (S2) and (S5) and taking their dot products, it can be shown that the normalized 
amplitude decay in the direction of propagation due to geometrical spreading is given by 
 

∇𝜏 ⋅
∇𝐴
𝐴
	= 	−

cos𝑋
2𝑐𝑅 sin𝑋

	 (S6) 

 
Combining equations (S4) and (S6), we arrive at the transport equation for a non-attenuating 
medium 

2∇𝜏 ⋅
∇𝐴
𝐴
+ ∇#𝜏 = 0	 (S7) 

 

3 Error propagation equations 
 

Here we present the equations for propagating errors from the ray tomography estimates of the 
travel-time and amplitude gradient fields through each step to the apparent attenuation. The ray-
tomography inversions from Section 3.3 provide formal estimates of uncertainty for travel-time 
gradient 𝜎%!& and 𝜎%"& as well as for normalized amplitude gradient 𝜎%!'/' and 𝜎%"'/'. The 
augmented data kernel is given by (Menke, 2012) 

 

𝑭 = ?
𝑪)
!"/#	𝑮
𝜀𝜆
Δ
𝑯

E (S8) 

 
where 𝑮 is the kernel containing geometry of the ray paths, 𝑪) is the data covariance matrix 
containing the variance of each travel-time (or differential log amplitude) measurement along the 
diagonal, 𝑯 is the second-derivative smoothing kernel, and 𝜀𝜆/Δ is the smoothing weight as 
described in Section 3.3. The model covariance matrix is then given by 

 
𝑪+ = [𝑭,𝑭]!" (S9) 
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where diagonal elements provide the formal variance estimates of each model parameter 𝜎+# . This 
model covariance matrix accounts for both uncertainties in the data as well as the smoothing 
constraints applied.  

 
Given measured uncertainties, 𝜎-., in model parameters 𝒙 = [𝑥", 𝑥#, … , 𝑥/], the corresponding 
error in a desired quantity 𝐽(𝒙) can be expressed analytically through the partial derivatives:  

 

𝜎0 ≈ MNO
𝜕𝐽(𝒙)
𝜕𝑥.

⋅ 𝜎-#Q
#/

.1"

 

 

(S10) 

Using this equation, we can propagate the uncertainties from 𝑪+ through all estimated 
components of the right-hand side of equation (6) in the main text as follows: 

 
Travel-time gradient, |∇𝜏|: 

𝜎|∇&| =
S(𝜕-𝜏 ⋅ 𝜎%!&	)# 	+ T𝜕4𝜏 ⋅ 𝜎%"&	U

#

|∇𝜏|
 

 

(S11) 

 
Dynamic phase velocity, 𝑐5 : 

𝜎6$ =
1

|∇𝜏|#
𝜎|∇&| (S12) 

 
 
Focusing/defocusing correction term, ∇#𝜏: 

𝜎∇%& = WX
𝜕#(𝜕-𝜏)
𝜕𝑥#

⋅ 𝜎%!&	Y
#

+ X
𝜕#Z𝜕4𝜏[
𝜕𝑦#

⋅ 𝜎%"&	Y
#

 

 

(S13) 

 
Amplitude decay term, #∇'⋅∇&

'
: 

𝜎
8#∇'⋅∇&' 9

= WZ𝜕-𝜏 ⋅ 𝜎%!'/'[
# + O

𝜕-𝐴
𝐴

⋅ 𝜎%!&	Q
#

+ T𝜕4𝜏 ⋅ 𝜎%"'/'U
#
+ X

𝜕4𝐴
𝐴

⋅ 𝜎%"&	Y
#

 

 

(S14) 

 
Final corrected amplitude decay (right-hand side of equation (6) in main text)  

6
#
T#∇'⋅∇&

'
+ ∇#𝜏U: 

 
𝜎6
#8
#∇'⋅∇&
' :∇%&9

= WO
1
2 O
2∇𝐴 ⋅ ∇𝜏

𝐴
+ ∇#𝜏Q ⋅ 𝜎6$Q

#
+ X

𝑐5

2
⋅ 𝜎

8#∇'⋅∇&' 9
Y
#

+ O
𝑐5

2
⋅ 𝜎∇%&Q

#
 

(S15) 
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Supporting figures 
 

 
 
Figure S1. Source receiver geometry for the Mw 6.4 (May 12, 2014 13:58:21.5 GMT) 
shown in Figure 3. Phase velocities are from S362ANI+CRUST2.0. Red box shows the 
JdF study region. 
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Figure S2. Focusing correction due to geometrical spreading for 𝑐 = 4 km/s and 𝑅 = 
6371 km. Defocusing of the wavefield occurs at distances < 90º and focusing occurs at 
distances > 90º. 
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Figure S3. Attenuation measurements at (left) JdF and (right) NoMelt for different 
choices of smoothing parameter 𝜀 (purple; Equation 10) and quality control of event 
excitation (orange), in which only events with Rayleigh-wave excitation >60% of the 
maximum are considered. TPW measurements made on the same amplitude and phase 
dataset are shown in pink. The good agreement shows that our attenuation measurements 
are relatively insensitive to these choices. The black symbols denote the weighted mean 
and representative error bars that capture the range of uncertainties. Shown in red are 
previous studies that applied the TPW method to independently measured phase and 
amplitude datasets made using a Fourier Transform technique (Yang & Forsyth, 2006). 
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Figure S4. Example sensitivity kernels used in the 1-D inversions. (left) Sensitivity of 
Rayleigh wave attenuation to changes in shear attenuation 𝑄$%& and (right) bulk 
attenuation 𝑄'%&. 
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Figure S5. Recovery of synthetic 1-D attenuation using the Helmholtz tomography 
inversion presented in this paper (red; same as Figure 8 in the main text) compared to the 
surface fitting procedure of Lin et al. (2012) (purple). Results are shown for periods of 
20–150 s at (a) NoMelt and (b) JdF. The input attenuation values of QL6 (Durek & 
Ekström, 1996) are shown in black. Attenuation is significantly overestimated at NoMelt 
at almost all periods using the surface fitting procedure. Overestimates of attenuation 
suggest a bias towards negative values of the focusing correction term (i.e. more focusing 
than expected) and/or the apparent amplitude decay term (i.e. measured amplitudes decay 
more rapidly than expected). Attenuation measured at JdF is comparable for the two 
techniques, but error bars are larger (and more realistic) for the Helmholtz inversion as 
uncertainties are propagated through each step. 
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