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Key Points:

• Significant model-observation disagreements were found mainly at short
time scales (< 15 days).

• Models captured variability at long time scales for boreal and Arctic tun-
dra sites but not for temperate and tropical sites.

• Capturing flux variability at short time scales is critical to improving the
performance of wetland methane models.

•

Abstract

Process-based land surface models are important tools for estimating global
wetland methane (CH4) emissions and projecting their behavior across space
and time. So far there are no performance assessments of model responses to
drivers at multiple time scales. In this study, we apply wavelet analysis to
identify the dominant time scales contributing to model uncertainty in the fre-
quency domain. We evaluate seven wetland models at 23 eddy covariance tower
sites. Our study first characterizes site-level patterns of freshwater wetland CH4
fluxes (FCH4) at different time scales. A Monte Carlo approach has been devel-
oped to incorporate flux observation error to avoid misidentification of the time
scales that dominate model error. Our results suggest that 1) significant model-
observation disagreements are mainly at short- to intermediate time scales (<
15 days); 2) most of the models can capture the CH4 variability at long time
scales (> 32 days) for the boreal and Arctic tundra wetland sites but have lim-
ited performance for temperate and tropical/subtropical sites; 3) model error
approximates pink noise patterns, indicating that biases at short time scales (<
5 days) could contribute to persistent systematic biases on longer time scales;
and 4) differences in error pattern are related to model structure (e.g. proxy
of CH4 production). Our evaluation suggests the need to accurately replicate
FCH4 variability in future wetland CH4 model developments.
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Plain Language Summary

Land surface models are useful tools to estimate and predict wetland methane
(CH4) flux but so far there is no evaluation of modeled CH4 error at different
time scales. Here we use a statistical approach and observations from eddy
covariance sites to evaluate the performance of seven wetland models for different
wetland types. The results suggests model have captured CH4 flux variability
at monthly or longer time scales for boreal and Arctic tundra wetlands but
have limited performance for temperate and tropical/subtropical wetlands. The
analysis suggests that improving modeled flux at short time scale is important
for future model development.

1 Introduction

Methane (CH4) is the second most important greenhouse gas in terms of radia-
tive forcing whose concentration in the atmosphere (~ 1900 ppb) has increased
by approximately 150% since pre-industrial times (Canadell et al., 2021; IPCC,
2013). Methane emitted from wetland ecosystems is the largest natural source
at ~120-180 Tg CH4 yr-1 (Poulter et al., 2017; Saunois et al., 2020) and con-
tributes to the short-term trend and interannual variability observed in atmo-
spheric CH4 concentration (Bousquet et al., 2006; Saunois et al., 2017; Zhen
Zhang et al., 2021). Our understanding of global wetland CH4 emissions heavily
relies on process-based wetland CH4 models, which incorporate biogeochemical
mechanisms, climate forcing variables (e.g., temperature), and spatio-temporal
distributions of surface inundation and wetland extent across the world (Melton
et al., 2013; Wania et al., 2013; Xu et al., 2016; Zhang et al., 2021). These
models play a critical role in diagnosing and forecasting terrestrial CH4 dy-
namics across space and time, but their wetland CH4 flux (FCH4) estimates
have large uncertainties due to potential biases in parameterizations, limited
mechanistic characterization of known CH4 processes, and limited integration
of newly-identified processes such as thermal impact of rainfall (Neumann et al.,
2019) and microbial dynamics on FCH4 (Chadburn et al., 2020). However, it is
unclear how well the current wetland models can replicate the observed FCH4
varibility and magnitude at different time scales. Therefore, it is necessary to
evaluate wetland CH4 model performance against observations to identify model
error patterns and inform future model development.

So far there has not been a major synthesis effort to evaluate multiple wetland
CH4 models against global coverage of eddy covariance (EC) observations from
different biomes using a standard simulation protocol, despite a few efforts to
evaluate a single wetland CH4 model at multiple sites (Ringeval et al., 2014;
Wania et al., 2010) and a model inter-comparison (Melton et al., 2013; Wania et
al., 2013). Arguably, model development to represent terrestrial CH4 processes
has been hindered by 1) limited number of local-to-regional CH4 observations
to evaluate model outputs; 2) lack of understanding of the underlying processes
derived from EC measurements and how well these processes represented in
the models. Evaluations of wetland CH4 models against the recently complied
database FLUXNET-CH4 (Delwiche et al., 2021; Knox et al., 2019, 2021) offer
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an opportunity to improve understanding of current model performance for
different wetland types.

Despite previous observational synthesis studies(Chang et al., 2021; Delwiche
et al., 2021; Knox et al., 2021) that have identified the major controlling factors
that regulate temporal variations in freshwater wetland FCH4 at different time
scales, it is currently unknown how accurate wetland CH4 models are in predict-
ing FCH4 and what factors are likely causing model biases across different time
scales. Knox et al. (2021) demonstrated that dominant factors controlling the
seasonality in EC-based FCH4 vary with wetland types and the major processes
that regulate FCH4 vary at different time scales (e.g., from sub-daily to sea-
sonal). For example, although soil temperature simulations are well established
in wetland models with different thermal parameterization schemes, the repre-
sentation of the modeled relationship between FCH4 and temperature should
be closely evaluated since it may affect model performance for some regions. Ex-
amples include cold regions influenced by freeze-thaw cycles where CH4 fluxes
may occur during the zero-curtain period (Tao et al., 2021; D. Zona et al., 2016).
In addition, temperature hysteresis could contribute to different FCH4 drivers
across seasons (Chang et al., 2021). In contrast, models tend to use different
proxies to calculate microbial CH4 production (e.g., Gross Primary Production
(GPP), Net Primary Production (NPP), ecosystem Heterotrophic Respiration
(Reco), and carbon substrate concentrations), which likely influences model skill
in reproducing FCH4 at different time scales.

It is difficult to diagnose the mechanisms responsible for the lack of agreement
between model and observation using conventional model-fitting approaches
(Schaefer et al., 2012; Taylor, 2001) that apply statistical metrics (e.g., RMSE,
r2, standard deviation). In constrast, model-observation evaluations in the fre-
quency domain using wavelet analysis (Figure 1) or Fourier transform can pro-
vide insights about model-observation disagreements at different temporal scales
(Dietze et al., 2011; P. C. Stoy et al., 2013; Vargas et al., 2010). Wavelet analysis
is especially useful for model evaluation since, compared to Fourier transform,
it can identify not only the time scales that influence a signal but also inform
when those time scales are significant. Previous studies have identified disagree-
ment between models and observations for carbon dioxide (CO2) fluxes across
different ecosystems (Richardson et al., 2012; Schwalm et al., 2010; P. C. Stoy
et al., 2013) but so far there is no assessment for CH4 fluxes. Consequently,
assessments of model-observation agreements using wavelet analysis are needed
to identify discrepancies between observed and modeled CH4 fluxes and provide
insights for model development.
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Figure 1. A conceptual description of differences between information in the
time-domain and the frequency domain and an example of model-data evalua-
tion in the frequency domain (adapted from Vargas et al., 2010). A time series
can be decomposed into time and frequency (i.e. time scale) domain using the
continuous wavelet transform. The resulting wavelet power spectra are plot-
ted on what is referred to as wavelet half-plane, where time is along x axis,
frequency/time scale along y axis, and spectra power indicated by color. The
area of high spectra power is indicated by hot colors and vice versa. Significant
frequencies are contoured with black lines. The black line is the cone of influ-
ence (COI) beyond which wavelet coefficients are unreliable (referred to as ‘edge
effect’).

Our study aims to evaluate the performance of wetland CH4 models in the fre-
quency domain against a large ensemble of eddy covariance measurements of
ecosystem-scale CH4 fluxes. The goal is to quantify the most important time
scales (e.g., multi-day, monthly, and seasonal) for the variability of CH4 fluxes
across wetland types and provide insights about the time periods in which mod-
els should be improved. Our specific objectives are to: i) quantify the most
relevant time-scales for the variability of CH4 fluxes in the models and obser-
vations at the site-level, ii) test the disagreement between in-situ observations
and modeled CH4 fluxes in time-frequency domain, iii) give insights into model
structures responsible for model/observation mismatch. Based on previous find-
ings for CO2 flux (Dietze et al., 2011; P. C. Stoy et al., 2013), we hypothesize
that i) models will have better model-observation agreement in terms of flux
variability at longer time scales (e.g., monthly to seasonal) than short to in-
terdediate time scale (e.g. multi-day to sub-monthly) as important biological
processes regulated by seasonal variation (e.g., CH4 production response to tem-
perature) is properly formulated in the models; ii) models will tend to fail at
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short to intermediate time scales due to forcing error propagation and limited
representation of modeled plant physiology and biogeochemical processes; iii)
The models have better performance over boreal and Arctic tundra sites than
temperate and tropical sites, as temperature become less dominating in control-
ling FCH4 variability for those wetland types.

2 Materials and Methods

We used data from 23 freshwater wetland sites included in the FLUXNET-CH4
Community Product (Delwiche et al., 2021) to evaluate seven wetland CH4
models from the Global Carbon Project (GCP) Methane Budget (Saunois et
al., 2020; Stavert et al., 2021). The model simulations follow a common sim-
ulation protocol using a gridded climate dataset from Climate Research Unit
(CRU/CRU-JRA; CRU-JRA is a 6-hourly interpolated climate dataset from
Japanese Reanalysis data; JRA, that is aligned with CRU on the monthly ba-
sis) as the inputs. The applied eddy covariance (EC) sites have a total of 70
site-years of data classified as boreal forest/taiga (n=25), Arctic tundra (n=15),
temperate (n=25), and tropical/subtropical (n=5). We take into account the
flux measurement errors in identifying model-data disagreements with observa-
tions by assessing the contribution of flux-tower observations error via a Monte
Carlo approach.

2.1 FLUXNET- CH4

Twenty-three sites from the FLUXNET-CH4 database were selected for the
analysis (Table 1; Figure 2) based on three criteria: (1) the tidal, upland, and
agricultural sites were excluded from the analysis as the models only simulate
natural inland freshwater wetland CH4 fluxes; (2) All seven models must have
at least one complete site-year of results at the selected sites; and (3) Restored
freshwater wetlands at later stages of wetland development (> 10 years) were
included in the analysis.
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Figure 2. Locations of eddy covariance sites from FLUXNET-CH4 in this
study, with sites colored by wetland types. The variable size of dots in the
map corresponds to the sample size (i.e., number of site-years) with a larger dot
indicating a higher sample size. Base map used came from https://hub.arcgis
.com/datasets/esri::world-countries.

In order to match the broad definition of freshwater wetlands in the models,
the selection of EC sites is regrouped to represent a broad wetland/biome type
along a latitudinal gradient. The original freshwater wetland types were clas-
sified into bog, fen, marsh, swamp, rice paddy, and drained wetland based on
site-specific literature (Delwiche et al., 2021). The biome types (Arctic tundra,
boreal forest/taiga, temperate, and tropical/subtropical), were defined based
upon Olson et al. (2001) using site coordinates and vegetation types to group
wetland sites. Since continuous wavelet decomposition requires a gap-free time
series, we used gap-filled data from the FLUXNET-CH4 database. Details on
data standardization, gap-filling, and partitioning are described in Knox et al.
(2019) and Delwiche et al. (2021). Gaps in CH4 fluxes were filled using artificial
neural networks (ANN) as described in Knox et al. (2019). An estimate of CH4
flux observation error at every time step was generated, accounting for uncer-
tainties associated with the gap-filling process and random measurement errors.
These uncertainties are incorporated in the spectral null model, as described in
the spectral analysis (Section 2.3).

2.2. Wetland FCH4 models

Our study applies seven global wetland CH4 models from the Global Carbon
Project Methane Budget activities (Saunois et al., 2020). The details about
the structure and configurations of the wetland CH4 models can be found in
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Table 2. All the models were run to steady-state using their own parameters
and no site-specific tunings were done. Ancillary data such as soil texture and
CH4-related parameter sets were used as model-specific inputs (Table 2). Thus
the assumptions about the local environment at each site depended on the in-
dividual model’s setup. The models were run at the global scale at their native
spatial resolution following a prescribed protocol to facilitate intercomparison.
The models were run at the grid cell level using the CRU-JRA 6-hourly, land
surface, gridded climate dataset, which was constructed by combining the Cli-
mate Research Unit (CRU) dataset and the reanalysis from Japanese Reanalysis
data (JRA) produced by the Japanese Meteorological Agency (JMA). The CRU-
JRA was adjusted where possible to align with the monthly climate dataset CRU
(version ts3.26) data. One exception to the use of climate inputs is the LPJ-wsl
model, which uses the monthly CRU dataset, and a weather generator within
the model to produce precipitation events and daily temperature. Here we eval-
uate the wetland FCH4 strength (Unit: gCH4 m-2 day-1), which was defined as
the total flux over a 24 hour period over a standardized wetland area (m2), to
excluding the effect of extent of inundation in the FCH4 calculation.

The wetland CH4 models can be generally described as a set of functions de-
scribing the biogeochemical processes that control CH4 production and oxi-
dation through methanogenesis and methanotrophy, and the biophysical pro-
cesses that regulate CH4 transport from the soil to the atmosphere (Table 2).
Methanogenesis in the models is linked to different proxies (e.g., carbon sub-
strate, heterotrophic respiration, net primary production) with a wide range
of model complexity - more sophisticated models include wetland Plant Func-
tional Types (PFTs) and explicitly simulate the processes of CH4 production,
consumption, and transport, while the simplified models use generalized empir-
ical equations to simulate net flux without considering individual components
of methane flux. The more complex model structure could offer capacity to
capture the important temporal patterns of CH4 fluxes but this invariably leads
to additional extra parameter uncertainty due to the scarcity of observational
constraints. The response function of CH4 dynamics to temperature in each
model is another factor that influences the simulated time series of CH4 fluxes.
For example, for high-latitude wetlands, model representations of freeze-thaw
cycles influence the performance in capturing FCH4 during the earlier thawing
season and zero-curtain period (D. Zona et al., 2016).

2.3 Evaluation strategy and wavelet analyses

This analysis focused on the comparison of observed and simulated FCH4. All
analyses were conducted using daily time series. Since the modeled carbon fluxes
are not directly comparable to the eddy covariance measurements due to the
spatial mismatch between modeled gridded fluxes and site-level observations,
we evaluate simulated FCH4 by calculating the normalized residual error (NRE,
�s,m,t) between normalized model and observation as:
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(1)

Where the subscripts denote site (s), model (m), and time (t) and the overbar
denotes the average over the full length of the time series. The model and
observation results were mean-centered to eliminate biases in the net flux, and
divided by the standard deviation (�) across the entire record to normalize the
amplitude of variability. This NRE metric can be used to compare the synchrony
of the model with the observation rather than evaluating absolute model biases.

We applied wavelet analysis to decompose the FCH4 time series into an addi-
tive series of wave functions that have time scales of variability from 2 to 124
days. Wavelet analysis can identify the time scales that dominate a signal be-
cause wave functions that best match the fluctuations in the data will explain
the most variance (i.e., power). Specifically, we used the continuous wavelet
transform because of its ability to translate a time series into the frequency
domain and its suitability for visual interpretation. The ability to discern small
intervals of scales (i.e., spectral resolution) depends on the choice of the mother
wavelet function. For this, we applied the widely Morlet wavelet, a complex
non-orthogonal wavelet that has been widely used for geophysical applications
(Torrence & Compo, 1998) and biometeorological measurements (Meyers et al.,
1993). Following a similar definition from Knox et al., (2021), time scales of vari-
ation were classified into four bands, ‘multiday scale’ (2 to 5 days), ‘weekly scale’
(5 to 15 days), ‘monthly scale’ (15 to 42 days), and the ‘seasonal scale (> 42
days). The four bands were then summarized on both a by-site and by-model
basis regarding the relative contribution of each band to the overall spectra.
The continuous wavelet decomposition was computed using the Morlet wavelet
basis function (function name: wt) from the R package ‘biwavelet’ (Gouhier et
al., 2021). We use the bias-corrected wavelet power following Liu et al., (2007)
to ensure a consistent definition of power in order to enable comparisons across
spectral peaks. Wavelet power spectra on very long timescales (> 64 days) often
exceed the so-called cone-of-influence (COI) beyond which edge effects become
important due to incomplete time locality across frequencies. Therefore, the
power spectra outside of COI will not be interpreted here.

An appropriate null model is important to determine whether the model-
observation disagreement is statistically significant. We applied a similar
approach to that of Dietze et al., (2011) to generate 1000 sets of ‘pseudo’ time
series for each site using a Monte Carlo approach. The NRE between the
pseudo time series and the original data and the wavelet spectra of the NRE
were calculated in the same way as the model errors. The 1000 replicates of
pseudo time series were generated with the uncertainties estimated by Knox
et al. (2019) accounting for both uncertainties in the ANN-based gap-filling
algorithm and measurement uncertainty. Systematic errors due to represen-
tativeness (Chu et al., 2021; Pallandt et al., 2021), lack of nocturnal mixing,
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sub-mesoscale circulations, and other factors are not discussed here (Baldocchi,
2014; Peltola et al., 2015). We assume that the FCH4 flux errors follow a double
exponential distribution (Knox et al., 2019), which has a fatter tail than normal
and is highly heteroscedastic, with error increasing linearly with the absolute
magnitude of the flux, similar to CO2 flux errors as suggested by previous
studies (Hollinger & Richardson, 2005; Lasslop et al., 2008; Richardson et al.,
2006, 2008). Also note that, because the uncertainty from ANN estimation
was strongly linked to the sample size, the flux errors tended to be high during
the non-growing season when the measurement availability was limited by local
meteorological conditions such as the snow presence and soil freeze and thaw
cycles.

The wavelet spectra were evaluated in the following ways:

• Significant spectra regions. The significant region was defined by count-
ing the total number of area in the time-frequency distribution where the
spectral characteristics of FCH4 and model-data mismatch were statisti-
cally significant. It was calculated by re-coding significant power as 1 and
non-significant power as 0 and then stacking all site-years to count the
total number.

• Marginal distribution of power spectrum of the NRE. The disagreements
in the marginal power spectra were aggregated by the four defined time
bands to summarize model performance across different time scales.

• Scaling exponent � for each model was calculated to explore the spectral
noise properties. Scaling exponent � was expressed as the slope of the
log-log transformed relationship between frequency (i.e. time scale) and
power. The scaling exponent � with a range between 1-2 was considered
as intermediate ‘pink’ noise between ‘white’ and ‘red’ noise. White or
red noise indicated that if the modeled FCH4 had a persistent memory
effect (i.e., autocorrelation structure) that can be attributed to model
error which resulted in larger and long-lived systematic biases at larger
time scales.

One-way ANOVA was used to diagnose the relationship between model struc-
ture and the marginal distribution of spectra power for wetland types. The
models were grouped by different structures (Table S1) to identify if there were
significant differences (p < 0.001) between model groups.

3 Results

3.1 Wavelet decomposition of FCH4 time series from LPJ-wsl at an example site

Figure 3 shows the time series of FCH4 from the observations and one model
(LPJ-wsl) and demonstrates its wavelet-based power spectra at one marsh site
(US-WPT) in the central U.S. (Chu et al., 2015). We use this example to explain
the Monte Carlo analysis with pseudo-data and discuss the model-observation
disagreement in more detail. Figure 3a shows that FCH4 simulated by the LPJ-
wsl model generally captured the seasonal cycle, but with a lower magnitude at
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the freshwater marsh site. The model also captured a dip in FCH4 after the
peak during the growing season, which is consistent with the observed temporal
pattern. Figure 3b suggests that the temporal patterns of normalized FCH4
between the model and observations have a good agreement (r=0.83, p < 0.05).
The relatively high uncertainty in the observed FCH4 at the beginning of 2011
is mainly due to the limited number of observations, which causes higher un-
certainty in the gap-filling method. This example shows that the discrepancies
between the modeled and observed FCH4, and the NRE uncertainty range from
the null model, tend to be higher during the growing season when the flux in-
tensity is relatively high and highly variable, or when the data availability is
limited (Figure 3c).
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Figure 3. Example of wavelet decomposition and identification of the LPJ-wsl
model error with eddy covariance (EC) observations at the US-WPT site for
2011-2013. (a) Time series of observations (Obs) methane flux (FCH4, red
line) with 1-� observational uncertainty (shaded red area) and LPJ-wsl modeled
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FCH4 (Model, blue line). (b) Normalized time series of FCH4 from model and
observations; the shaded area in red represents the upper and lower range of
the normalized pseudo time series from the Monte Carlo simulations. (c) Time
series of normalized residual error ( Z score of NRE) between wetland model and
observations, with shaded area in red representing NRE between observations
and normalized pseudo time series, i.e. NULL model. (d) Wavelet coefficients
displayed in the wavelet half-plane for the normalized observations, (e) same as
(d) but for LPJ-wsl modeled FCH4 (Model), (f) NRE between model and the
observations.

Both the observation and the model show significant power spectra during the
growing seasons (Figure 3d and e). The modeled FCH4 have a longer range of
dominant time scale from 2-64 days than the observed 2-8 days. The modeled
FCH4 has weaker spectral powers (colors towards blue) during the non-growing
season, indicating that the model may have less variability than the observations
during the non-growing seasons (Figure 3d and e). It is important to note that
the power spectra of the normalized residual error are not the difference between
the wavelet coefficients displayed in Figure 3d and Figure 3e.

The wavelet plot for the NRE suggests the largest discrepancies is mostly from
the growing seasons, reflected as strong spectral power in the wavelet NRE (Fig-
ure 3f). It is encouraging that there is a degree of correspondence between the
model and observations: 1) the mismatch between model and observations is
not significant at the long time scale (> 32 days) except for 2013 when there are
strong anomaly in observed FCH4 during the late growing season; 2) the wavelet
coefficients in NRE have a low magnitude during the non-growing seasons, sug-
gesting a less important role of the non-growing season fluxes at US-WPT. It is
also worth noting that the observed FCH4 has much higher year-to-year varia-
tions than the modeled fluxes, which is partly due to the strong influence of local
environmental conditions on the measured seasonal cycle that are not captured
by the model.

3.2 Evaluation of LPJ-wsl at the example site

Measurement-model discrepancies in LPJ-wsl at the US-WPT site were high-
est at daily to weekly scales. The significant regions (Figure 4) show that the
measurements identify significant regions at high frequency (i.e., multi-day to
weekly scales) while LPJ-wsl displays significant regions in the whole range of
frequencies with more areas at the mid-to-low frequency (i.e., monthly to sea-
sonal scales). LPJ-wsl tends to underestimate the time span of FCH4 pulses at a
high frequency, with strong pulse emission only occurring in late July, indicating
less variability in the modeled FCH4 during the growing season. Regarding the
disagreement between model and observations, most of the significant regions
are in the multi-day to weekly scales, suggesting the model failed to capture the
flux variability at these time scales. The discrepancy in FCH4 only occurs in the
growing season from May to August while it is negligible during the non-growing
seasons, when FCH4 are small while uncertainty is proportionally large.
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Figure 4. Wavelet evaluation of FCH4 for the LPJ-wsl model against 3 site-year
observations (2011-2013) at US-WPT site. (a) Count of significant power in the
time-frequency domain for the time series of FCH4 observations. (b) same as (a)
but for LPJ-wsl modeled FCH4. (c) Count of significant power of normalized
residual errors (NRE) between model and observations. (d) Marginal distri-
bution of power spectra of NRE as compared to the null spectra (99% of CI,
solid black line) based on measurement uncertainties for each year 2011, 2012,
and 2013 (red, blue, green lines, respectively). (e) The marginal distribution of
power spectra of NRE divided by the maximum of the null spectra (NULL) on
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a log scale. Values greater than 0 (dotted line) indicate that the model error has
significantly more spectral power at those time scales than would be expected
based on observation error.

Figure 4d provides an example of the model and observation mismatch in the
global power spectrum for LPJ-wsl and observed FCH4 at US-WPT in each
year separately. Figure 4d is the marginal distribution of the full error spec-
trum by site-year in Figure 3f, in comparison to the maximum of the spectra
of observation error from the Monte Carlo estimates. Here we choose a 99%
confidence interval (CI) to define the criteria because, unlike CO2, FCH4 is
highly spatially heterogeneous and has much higher year-to-year variability. To
facilitate the comparison, we divided the model-data error spectra by the 99%
CI of the observation error spectra for each time scale (Figure 4e). Any time
scale that falls above the horizontal line (>1) indicates a model residual error
that is ‘significantly’ higher than the uncertainty in the observations. The error
of the model is constantly increasing with time-scale, while the random uncer-
tainties in FCH4 are declining with time-scale with the highest uncertainties at
multi-day scales. Here the estimate of the scaling exponent � for the LPJ-wsl
model at US-WPT sites ranged from 1.5-1.7, suggesting a moderate correlation
structure (i.e., pink noise).

3.3 Significant regions of NRE between the models and data

Next, we present the significant regions of model-data mismatches for all 23
sites and all seven models (Figure 5). Our results suggest that the models
have diverse performance with the largest mismatch occuring at the short times
scales (5-15 day). For most of the models, the significant mismatch is lower
during monthly or seasonal time scales. This pattern confirms the hypothe-
sis that the models generally have better performance in simulating the flux
variability at longer time scales than at short-to-intermediate time scales. The
increases in significant mismatch at the lowest frequency time scale (> 64 days)
are mainly due to the edge effect, reflecting the limited length of the time se-
ries (365 days for a site–year) rather than a confirmation of model performance
at capturing fluxes at the time scale. Across the wetland models there are di-
verse patterns of significant regions in FCH4, most of which are different from
the observation-based patterns, suggesting that there are significant discrepan-
cies between model structures and observed process controls (Figure S1). The
observation-based patterns suggest that most of the significant high power is
concentrated within the time scale less than 7 days during the growing season
(wet season for tropical sites), while the models tend to have relatively high
power at a lower frequency (time scale larger than 14 days) at different time
periods of the year dependeding on different model structure.
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Figure 5. Significant model-observation disagreement along with time scales
for all sites by biomes, represented by the marginal distribution of significant
regions of NRE. High values of the significant region indicate high tendency of
model-observation mismatch and vice versa. The significant region is defined as
the areas where the wavelet power spectrum is statistically significant (95% CI).
The marginal distribution of significant regions is then calculated by stacking
all site-year to count the significant power in the time-frequency domain.

The comparison of significant regions in model-data mismatch suggests that the
models have varying behavior on different wetland types (Figure 5). The ma-
jority of models show broadly consistent patterns of significant mismatch across
time-scales for the boreal forest and temperate regions. In contrast, the pat-
terns for tropical and subtropical wetland types is diverse among the wetland
models. Note that the small sample size of tropical/subtropical wetlands in our
study also has an impact on the representativeness of site-level observations.
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The significant regions for boreal forest and Arctic tundra regions show high
power during the growing seasons (Figure S2), indicating a consistent dominant
control (likely temperature) in the models for these wetlands as suggested by
recent studies (Irvin et al., 2021; Knox et al., 2021). For tropical/subtropical
wetlands, the significant regions in NRE are spread over all time-scales with di-
verse patterns across the models, indicating the causes of mismatch with models
differ as temperature becomes less dominant in controlling FCH4 variability and
other processes become more important.

3.4 Global Model spectra

We explored the model error patterns by calculating the scaling factor � for each
model. When considering the observation error in the flux data (the null model
is calculated the same way as in Figure 4e), the spectral analysis of the NRE
suggests the model errors approximate pink noise patterns for all the wetland
models, with the mean scaling exponent � of the model estimates ranging from
1.1 to 1.6 for different wetland types (Figure 6). The mean scaling exponent for
the boreal forest and Arctic tundra regions (1.1-1.3) was generally lower than
that for temperate and tropical regions (1.5-1.6), suggesting the wetland model
performance for the temperate and tropical/subtropical regions generally has a
longer memory effect (i.e., high tendency for greater persistence of model error)
than wetlands in high latitudes. All the models show an increase in error at
the longer time scales (monthly to seasonal) and the greatest variability across
models at short time scales. The low spectral error at shorter time scales is
partly due to the significant structure of the observations, which is from the
noise in the data. There was a tendency for the spectral error of some models
to exhibit greater persistence than other models. For example, even though
the LPJ-wsl model shows relatively low error compared to the other models for
boreal and temperate wetlands, the scaling exponents � of LPJ-wsl (1.8 and 1.6
respectively) are higher than most of the other models, suggesting that LPJ-
wsl model error tends to have a larger memory effect. For the temperate and
tropical wetlands, all the models show similar scaling exponents � regardless of
model structure, indicating the similarity of model behaviors in environmental
controls for these wetlands.
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Figure 6. Model performance along time scales with a consideration of uncer-
tainty in observations, reflected by the comparison of model error spectra to the
null spectra. The power spectra (Power) are divided by the upper confidence
interval of the null (NULL) model (99% quantile) based on logged observations,
following the same calculation as Fig. 4e. A model error spectrum greater than
0 (horizontal black line) indicates more significant spectral power at these time
scales.

4 Discussion and Conclusions

Our initial hypothesis was that models would perform well at monthly and
seasonal time scales because the biogeochemical processes at these time scales
are largely driven by solar radiation cycles and corresponding changes in soil
temperature. Our results support this hypothesis for Arctic tundra and boreal
wetland types where the variations of temperature are the dominant control of
FCH4 (Knox et al., 2021). However, in contrast to our expectations, the mod-
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els have difficulty capturing variability at monthly and seasonal time scales for
temperate and tropical wetlands, where other environmental controls emerge.
Considering that the precipitation-driven variables such as water table depth
are significantly correlated with the seasonal cycle of FCH4 at the site level for
temperate and tropical sites (Knox et al., 2021), the lower agreements between
model and data may be partly caused by discrepancies in precipitation between
gridded climate datasets and site-level meteorological conditions. The models
also lack representation of hydrological processes at a scale fine enough to re-
flect the lateral flow from uplands to lowlands and its influence on the water
dynamics. The distribution of model wavelet spectra (Figure S1) on visual in-
spection appears very different from the site-level measurements, indicating that
the models’ structures need to better capture variability at short to intermedi-
ate time scales (e.g., multi-day to weekly). This finding indicates that current
models may have a biased seasonal cycle over temperate and tropical wetlands,
as suggested by a few recent regional studies (Lunt et al., 2019; Maasakkers et
al., 2021; Yu et al., 2021).

Our analysis further reveals important characteristics in the time series of model
errors, which indicates that the errors at short time scales have a memory effect
on biases at long time scales. These results suggest that further model develop-
ment should focus first on correctly replicating flux variability and magnitude at
short time scales. Investigations into modeled FCH4 spectra (Figure S1) suggest
that in general models are not variable enough over the year and tend to smooth
over multi-day scale variability. One reason is likely that other environmental
variables (e.g., vapor pressure deficit, atmospheric pressure) that regulate FCH4
variability at short time scales (Stoy et al., 2005) are not included in the model
inputs. Despite of this, many of the models predict a strong pulse in variabil-
ity during a short time period, especially for the growing season, which causes
significant errors at long time scales (Figure S2). This pattern has not been
observed by the EC measurements, indicating shared model errors due to the
meteorological forcing among models and/or due to missing processes arising
from limited understanding of wetland ecosystem dynamics (Neumann et al.,
2019; D. Zona et al., 2016).

The spectral properties of the model errors along with time scales (Figure 6)
indicates that the model structure has an impact on FCH4 variability, and dif-
ferent groups of models that share similar structure tend to have lower errors
propagated from short time scales to high time scales. The ANOVA analysis
(Table 3) suggests that the explicit representation of wetland plant functional
types (PFTs), CH4 component fluxes, and wetland production proxies is sig-
nificantly associated with variance for boreal and Arctic tundra wetland FCH4
prediction, with a modest and inconsistent effect for temperate and tropical
wetlands. The effects of including the nitrogen cycle, fire, and spatial resolution
of grid cells were non-significant for most of the time scales. In addition, CH4
transport through aerenchyma and stomata, which is linked to photosynthesis,
and other processes such as ventilation in aerenchymatous vegetation with in-
fluence from latent heat are critical for models to capture the variability at the
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diel scale (Knox et al., 2021). Unfortunately, we did not have sub-daily FCH4
model predictions nor were they driven by site-level meteorological forcings, so
we could not evaluate whether representation of processes at the diel scale has
an impact on model performance at intermediate scales.

The ranking of model performance across different time scales suggests that
no model outperforms others at all time scales (Figure 7). Given different bio-
geochemical structures and parameterizations, the analysis suggests inclusion
of representation of some key processes in wetland models and proper parame-
terizations are the basis for improving model performance. However, complex
model structure does not guarantee superior model performance, which high-
lights the importance of properly parameterizing processes at a certain time
scale. For instance, models with explicit CH4 components and multiple wet-
land PFTs could perform worse than simple models at some time scales, which
is likely due to increased uncertainty from parameterization due to poor ob-
servational constraints. A further diagnosis of what environmental and biotic
parameters impact the agreement with EC measurements is needed for a better
choice of parameter values in representing the realistic temporal variability of
FCH4.
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Figure 7. Heat map showing model error by time scales for different wetland
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types. All of the model errors per time scale are normalized to 1-100 with the
value of highest model error equal to 100 and lowest to 1. Light yellow and
red represent the lowest and highest errors, respectively. The time scales are
defined as ‘Multiday ’ (2 to 5 days), ‘Weekly’ (5 to 15 days), ‘Monthly’ (15 to
42 days), and ‘Seasonal scale (> 42 days).

There are a few limitations in the observations affecting our model evaluation.
First, the length of observed time series is limited across sites with few sites
having more than 5-year records. Unlike CO2, measurements of CH4 are only
beginning to cover multiple-year records and thus the EC tower records are
not long enough to assess the model’s performance in capturing annual and in-
terannual variability. For spectral methods, the short records are particularly
problematic for longer sub-annual time scales (e.g., seasonal) due to edge effects
on the amount of usable data. Given that the wetland model results at annual
and interannual time scales are particularly of interest to the global methane
budget, having long-term records of measurements is importan for an evaluation
of model performance at longer time scales. Second, the model-site compar-
isons are statistically challenging as the model-site-year combinations are not
randomly distributed but rather depend on the performance at a few sites given
the reality of unevenly distributed EC wetland sites. Both undoubtedly have
the potential to introduce biases in statistical interpretation and thus influence
model score. For instance, the evaluation of model performance for temperate
wetlands is strongly affected by model simulations at one Marsh site US-TW1
in the United States, which is a restored wetland that contributes ~ 28% (n=7
site-years) of the total site-years for temperate wetlands. US-TW1 has a water
table height managed at ~ 25 cm above the soil (Oikawa et al., 2017), which in-
fluences the temporal pattern of FCH4 via hydrological control and thus model
evaluations. All of the limitations indicate a critical need for more detailed
evaluation of model performance at site-level and long-term measurements for
underrepresented regions.

One of the important aspects of this analysis is that it is possible that the model
performance was underestimated due to the limitation in estimating observation
uncertainty and due to potential spatial mismatch between models and EC
observations. Although we calculated the spectral uncertainty with the inclusion
of observational errors in the evaluation across time scales, the interpretation
of whether model errors falls outside the acceptable range is strongly influenced
by the uncertainty of FCH4 observations. The default gap-filling methods such
as ANN-based estimates for observational uncertainty appear to be overly tight
across all sites as suggested by a recent study (Irvin et al., 2021), indicating
that actual observation error is higher than the estimates in our study. In
addition, on top of the uncertainty of all the measurements, there is uncertainty
originating from a mismatch between the footprints of the individual towers
that are usually <1 km2 and the size of gridded pixels that are often 0.5 degrees
or larger. This footprint mismatch introduces additional noise.

Our study evaluated seven global-scale wetland models from the Global Carbon
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Project Methane Assessment against eddy covariance CH4 flux measurements
from the FLUXNET-CH4 dataset in the time-frequency domain. This anal-
ysis helped to identify model errors in variability across different time scales
and provided guidelines for further wetland model developments. Further de-
tailed intercomparison of model structure and parameterizations is needed to
diagnose model structural and parameterization errors. In particular, a more
advanced intercomparison protocol would help distinguish structural and param-
eterization limitations by 1) testing multiple parmeterization schemes for major
wetland processes (e.g. methane production rate and transport); 2) running the
models with FLUXNET-CH4 meteorological forcing inputs and local site infor-
mation such as slope,drainage, and vegetation characteristics; and 3) including
longer-term records and spatially representative observations with full uncer-
tainty characterization from EC tower measurements. Future intercomparison
of wetland methane models would improve understanding of the role of wetland
emissions in the variations of atmospheric CH4 concentration during the past
decades and future projections.
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Table 1. Summary of site characteristics.
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Site
ID

Country Latitude LongtiudeBiome
type

Wetland
type

Start
year

End
year

Data
refer-
ence

BR-
NPW

Brazil Tropical/
Subtropical

Seasonal (Dalmagro
et al.,
2019)

CA-
SCB

Canada Boreal
forest

Bog (Sonnentag
& Hel-
big,
2020)

FI-
LOM

Finland Boreal
forest

Fen (Lohila
et al.,
2020)

MY-
MLM

Malaysia Tropical/
Subtropical

Swamp (Wong
et al.,
2020)

RU-
VRK

Russia Arctic
tun-
dra

Wet
Tun-
dra

(Friborg
&
Shur-
pali,
2020)

SE-
DEG

Sweden Boreal
forest

Fen (Nilsson
& Pe-
ichl,
2020)

SE-
ST1

Sweden Arctic
tun-
dra

Fen (Jansen
et al.,
2020)

SE-
STO

Sweden Arctic
tun-
dra

Bog (Jansen
et al.,
2020)

US-
ATQ

USA Arctic
tun-
dra

Wet
Tun-
dra

(Zona
&
Oechel,
2020)

US-
BZB

USA Boreal
forest

Bog (Euskirchen
&
Edgar,
2020)

US-
BZF

USA Boreal
forest

Fen (Euskirchen,
2022a)

US-
BZS

USA Boreal
forest

Swamp (Euskirchen,
2022b)
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US-
EML

USA Arctic
tun-
dra

Bog (Schuur,
2020)

US-
ICS

USA Arctic
tun-
dra

Wet
Tun-
dra

(Euskirchen
et al.,
2020)

US-
IVO

USA Arctic
tun-
dra

Wet
Tun-
dra

(Zona
&
Oechel,
2020b)

US-
LOS

USA TemperateFen (Desai
&
Thom,
2020)

US-
ORV

USA TemperateMarsh (Bohrer
&
Morin,
2020)

US-
OWC

USA TemperateMarsh (Bohrer
&
Morin,
2020)

US-
SNE

USA TemperateMarsh (Shortt
et al.,
2020)

US-
SRR

USA TemperateSalt
Marsh

(Windham-
Myers
et al.,
2020)

US-
TW1

USA TemperateMarsh (Valach
et al.,
2020)

US-
UAF

USA Boreal
forest

Bog (Iwata
et al.,
2020)

US-
WPT

USA TemperateMarsh (Chen
&
Chu,
2020)

Table 2. Summary of Model Characteristics

Model Wetland PFT Components of CH4 Flux Temperature Response Functions CH4 Production Proxy Nitrogen Cycles Fire Spatial Resolution Forcing Time Step Reference
CLASSIC No wetland-specific PFTs Net flux Indirectly through Rh (see Section A3.2 in Melton and Arora 2016 Rh is scaled to account for CH4 vs. CO2 emitted and differences in upland vs. lowland Rh No Yes T63 (~2.8) 30 minutes (Arora et al., 2018; Melton & Arora, 2016)
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ELM No wetland-specific PFTs gross production; gross consumption; oxidation; diffusive, aerenchyma, and ebullition fluxes Q10 based on soil T in each soil layer Rh in each soil layer is scaled to estimate CH4 production Yes Yes ~2° 6-Hourly (Riley et al., 2011; Xu et al., 2016)
JSBACH-HIMMELI Generic wetland PFT with C3 grass parameters for vegetation net wetland soil CH4 flux Layered soil temperature, different temperature responses for production, consumption, diffusion CH4 production depends on anoxic respiration produced by YASSO soil carbon model modified to account for anoxic conditions and coupled to JSBACH No No 1.875° Daily (Raivonen et al., 2017)
LPJ-wsl No wetland-specific PFTs net flux Soil temperatue calculation in LPJ is 12 layers scheme following Wania et al., (2009). Daily average soil temperature for 0-50 cm depth is used for CH4 function. Rh No Yes 0.5 Monthly (Zhang et al., 2016, 2018)
LPJ-GUESS High-latitude (> 40°N): Wetland grass, cushion forbs, lichens, sphagnum moss. South of 40°N: C3 and C4 grasses only on wetlands Net and gross emissions are simulated for high-latitude (> 40°N) ecosystems, where CH4 is released through diffusion, plant-mediated, and ebullition pathways. South of 40°N: net emissions only based on a simple rescaling of heterotrophic respiration. CH4 production depends on soil temperature in each 10 cm soil layer, the degree of anoxia and the availability of substrate that consists of a fraction of litter and soil carbon decomposition Yes No, not on wetlands 0.5 Monthly, interpolated to quasi-daily values (McGuire et al., 2012; Wania et al., 2009, 2010)
TEM-MDM Five primary types of wetlands are considered in boreal, temperate and tropical regions (total 15 subtypes). They are forested bog, nonforested bog, forested swamp, nonforested swamp and alluvial formations gross production; gross consumption; net flux CH4 production is modeled as an anaerobic process that occurs in the saturated zone of the soil profile, controlled by methanogenic substrate availability, soil temperatures, PH, and redox potential. Yes No 0.5 Daily (Liu et al., 2020; Zhuang et al., 2004; Zhuang et al., 2013)
TRIPLEX-GHG a general wetland PFT was added without considering specific wetland plants type net flux Soil temperature factor was evaluated with and exponential function that considering soil temperature and optimum soil temperature for CH4 production. The Q10 in the temperature function for CH4 production and CH4 oxidation could be calibrated separately. Yes No 0.5 Daily (Zhu et al., 2015)

Table 3. The p values of ANOVA analysis for the impact of model structure
on the spectral power for different wetland types within each of the four-time
scales. ns: non significant.

Wetland Type Time scale Wetland PFT Component of CH4 flux CH4 production proxy Incorporation of Nitrogen Cycles Fire Spatial resolution
Boreal forest Multiday <0.001 <0.001 <0.001 <0.001 0.043 ns

Weekly <0.001 <0.001 <0.001 <0.001 <0.001 ns
Monthly <0.001 <0.001 <0.001 <0.001 <0.001 ns
Seasonal <0.001 <0.001 ns ns <0.001 ns

Arctic tundra Multiday <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Weekly <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Monthly <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Seasonal <0.001 <0.001 <0.001 ns 0.002 0.08

Temperate Multiday <0.001 <0.001 ns <0.001 <0.001 <0.001
Weekly <0.001 <0.001 ns ns 0.004 0.003
Monthly <0.001 0.002 ns 0.018 0.003 0.002
Seasonal ns ns 0.001 0.007 <0.001 <0.001

Tropical/subtropical Multiday <0.001 <0.001 <0.001 ns ns 0.055
Weekly <0.001 ns ns ns ns 0.061
Monthly <0.001 ns ns ns <0.001 0.019
Seasonal <0.001 ns ns ns <0.001 0.002
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