Author contributions
Conceptualization: Alvise Finotello, Davide Tognin, Andrea D’Alpaos,
Luca Carniello;
Methodology: Alvise Finotello, Davide Tognin, Andrea D’Alpaos, Luca
Carniello;
Formal analysis and investigation: Alvise Finotello, Davide Tognin;
Figures: Davide Tognin;
Writing - original draft preparation: Alvise Finotello, Davide Tognin;
Writing - review and editing: all authors;
Funding acquisition: Andrea D’Alpaos, Luca Carniello, Enrico Bertuzzo;
Resources: Andrea D’Alpaos, Luca Carniello, Enrico Bertuzzo,
Massimiliano Ghinassi;
Supervision: Andrea D’Alpaos, Luca Carniello, Enrico Bertuzzo.
Open Research
All data needed to evaluate the results presented in the paper can be
found at http://researchdata.cab.unipd.it/id/eprint/646.
Meteorological data for the Venice Lagoon are also freely available at
www.comune.venezia.it/content/dati-dalle-stazioni-rilevamento
and
www.venezia.isprambiente.it/rete-meteo-mareografica.
References
Amos, C. L., Umgiesser, G., Tosi, L., & Townend, I. H. (2010). The
coastal morphodynamics of Venice lagoon, Italy: An introduction.Continental Shelf Research , 30 (8), 837–846.
https://doi.org/10.1016/j.csr.2010.01.014
Aubrey, D. G., & Speer, P. E. (1985). A study of non-linear tidal
propagation in shallow inlet/estuarine systems Part I: Observations.Estuarine, Coastal and Shelf Science , 21 (2), 185–205.
https://doi.org/https://doi.org/10.1016/0272-7714(85)90096-4
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C.,
& Silliman, B. R. (2011). The value of estuarine and coastal ecosystem
services. Ecological Monographs , 81 (2), 169–193.
https://doi.org/10.1890/10-1510.1
Bertness, M. D., & Ewanchuk, P. J. (2002). Latitudinal and
climate-driven variation in the strength and nature of biological
interactions in New England salt marshes. Oecologia ,132 (3), 392–401. https://doi.org/10.1007/s00442-002-0972-y
Boothroyd, J. C., Friedrich, N. E., & McGinn, S. R. (1985). Geology of
microtidal coastal lagoons: Rhode Island. Marine Geology ,63 (1), 35–76.
https://doi.org/https://doi.org/10.1016/0025-3227(85)90079-9
Carbognin, L., Teatini, P., & Tosi, L. (2004). Eustacy and land
subsidence in the Venice Lagoon at the beginning of the new millennium.Journal of Marine Systems , 51 (1-4 SPEC. ISS.), 345–353.
https://doi.org/10.1016/j.jmarsys.2004.05.021
Carniello, L., Defina, A., Fagherazzi, S., & D’Alpaos, L. (2005). A
combined wind wave-tidal model for the Venice lagoon, Italy.Journal of Geophysical Research: Earth Surface , 110 (4),
1–15. https://doi.org/10.1029/2004JF000232
Carniello, L., D’Alpaos, L., Defina, A., & Fagherazzi, S. (2007). A
conceptual model for the long term evolution of tidal flats in the
Venice lagoon. River, Coastal and Estuarine Morphodynamics ,
137–144.
Carniello, L., Defina, A., & D’Alpaos, L. (2009). Morphological
evolution of the Venice lagoon: Evidence from the past and trend for the
future. Journal of Geophysical Research: Earth Surface ,114 (4), 1–10. https://doi.org/10.1029/2008JF001157
Carniello, L., D’Alpaos, A., & Defina, A. (2011). Modeling wind waves
and tidal flows in shallow micro-tidal basins. Estuarine, Coastal
and Shelf Science , 92 (2), 263–276.
https://doi.org/10.1016/j.ecss.2011.01.001
Carniello, L., Defina, A., D’Alpaos, L., & D’Alpaos, L. (2012).
Modeling sand-mud transport induced by tidal currents and wind waves in
shallow microtidal basins: Application to the Venice Lagoon (Italy).Estuarine, Coastal and Shelf Science , 102 –103 ,
105–115. https://doi.org/10.1016/j.ecss.2012.03.016
Carniello, L., Silvestri, S., Marani, M., D’Alpaos, A., Volpe, V., &
Defina, A. (2014). Sediment dynamics in shallow tidal basins: In situ
observations, satellite retrievals, and numerical modeling in the Venice
Lagoon. Journal of Geophysical Research: Earth Surface ,119 (4), 802–815. https://doi.org/10.1002/2013JF003015
Carniello, L., D’Alpaos, A., Botter, G., & Rinaldo, A. (2016).
Statistical characterization of spatio-temporal sediment dynamics in the
Venice lagoon. Journal of Geophysical Research: Earth Surface ,121 (January), 1049–1064. https://doi.org/10.1002/2015JF003793
Carson, B., Ashley, G. M., Lennon, G. P., Weisman, R. N., Nadeau, J. E.,
Hall, M. J., et al. (1988). Hydrodynamics and sedimentation in a
back-barrier lagoon-salt marsh system, Great Sound, New Jersey — A
summary. Marine Geology , 82 (1), 123–132.
https://doi.org/https://doi.org/10.1016/0025-3227(88)90011-4
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003).
Global carbon sequestration in tidal, saline wetland soils. Global
Biogeochemical Cycles , 17 (4), 21–22.
https://doi.org/10.1029/2002gb001917
Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon,
B., et al. (1997). The value of the world’s ecosystem services and
natural capital. Nature , 387 (6630), 253–260.
https://doi.org/10.1038/387253a0
D’Alpaos, A., Lanzoni, S., Marani, M., & Rinaldo, A. (2007). Landscape
evolution in tidal embayments: Modeling the interplay of erosion,
sedimentation, and vegetation dynamics. Journal of Geophysical
Research: Earth Surface , 112 (1), 1–17.
https://doi.org/10.1029/2006JF000537
D’Alpaos, A., Carniello, L., & Rinaldo, A. (2013). Statistical
mechanics of wind wave-induced erosion in shallow tidal basins:
Inferences from the Venice Lagoon. Geophysical Research Letters ,40 (13), 3402–3407. https://doi.org/10.1002/grl.50666
D’Alpaos, C., & D’Alpaos, A. (2021). The Valuation of Ecosystem
Services in the Venice Lagoon: A Multicriteria Approach.Sustainability , 13 (17), 9485.
https://doi.org/10.3390/su13179485
D’Alpaos, L. (2010). Fatti e misfatti di idraulica lagunare. La
laguna di Venezia dalla diversione dei fiumi alle nuove opere delle
bocche di porto . Istituto Veneto di Scienze, Lettere e Arti .
Venice: Istituto Veneto di Scienze, Lettere ed Arti.
D’Alpaos, L., & Defina, A. (2007). Mathematical modeling of tidal
hydrodynamics in shallow lagoons: A review of open issues and
applications to the Venice lagoon. Computers and Geosciences ,33 (4), 476–496. https://doi.org/10.1016/j.cageo.2006.07.009
D’Alpaos, L., & Martini, P. (2005). The influence of the inlet
configuration on sediment loss in the Venice Lagoon. In C. A. Fletcher
& T. Spencer (Eds.), Flooding and Environmental Challanges for
Venice and its Lagoon: State of Knowledge (p. 691). Cambridge:
Cambridge University Press.
Deb, M., Abdolali, A., Kirby, J. T., Shi, F., Guiteras, S., & McDowell,
C. (2021). Sensitivity of tidal hydrodynamics to varying bathymetric
configurations in a multi-inlet rapidly eroding salt marsh system: A
numerical study. Earth Surface Processes and Landforms , (November
2021), 1157–1182. https://doi.org/10.1002/esp.5308
Defina, A. (2000). Two-dimensional shallow flow equations for partially
dry areas. Water Resources Research , 36 (11), 3251.
https://doi.org/10.1029/2000WR900167
Defina, A. (2003). Numerical experiments on bar growth. Water
Resources Research , 39 (4), 1–12.
https://doi.org/10.1029/2002WR001455
Defina, A., Carniello, L., Fagherazzi, S., & D’Alpaos, L. (2007).
Self-organization of shallow basins in tidal flats and salt marshes.Journal of Geophysical Research: Earth Surface , 112 (3),
1–11. https://doi.org/10.1029/2006JF000550
Donatelli, C. (2020). Large-Scale Effects Induced By Salt Marsh
And Seagrass Loss In Shallow Tidal Lagoons . Orphanet Journal of
Rare Diseases . Ph.D Dissertation. University of Liverpool.
https://doi.org/10.17638/03093180
Donatelli, C., Ganju, N. K., Zhang, X., Fagherazzi, S., & Leonardi, N.
(2018). Salt Marsh Loss Affects Tides and the Sediment Budget in Shallow
Bays. Journal of Geophysical Research: Earth Surface ,123 (10), 2647–2662. https://doi.org/10.1029/2018JF004617
Donatelli, C., Zhang, X., Ganju, N. K., Aretxabaleta, A. L., Fagherazzi,
S., & Leonardi, N. (2020). A nonlinear relationship between marsh size
and sediment trapping capacity compromises salt marshes’ stability.Geology , 48 (10), 966–970.
https://doi.org/10.1130/G47131.1
Donatelli, C., Kalra, T. S., Fagherazzi, S., Zhang, X., & Leonardi, N.
(2020). Dynamics of Marsh-Derived Sediments in Lagoon-Type Estuaries.Journal of Geophysical Research: Earth Surface , 125 (12).
https://doi.org/10.1029/2020JF005751
Dronkers, J. (1986). Tidal asymmetry and estuarine morphology.Netherlands Journal of Sea Research , 20 (2–3), 117–131.
https://doi.org/10.1016/0077-7579(86)90036-0
Duran Vinent, O., Herbert, E. R., Coleman, D. J., Himmelstein, J. D., &
Kirwan, M. L. (2021). Onset of runaway fragmentation of salt marshes.One Earth , 4 (4), 506–516.
https://doi.org/10.1016/j.oneear.2021.02.013
Elsey-Quirk, T., Mariotti, G., Valentine, K., & Raper, K. (2019).
Retreating marsh shoreline creates hotspots of high-marsh plant
diversity. Scientific Reports , 9 (1), 1–9.
https://doi.org/10.1038/s41598-019-42119-8
Enwright, N. M., Griffith, K. T., & Osland, M. J. (2016). Barriers to
and opportunities for landward migration of coastal wetlands with
sea-level rise. Frontiers in Ecology and the Environment ,14 (6), 307–316. https://doi.org/https://doi.org/10.1002/fee.1282
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R.,
Temmerman, S., D’Alpaos, A., et al. (2012). Numerical models of salt
marsh evolution: Ecological, geomorphic, and climatic factors.Reviews of Geophysics , 50 (1), 1–28.
https://doi.org/10.1029/2011RG000359
Fagherazzi, S., Anisfeld, S. C., Blum, L. K., Long, E. V., Feagin, R.
A., Fernandes, A., et al. (2019). Sea level rise and the dynamics of the
marsh-upland boundary. Frontiers in Environmental Science ,7 (FEB), 1–18. https://doi.org/10.3389/fenvs.2019.00025
Feagin, R. A., Martinez, M. L., Mendoza-Gonzalez, G., & Costanza, R.
(2010). Salt marsh zonal migration and ecosystem service change in
response to global sea level rise: A case study from an urban region.Ecology and Society , 15 (4).
https://doi.org/10.5751/ES-03724-150414
Ferrarin, C., Tomasin, A., Bajo, M., Petrizzo, A., & Umgiesser, G.
(2015). Tidal changes in a heavily modified coastal wetland.Continental Shelf Research , 101 , 22–33.
https://doi.org/10.1016/j.csr.2015.04.002
Field, C. R., Gjerdrum, C., & Elphick, C. S. (2016). Forest resistance
to sea-level rise prevents landward migration of tidal marsh.Biological Conservation , 201 , 363–369.
https://doi.org/https://doi.org/10.1016/j.biocon.2016.07.035
Finkelstein, K., & Ferland, M. A. (1987). Back-barrier response to
sea-level rise, eastern shore of Virginia. Sea-Level Fluctuation
and Coastal Evolution , 145–155. https://doi.org/10.2110/pec.87.41.0145
Finotello, A., Canestrelli, A., Carniello, L., Ghinassi, M., &
D’Alpaos, A. (2019). Tidal flow asymmetry and discharge of lateral
tributaries drive the evolution of a microtidal meander in the Venice
Lagoon (Italy). Journal of Geophysical Research: Earth Surface ,124 (12), 3043–3066. https://doi.org/10.1029/2019jf005193
Finotello, A., Marani, M., Carniello, L., Pivato, M., Roner, M.,
Tommasini, L., & D’Alpaos, A. (2020). Control of wind-wave power on
morphological shape of salt marsh margins. Water Science and
Engineering , 13 (1), 45–56.
https://doi.org/10.1016/j.wse.2020.03.006
Finotello, A., Alpaos, A. D., Marani, M., & Bertuzzo, E. (2022). A
Minimalist Model of Salt-Marsh Vegetation Dynamics Driven by Species
Competition and Dispersal. Frontiers in Marine , 9 (866570),
1–23. https://doi.org/10.3389/fmars.2022.866570
Finotello, A., Capperucci, R. M., Bartholomä, A., D’Alpaos, A., &
Ghinassi, M. (2022). Morpho-sedimentary evolution of a microtidal
meandering channel driven by 130-years of natural and anthropogenic
modifications of the Venice Lagoon (Italy). Earth Surface
Processes and Landforms , n/a (n/a).
https://doi.org/https://doi.org/10.1002/esp.5396
FitzGerald, D. M., & Hughes, Z. (2019). Marsh Processes and Their
Response to Climate Change and Sea-Level Rise. Annual Review of
Earth and Planetary Sciences , 47 (1), 481–517.
https://doi.org/10.1146/annurev-earth-082517-010255
Flemming, B. W. (2012). Geology, Morphology, and Sedimentology of
Estuaries and Coasts . Treatise on Estuarine and Coastal Science(Vol. 3). Elsevier Inc.
https://doi.org/10.1016/B978-0-12-374711-2.00302-8
Fletcher, C. A., & Spencer, T. (2005). Flooding and environmental
challenges for Venice and its lagoon: State of knowledge . (C. A.
Fletcher & T. Spencer, Eds.) (Cambridge). Cambridge, UK.
Friedrichs, C. T., & Aubrey, D. G. (1988). Nonlinear tidal distortion
in shallow well-mixed estuaries: a synthesis. Estuarine, Coastal
and Shelf Science , 27 (3), 521–545.
https://doi.org/10.1016/0272-7714(90)90054-U
Gambolati, G., & Teatini, P. (2014). Venice Shall Rise Again
-Engineered Uplift of Venice Through Seawater Injection . Elsevier
Insights [electronic] . Amsterdam, Netherlands: Elsevier.
https://doi.org/10.1016/B978-0-12-420144-6.00005-4
Gatto, P., & Carbognin, L. (1981). The lagoon of Venice: Natural
environmental trend and man-induced modification. Hydrological
Sciences Bulletin , 26 (4), 379–391.
https://doi.org/10.1080/02626668109490902
Ghezzo, M., Guerzoni, S., Cucco, A., & Umgiesser, G. (2010). Changes in
Venice Lagoon dynamics due to construction of mobile barriers.Coastal Engineering , 57 (7), 694–708.
https://doi.org/10.1016/j.coastaleng.2010.02.009
Gilby, B. L., Weinstein, M. P., Baker, R., Cebrian, J., Alford, S. B.,
Chelsky, A., et al. (2021). Human Actions Alter Tidal Marsh Seascapes
and the Provision of Ecosystem Services. Estuaries and Coasts ,44 (6), 1628–1636. https://doi.org/10.1007/s12237-020-00830-0
González-Villanueva, R., Pérez-Arlucea, M., Costas, S., Bao, R., Otero,
X. L., & Goble, R. (2015). 8000 years of environmental evolution of
barrier–lagoon systems emplaced in coastal embayments (NW Iberia).The Holocene , 25 (11), 1786–1801.
https://doi.org/10.1177/0959683615591351
Gourgue, O., van Belzen, J., Schwarz, C., Vandenbruwaene, W., Vanlede,
J., Belliard, J.-P., et al. (2021). Biogeomorphic modeling to assess
resilience of tidal marsh restoration to sea level rise and sediment
supply. Earth Surface Dynamics Discussions , (October), 1–38.
https://doi.org/10.5194/esurf-2021-66
Green, M. O., & Coco, G. (2014). Review of wave-driven sediment
resuspension and transport in estuaries. Reviews of Geophysics .
https://doi.org/10.1002/2013RG000437
Hesp, P. A. (2016). Coastal Barriers. In M. J. Kennish (Ed.),Encyclopedia of Estuaries (pp. 128–130). Dordrecht: Springer
Netherlands. https://doi.org/10.1007/978-94-017-8801-4_279
Holthuijsen, L. H., Booij, N., & Herbers, T. H. C. (1989). A prediction
model for stationary, short-crested waves in shallow water with ambient
currents. Coastal Engineering , 13 (1), 23–54.
https://doi.org/10.1016/0378-3839(89)90031-8
Hughes, Z. J., FitzGerald, D. M., & Wilson, C. A. (2021). Impacts of
Climate Change and Sea Level Rise. In D. M. FitzGerald & Z. J. Hughes
(Eds.), Salt Marshes: Function, Dynamics, and Stresses (pp.
476–481). Cambridge: Cambridge University Press. https://doi.org/DOI:
10.1017/9781316888933.021
Kalra, T. S., Ganju, N. K., Aretxabaleta, A. L., Carr, J. A., Defne, Z.,
& Moriarty, J. M. (2021). Modeling Marsh Dynamics Using a 3-D Coupled
Wave-Flow-Sediment Model. Frontiers in Marine Science ,8 (November). https://doi.org/10.3389/fmars.2021.740921
Kennish, M. J. (2016). Coastal Lagoons. In M. J. Kennish (Ed.),Encyclopedia of Estuaries (pp. 140–143). Dordrecht: Springer
Netherlands. https://doi.org/10.1007/978-94-017-8801-4_47
Kirwan, M. L., & Gedan, K. B. (2019). Sea-level driven land conversion
and the formation of ghost forests. Nature Climate Change ,9 (6), 450–457. https://doi.org/10.1038/s41558-019-0488-7
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., &
Fagherazzi, S. (2016). Overestimation of marsh vulnerability to sea
level rise. Nature Climate Change , 6 (3), 253–260.
https://doi.org/10.1038/nclimate2909
Ladd, C. J. T., Duggan-Edwards, M. F., Bouma, T. J., Pagès, J. F., &
Skov, M. W. (2019). Sediment Supply Explains Long-Term and Large-Scale
Patterns in Salt Marsh Lateral Expansion and Erosion. Geophysical
Research Letters , 46 (20), 11178–11187.
https://doi.org/10.1029/2019GL083315
Leonardi, N., Ganju, N. K., & Fagherazzi, S. (2016). A linear
relationship between wave power and erosion determines salt-marsh
resilience to violent storms and hurricanes. Proceedings of the
National Academy of Sciences , 113 (1), 64–68.
https://doi.org/10.1073/pnas.1510095112
Leonardi, N., Defne, Z., Ganju, N. K., & Fagherazzi, S. (2016). Salt
marsh erosion rates and boundary features in a shallow Bay.Journal of Geophysical Research : Earth Surface , 121 (10),
1–15. https://doi.org/10.1002/2016JF003975.Received
Levin, L. A., Boesch, D. F., Covich, A., Dahm, C., Erséus, C., Ewel, K.
C., et al. (2001). The function of marine critical transition zones and
the importance of sediment biodiversity. Ecosystems , 4 (5),
430–451. https://doi.org/10.1007/s10021-001-0021-4
Van Maanen, B., Coco, G., & Bryan, K. R. (2013). Modelling the effects
of tidal range and initial bathymetry on the morphological evolution of
tidal embayments. Geomorphology , 191 , 23–34.
https://doi.org/10.1016/j.geomorph.2013.02.023
Marani, M., D’Alpaos, A., Lanzoni, S., & Santalucia, M. (2011).
Understanding and predicting wave erosion of marsh edges.Geophysical Research Letters , 38 (21), 1–5.
https://doi.org/10.1029/2011GL048995
Mariotti, G. (2020). Beyond marsh drowning: The many faces of marsh loss
(and gain). Advances in Water Resources , 144 (July),
103710. https://doi.org/10.1016/j.advwatres.2020.103710
Mariotti, G., & Carr, J. A. (2014). Dual role of salt marsh retreat:
Long-term loss and short-term resilience. Water Resources
Research , 50 (4), 2963–2974.
https://doi.org/10.1002/2013WR014333.Received
Mariotti, G., & Fagherazzi, S. (2010). A numerical model for the
coupled long-term evolution of salt marshes and tidal flats.Journal of Geophysical Research: Earth Surface , 115 (F1).
https://doi.org/https://doi.org/10.1029/2009JF001326
Mariotti, G., & Fagherazzi, S. (2013). Critical width of tidal flats
triggers marsh collapse in the absence of sea-level rise.Proceedings of the National Academy of Sciences of the United
States of America , 110 (14), 5353–6.
https://doi.org/10.1073/pnas.1219600110
Matticchio, B., Carniello, L., Canesso, D., Ziggiotto, E., & Cordella,
M. (2017). Recent changes in tidal propagation in the Venice Lagoon:
effects of changes in the inlet structure. In L. D’Alpaos (Ed.),Commissione di studio sui problemi di Venezia, Volume III: La
laguna di Venezia e le nuove opere alle bocche (Istituto V, pp.
157–183). Venice: Istituto Veneto di Scienze, Lettere ed Arti.
Mcowen, C. J., Weatherdon, L. V., Van Bochove, J.-W. J. W., Sullivan,
E., Blyth, S., Zockler, C., et al. (2017). A global map of saltmarshes.Biodiversity Data Journal , 5 (1).
https://doi.org/10.3897/BDJ.5.e11764
Mel, R. A., Carniello, L., & D’alpaos, L. (2021). How long the Mo.S.E.
barriers will be effective in protecting all the urban settlements in
the Venice lagoon? The wind setup constraint. Coastal
Engineering , 168 (January), 103923.
https://doi.org/10.1016/j.coastaleng.2021.103923
Mel, R. A., Viero, D. P., Carniello, L., Defina, A., & D’Alpaos, L.
(2021). The first operations of Mo.S.E. system to prevent the flooding
of Venice: Insights on the hydrodynamics of a regulated lagoon.Estuarine, Coastal and Shelf Science , 261 (August), 107547.
https://doi.org/10.1016/j.ecss.2021.107547
Mitsch, W. J., & Gosselink, J. G. (2000). The value of wetlands:
importance of scale and landscape setting. Ecological Economics ,35 (1), 25–33. https://doi.org/10.1016/S0921-8009(00)00165-8
Mitsch, W. J., Bernal, B., & Hernandez, M. E. (2015). Ecosystem
services of wetlands. International Journal of Biodiversity
Science, Ecosystem Services and Management , 11 (1), 1–4.
https://doi.org/10.1080/21513732.2015.1006250
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van
Wesenbeeck, B. K. B. K., et al. (2014). Wave attenuation over coastal
salt marshes under storm surge conditions. Nature Geoscience ,7 (10), 727–731. https://doi.org/10.1038/NGEO2251
Nelson, J. L., & Zavaleta, E. S. (2012). Salt marsh as a coastal filter
for the oceans: Changes in function with experimental increases in
Nitrogen loading and sea-level rise. PLoS ONE , 7 (8).
https://doi.org/10.1371/journal.pone.0038558
Nidzieko, N. J. (2010). Tidal asymmetry in estuaries with mixed
semidiurnal/diurnal tides. Journal of Geophysical Research:
Oceans , 115 (8), 1–13. https://doi.org/10.1029/2009JC005864
Passeri, D. L., Dalyander, P. S., Long, J. W., Mickey, R. C., Jenkins
III, R. L., Thompson, D. M., et al. (2020). The Roles of Storminess and
Sea Level Rise in Decadal Barrier Island Evolution. Geophysical
Research Letters , 47 (18), e2020GL089370.
https://doi.org/https://doi.org/10.1029/2020GL089370
Pennings, S. C., & He, Q. (2021). Community Ecology of Salt Marshes. In
D. M. FitzGerald & Z. J. Hughes (Eds.), Salt Marshes: Function,
Dynamics, and Stresses (pp. 82–112). Cambridge: Cambridge University
Press. https://doi.org/DOI: 10.1017/9781316888933.006
Pérez-Ruzafa, A., Pérez-Ruzafa, I. M., Newton, A., & Marcos, C. (2019).
Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and
Goods and Services Uniformity. In E. Wolanski, J. W. Day, M. Elliott, &
R. Ramachandran (Eds.), Coasts and Estuaries (pp. 253–276).
Amsterdam, Netherlands: Elsevier.
https://doi.org/https://doi.org/10.1016/B978-0-12-814003-1.00015-0
Perillo, G. M. E. (1995). Geomorphology and Sedimentology of Estuaries:
An Introduction. In G. M. E. Perillo (Ed.), Geomorphology and
Sedimentology of Estuaries (Vol. 53, pp. 1–16). Amsterdam,
Netherlands: Elsevier.
https://doi.org/https://doi.org/10.1016/S0070-4571(05)80021-4
Perillo, G. M. E., Wolanski, E., Brinson, M. M., Cahoon, D. R., &
Hopkinson, C. S. (2019). Coastal wetlands : A Synthesis . (G.
Perillo, E. Wolanski, D. R. Cahoon, & C. S. Hopkinson, Eds.),Coastal wetlands : an integrated ecosystem approach . Amsterdam,
Netherlands: Elsevier.
Peter Sheng, Y., Paramygin, V. A., Rivera-Nieves, A. A., Zou, R.,
Fernald, S., Hall, T., & Jacob, K. (2022). Coastal marshes provide
valuable protection for coastal communities from storm-induced wave,
flood, and structural loss in a changing climate. Scientific
Reports , 12 (1), 1–12.
https://doi.org/10.1038/s41598-022-06850-z
Pollard, J. A., Spencer, T., & Brooks, S. M. (2019). The interactive
relationship between coastal erosion and flood risk. Progress in
Physical Geography , 43 (4), 574–585.
https://doi.org/10.1177/0309133318794498
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., & Dietrich, W. E.
(1999). Tidal networks 3. Landscape-forming discharges and studies in
empirical geomorphic relationships. Water Resources Research ,35 (12), 3919–3929. https://doi.org/10.1029/1999WR900238
Rinaldo, A., Nicotina, L., Alessi Celegon, E., Beraldin, F., Botter, G.,
Carniello, L., et al. (2008). Sea level rise, hydrologic runoff, and the
flooding of Venice. Water Resources Research , 44 (12),
1–12. https://doi.org/10.1029/2008WR007195
Roner, M., Ghinassi, M., Finotello, A., Bertini, A., Combourieu-nebout,
N., Donnici, S., et al. (2021). Detecting the Delayed Signatures of
Changing Sediment Supply in Salt-Marsh Landscapes : The Case of the
Venice Lagoon ( Italy ). Frontiers in Marine Science ,8:742603 . https://doi.org/10.3389/fmars.2021.742603
Ruol, P., Favaretto, C., Volpato, M., & Martinelli, L. (2020). Flooding
of Piazza San Marco (Venice): Physical model tests to evaluate the
overtopping discharge. Water (Switzerland) , 12 (2).
https://doi.org/10.3390/w12020427
Sarretta, A., Pillon, S., Molinaroli, E., Guerzoni, S., & Fontolan, G.
(2010). Sediment budget in the Lagoon of Venice, Italy.Continental Shelf Research , 30 (8), 934–949.
https://doi.org/10.1016/j.csr.2009.07.002
Silvestri, S., D’Alpaos, A., Nordio, G., & Carniello, L. (2018).
Anthropogenic Modifications Can Significantly Influence the Local Mean
Sea Level and Affect the Survival of Salt Marshes in Shallow Tidal
Systems. Journal of Geophysical Research: Earth Surface ,123 (5), 996–1012. https://doi.org/10.1029/2017JF004503
Smagorinsky, J. (1963). General circulation experiments with the
primitive equations: I. the basic experiment. Monthly Weather
Review , 91 (3), 99–164.
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
Soulsby, R. L. (1995). Bed shear‐stresses due to combined waves and
currents. In M. J. F. et al Stive (Ed.), Advances in Coastal
Morphodynamics (pp. 4-20-4–23). Delft Hydraul., Delft, Netherlands.
Stutz, M. L., & Pilkey, O. H. (2011). Open-Ocean Barrier Islands:
Global Influence of Climatic, Oceanographic, and Depositional Settings.Journal of Coastal Research , 27 (2), 207–222.
https://doi.org/10.2112/09-1190.1
De Swart, H. E., & Zimmerman, J. T. F. (2009). Morphodynamics of Tidal
Inlet Systems. Annual Review of Fluid Mechanics , 41 (1),
203–229. https://doi.org/10.1146/annurev.fluid.010908.165159
Tambroni, N., & Seminara, G. (2006). Are inlets responsible for the
morphological degradation of Venice Lagoon? Journal of Geophysical
Research: Earth Surface , 111 (3), 1–19.
https://doi.org/10.1029/2005JF000334
Temmerman, S., Meire, P., Bouma, T. J. T. J., Herman, P. M. J. P. M. J.,
Ysebaert, T., De Vriend, H. J., & Vriend, H. J. De. (2013).
Ecosystem-based coastal defence in the face of global change.Nature , 504 (7478), 79–83.
https://doi.org/10.1038/nature12859
Tognin, D., D’Alpaos, A., Marani, M., & Carniello, L. (2021). Marsh
resilience to sea-level rise reduced by storm-surge barriers in the
Venice Lagoon. Nature Geoscience , 14 (12), 906–911.
https://doi.org/10.1038/s41561-021-00853-7
Tognin, D., Finotello, A., D’Alpaos, A., Viero, D. P., Pivato, M., Mel,
R. A., et al. (2022). Loss of geomorphic diversity in shallow tidal
embayments promoted by storm-surge barriers. Science Advances ,8 (13). https://doi.org/10.1126/sciadv.abm844
Tomasin, A. (1974). Recent changes in the tidal regime in Venice.Rivista Italiana Di Geofisica , 23 (5/6), 275–278.
Tommasini, L., Carniello, L., Ghinassi, M., Roner, M., & D’Alpaos, A.
(2019). Changes in the wind-wave field and related salt-marsh lateral
erosion: inferences from the evolution of the Venice Lagoon in the last
four centuries. Earth Surface Processes and Landforms ,44 (8), 1633–1646. https://doi.org/10.1002/esp.4599
Valiela, I., Kinney, E., Culberston, J., Peacock, E., & Smith, S.
(2009). Global Losses of Mangroves and Salt Marshes. In C. M. Duarte
(Ed.), Global Loss of Coastal Habitats: Rates, Causes and
Consequences (Fundacion, p. 184). Bilbao.
Valle-Levinson, A., Marani, M., Carniello, L., D’Alpaos, A., & Lanzoni,
S. (2021). Astronomic link to anomalously high mean sea level in the
northern Adriatic Sea. Estuarine, Coastal and Shelf Science ,257 , 107418.
https://doi.org/https://doi.org/10.1016/j.ecss.2021.107418
Ward, S. L., Robins, P. E., Lewis, M. J., Iglesias, G., Hashemi, M. R.,
& Neill, S. P. (2018). Tidal stream resource characterisation in
progressive versus standing wave systems. Applied Energy ,220 (October 2017), 274–285.
https://doi.org/10.1016/j.apenergy.2018.03.059
Wei, Y., Chen, Y., Qiu, J., Zhou, Z., Yao, P., Jiang, Q., et al. (2022).
The role of geological mouth islands on the morphodynamics of
back-barrier tidal basins. Earth Surface Dynamics , 10 (1),
65–80. https://doi.org/10.5194/esurf-10-65-2022
Willemsen, P. W. J. M., Smits, B. P., Borsje, B. W., Herman, P. M. J.,
Dijkstra, J. T., Bouma, T. J., & Hulscher, S. J. M. H. (2021).
Modelling decadal salt marsh development: variability of the salt marsh
edge under influence of waves and sediment availability. Water
Resources Research , 58 , e2020WR028962.
https://doi.org/https://doi.org/10.1029/2020WR028962
Wilson, C. A., Hughes, Z. J., & FitzGerald, D. M. (2022). Causal
relationships among sea level rise, marsh crab activity, and salt marsh
geomorphology. Proceedings of the National Academy of Sciences ,119 (9), e2111535119. https://doi.org/10.1073/pnas.2111535119
Young, I. R. R., & Verhagen, L. A. A. (1996). The growth of
fetch-limited waves in water of finite depth. Part 1: Total energy and
peak frequency. Coastal Engineering , 29 (1–2), 47–78.
Zanchettin, D., Bruni, S., Raicich, F., Lionello, P., Adloff, F.,
Androsov, A., et al. (2021). Sea-level rise in Venice: Historic and
future trends (review article). Natural Hazards and Earth System
Sciences , 21 (8), 2643–2678.
https://doi.org/10.5194/nhess-21-2643-2021
Zarzuelo, C., López-Ruiz, A., D’Alpaos, A., Carniello, L., &
Ortega-Sánchez, M. (2018). Assessing the morphodynamic response of
human-altered tidal embayments. Geomorphology , 320 ,
127–141. https://doi.org/10.1016/j.geomorph.2018.08.014
Zecchin, M., Baradello, L., Brancolini, G., Donda, F., Rizzetto, F., &
Tosi, L. (2008). Sequence stratigraphy based on high-resolution seismic
profiles in the late Pleistocene and Holocene deposits of the Venice
area. Marine Geology , 253 (3–4), 185–198.
https://doi.org/http://dx.doi.org/10.1016/j.margeo.2008.05.010
Zhou, Z., Coco, G., Jiménez, M., Olabarrieta, M., Van Der Wegen, M., &
Townend, I. (2014). Morphodynamics of river-influenced back-barrier
tidal basins: The role of landscape and hydrodynamic settings.Water Resources Research , 50 (12), 9514–9535.
https://doi.org/https://doi.org/10.1002/2014WR015891
Zhou, Z., Chen, L., Townend, I., Coco, G., Friedrichs, C. T., & Zhang,
C. (2018). Revisiting the Relationship between Tidal Asymmetry and Basin
Morphology: A Comparison between 1D and 2D Models. Journal of
Coastal Research . https://doi.org/10.2112/si85-031.1