References:
Andersson, P., Torssander, P., Ingri, J., 1992. Sulphur isotope ratios
in sulphate and oxygen isotopes in water from a small watershed in
Central Sweden. Hydrobiologia 235, 205–217.
https://doi.org/10.1007/BF00026213
Arctic Monitoring and Assessment Programme, 2006. AMAP assessment
report: acidifying pollutants, Arctic haze, and acidification in the
Arctic. The Programme, Oslo, Norway.
Äyräs, M., de Caritat, P., Chekushin, V.A., Niskavaara, H., Reimann, C.,
1995. Ecogeochemical investigation, Kola peninsula: Sulphur and trace
element content in snow. Water Air Soil Pollut 85, 749–754.
https://doi.org/10.1007/BF00476919
Berglöv, G., Asp, M., Berggreen-Clausen, S., Björck, E., Axén
Mårtensson, J., Nylén, L., Ohlsson, A., Persson, H., Sjökvist, E., 2015.
Framtidsklimat i Norrbottens län - enligt RCP-scenarier [English:
Future climate in Norrbotten County - based on RCP scenarios]. Swedish
Meteorological and Hydrological Institute, Klimatologi Nr 32, 91 pp.
Norrköping, Sweden (in Swedish).
Björkvald, L., Giesler, R., Laudon, H., Humborg, C., Mörth, C.-M., 2009.
Landscape variations in stream water SO42− and δ34SSO4 in a boreal
stream network. Geochim. Cosmochim. Acta 73, 4648–4660.
https://doi.org/10.1016/j.gca.2009.05.052
Bomberg, M., Arnold, M., Kinnunen, P., 2015. Characterization of the
Bacterial and Sulphate Reducing Community in the Alkaline and Constantly
Cold Water of the Closed Kotalahti Mine. Minerals 5, 452–472.
https://doi.org/10.3390/min5030452
Böttcher, M.E., Thamdrup, B., Gehre, M., Theune, A., 2005. 34S/32S and
18O/16O Fractionation During Sulfur Disproportionation by Desulfobulbus
propionicus. Geomicrobiology Journal 22, 219–226.
https://doi.org/10.1080/01490450590947751
Box, J.E., Colgan, W.T., Christensen, T.R., Schmidt, N.M., Lund, M.,
Parmentier, F.-J.W., Brown, R., Bhatt, U.S., Euskirchen, E.S.,
Romanovsky, V.E., Walsh, J.E., Overland, J.E., Wang, M., Corell, R.W.,
Meier, W.N., Wouters, B., Mernild, S., Mård, J., Pawlak, J., Olsen,
M.S., 2019. Key indicators of Arctic climate change: 1971–2017.
Environ. Res. Lett. 14, 045010. https://doi.org/10.1088/1748-9326/aafc1b
Callaghan, T.V., Johansson, M., Brown, R.D., Groisman, P.Ya., Labba, N.,
Radionov, V., Barry, R.G., Bulygina, O.N., Essery, R.L.H., Frolov, D.M.,
Golubev, V.N., Grenfell, T.C., Petrushina, M.N., Razuvaev, V.N.,
Robinson, D.A., Romanov, P., Shindell, D., Shmakin, A.B., Sokratov,
S.A., Warren, S., Yang, D., 2011. The Changing Face of Arctic Snow
Cover: A Synthesis of Observed and Projected Changes. AMBIO 40, 17–31.
https://doi.org/10.1007/s13280-011-0212-y
Chappell, D.A., Craw, D., 2003. Environmental controls on
iron‐oxidising, sulfur‐oxidising and sulfate‐reducing bacteria in mine
wastes, New Zealand. New Zealand Journal of Marine and Freshwater
Research 37, 767–775. https://doi.org/10.1080/00288330.2003.9517207
Dauvalter, V.A., Kashulin, N.A., 2010. Chalcophile elements (Hg, Cd, Pb,
As) in Lake Umbozero, Murmansk province. Water Resour 37, 497–512.
https://doi.org/10.1134/S0097807810040093
de Caritat, P. de, Krouse, H.R., Hutcheon, I., 1997. Sulphur isotope
composition of stream water, moss and humus from eight arctic catchments
in the Kola Peninsula region (NW Russia, N Finland, NE Norway). Water,
Air, & Soil Pollution 94, 191–208.
https://doi.org/10.1023/A:1026498824698
Dinu, M.I., Shkinev, V.M., Moiseenko, T.I., Dzhenloda, R.K., Danilova,
T.V., 2020. Quantification and Speciation of Trace Metals under
Pollution Impact: Case Study of a Subarctic Lake. Water 12, 1641.
https://doi.org/10.3390/w12061641
EBAS, 2021. EBAS database. Norwegian Institute for Air Research (NILU)
[WWW Document]. URL http://ebas.nilu.no/
Efimov, V.A., Chalov, S.R., Efimova, L.E., Ivanov, V.A., Jarsjö, J.,
Fischer, S., 2019. Impact of mining activities on the surface water
quality (case study of Khibiny mountains, Russia). IOP Conf. Ser.: Earth
Environ. Sci. 263, 012008.
https://doi.org/10.1088/1755-1315/263/1/012008
Fischer, S., Jarsjö, J., Rosqvist, G., Mörth, C.-M., 2022.
Catchment-scale microbial sulfate reduction (MSR) of acid mine drainage
(AMD) revealed by sulfur isotopes. Environmental Pollution 292, 118478.
https://doi.org/10.1016/j.envpol.2021.118478
Fischer, S., Rosqvist, G., Chalov, S.R., Jarsjö, J., 2020.
Disproportionate Water Quality Impacts from the Century-Old Nautanen
Copper Mines, Northern Sweden. Sustainability 12, 1394.
https://doi.org/10.3390/su12041394
Forsius, M., Posch, M., Aherne, J., Reinds, G.J., Christensen, J., Hole,
L., 2010. Assessing the Impacts of Long-Range Sulfur and Nitrogen
Deposition on Arctic and Sub-Arctic Ecosystems. AMBIO 39, 136–147.
https://doi.org/10.1007/s13280-010-0022-7
Fortin, D., Goulet, R., Roy, M., 2000. Seasonal Cycling of Fe and S in a
Constructed Wetland: The Role of Sulfate-Reducing Bacteria.
Geomicrobiol. J. 17, 221–235. https://doi.org/10.1080/01490450050121189
Guo, L., Ping, C.-L., Macdonald, R.W., 2007. Mobilization pathways of
organic carbon from permafrost to arctic rivers in a changing climate.
Geophysical Research Letters 34. https://doi.org/10.1029/2007GL030689
Hampton, T.B., Zarnetske, J.P., Briggs, M.A., Singha, K., Harvey, J.W.,
Day-Lewis, F.D., MahmoodPoor Dehkordy, F., Lane, J.W., 2019. Residence
Time Controls on the Fate of Nitrogen in Flow-Through Lakebed Sediments.
Journal of Geophysical Research: Biogeosciences 124, 689–707.
https://doi.org/10.1029/2018JG004741
Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset. International Journal of Climatology 34, 623–642.
https://doi.org/10.1002/joc.3711
Hotton, G., Bussière, B., Pabst, T., Bresson, É., Roy, P., 2020.
Influence of climate change on the ability of a cover with capillary
barrier effects to control acid generation. Hydrogeol J 28, 763–779.
https://doi.org/10.1007/s10040-019-02084-y
Ingri, J., Torssander, P., Andersson, P.S., Mörth, C.M., Kusakabe, M.,
1997. Hydrogeochemistry of sulfur isotopes in the Kalix River catchment,
northern Sweden. Appl. Geochem. 12, 483–496.
https://doi.org/10.1016/S0883-2927(97)00026-7
Jarsjö, J., Andersson-Sköld, Y., Fröberg, M., Pietroń, J., Borgström,
R., Löv, Å., Kleja, D.B., 2020. Projecting impacts of climate change on
metal mobilization at contaminated sites: Controls by the groundwater
level. Sci. Total Environ. 712, 135560.
https://doi.org/10.1016/j.scitotenv.2019.135560
Khan, U.A., Kujala, K., Nieminen, S.P., Räisänen, M.L., Ronkanen, A.-K.,
2019. Arsenic, antimony, and nickel leaching from northern peatlands
treating mining influenced water in cold climate. Sci. Total Environ.
657, 1161–1172. https://doi.org/10.1016/j.scitotenv.2018.11.455
Knöller, K., Fauville, A., Mayer, B., Strauch, G., Friese, K., Veizer,
J., 2004. Sulfur cycling in an acid mining lake and its vicinity in
Lusatia, Germany. Chem. Geol., Applications of Stable Isotope Techniques
to Geological and Environmental Problems 204, 303–323.
https://doi.org/10.1016/j.chemgeo.2003.11.009
Kogarko, L., 2018. Chemical Composition and Petrogenetic Implications of
Apatite in the Khibiny Apatite-Nepheline Deposits (Kola Peninsula).
Minerals 8, 532. https://doi.org/10.3390/min8110532
Lindström, E.S., Kamst-Van Agterveld, M.P., Zwart, G., 2005.
Distribution of Typical Freshwater Bacterial Groups Is Associated with
pH, Temperature, and Lake Water Retention Time. Applied and
Environmental Microbiology 71, 8201–8206.
https://doi.org/10.1128/AEM.71.12.8201-8206.2005
Liu, X.-Y., Xiao, H.-Y., Liu, C.-Q., Xiao, H.-W., Wang, Y.-L., 2009.
Assessment of atmospheric sulfur with the epilithic moss Haplocladium
microphyllum: Evidences from tissue sulfur and δ34S analysis.
Environmental Pollution 157, 2066–2071.
https://doi.org/10.1016/j.envpol.2009.02.020
Malinovsky, D., Rodushkin, I., Moiseenko, T., Öhlander, B., 2002.
Aqueous transport and fate of pollutants in mining area: a case study of
Khibiny apatite-nepheline mines, the Kola Peninsula, Russia.
Environmental Geology 43, 172–187.
https://doi.org/10.1007/s00254-002-0641-9
Mandernack, K.W., Lynch, L., Krouse, H.R., Morgan, M.D., 2000. Sulfur
cycling in wetland peat of the New Jersey Pinelands and its effect on
stream water chemistry. Geochim. Cosmochim. Acta 64, 3949–3964.
https://doi.org/10.1016/S0016-7037(00)00491-9
Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R.,
Tardieux, A., Tardieux, P., 1981. Experimental determination of nitrogen
kinetic isotope fractionation: Some principles; illustration for the
denitrification and nitrification processes. Plant Soil 62, 413–430.
https://doi.org/10.1007/BF02374138
Martinsson, O., Billström, K., Broman, C., Weihed, P., Wanhainen, C.,
2016. Metallogeny of the Northern Norrbotten Ore Province, northern
Fennoscandian Shield with emphasis on IOCG and apatite-iron ore
deposits. Ore Geol. Rev. 78, 447–492.
https://doi.org/10.1016/j.oregeorev.2016.02.011
Massmann, G., Tichomirowa, M., Merz, C., Pekdeger, A., 2003. Sulfide
oxidation and sulfate reduction in a shallow groundwater system
(Oderbruch Aquifer, Germany). Journal of Hydrology 278, 231–243.
https://doi.org/10.1016/S0022-1694(03)00153-7
Migaszewski, Z.M., Dołȩgowska, S., Hałas, S., Trembaczowski, A., 2010.
Stable sulphur isotope ratios in the moss species Hylocomium splendens
(Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from the Kielce
area (south-central Poland). Isotopes in Environmental and Health
Studies 46, 219–224. https://doi.org/10.1080/10256016.2010.488725
Moiseenko, T.I., Bazova, M.M., 2016. Effects of water acidification on
element concentrations in natural waters of the Kola North. Geochem.
Int. 54, 112–125. https://doi.org/10.1134/S0016702916010092
Moiseenko, T.I., Gashkina, N.A., Sharov, A.N., Vandysh, O.I.,
Kudryavtseva, L.P., 2009. Anthropogenic transformations of the Arctic
ecosystem of Lake Imandra: Tendencies for recovery after long period of
pollution. Water Resour 36, 296–309.
https://doi.org/10.1134/S0097807809030051
Mörth, C.-M., Laudon, H., Mellqvist, E., Torssander, P., Giesler, R.,
2008. Sources of stream water sulfate during the spring snowmelt in
boreal streams: Evidence from δ34S isotope measurements. Journal of
Geophysical Research: Biogeosciences 113.
https://doi.org/10.1029/2007JG000457
Nelson, C.E., Sadro, S., Melack, J.M., 2009. Contrasting the influences
of stream inputs and landscape position on bacterioplankton community
structure and dissolved organic matter composition in high-elevation
lake chains. Limnology and Oceanography 54, 1292–1305.
https://doi.org/10.4319/lo.2009.54.4.1292
Nielsen, G., Janin, A., Coudert, L., Blais, J.F., Mercier, G., 2018.
Performance of Sulfate-reducing Passive Bioreactors for the Removal of
Cd and Zn from Mine Drainage in a Cold Climate. Mine Water Environ 37,
42–55. https://doi.org/10.1007/s10230-017-0465-1
Palomo, L., Meile, C., Joye, S.B., 2013. Drought impacts on
biogeochemistry and microbial processes in salt marsh sediments: a
flow-through reactor approach. Biogeochemistry 112, 389–407.
https://doi.org/10.1007/s10533-012-9734-z
Pellerin, A., Antler, G., Marietou, A., Turchyn, A.V., Jørgensen, B.B.,
2020. The effect of temperature on sulfur and oxygen isotope
fractionation by sulfate reducing bacteria (Desulfococcus multivorans).
FEMS Microbiology Letters 367. https://doi.org/10.1093/femsle/fnaa061
Pereverzev, V.N., 2010. Genetic features of soils in altitudinal natural
zones of the Khibiny Mountains. Eurasian Soil Sc. 43, 509–518.
https://doi.org/10.1134/S1064229310050042
Pester, M., Knorr, K.-H., Friedrich, M., Wagner, M., Loy, A., 2012.
Sulfate-reducing microorganisms in wetlands – fameless actors in carbon
cycling and climate change. Frontiers in Microbiology 3, 72.
https://doi.org/10.3389/fmicb.2012.00072
Praharaj, T., Fortin, D., 2004. Indicators of Microbial Sulfate
Reduction in Acidic Sulfide-Rich Mine Tailings. Geomicrobiology Journal
21, 457–467. https://doi.org/10.1080/01490450490505428
Reimann, C., De Caritat, P., Halleraker, J.H., Volden, T., Äyräs, M.,
Niskavaara, H., Chekushin, V.A., Pavlov, V.A., 1997. Rainwater
composition in eight arctic catchments in northern Europe (Finland,
Norway and Russia). Atmospheric Environment 31, 159–170.
https://doi.org/10.1016/1352-2310(96)00197-5
Robertson, W.D., Schiff, S.L., 1994. Fractionation of sulphur isotopes
during biogenic sulphate reduction below a sandy forested recharge area
in south-central Canada. Journal of Hydrology 158, 123–134.
https://doi.org/10.1016/0022-1694(94)90049-3
SGU, 2020. Geological Survey of Sweden. Map Viewer Website, Soil type
1:25000 - 1:100000. [WWW Document]. URL
https://apps.sgu.se/kartvisare/ (accessed 12.20.20).
Sharp, Z.D., 2017. Chapter 10: Sulfur, in: Principles of Stable Isotope
Geochemistry 2nd Edition. The University of New Mexico.
Shrestha, S., Gunawardana, S.K., Piman, T., Babel, M.S., 2020.
Assessment of the impact of climate change and mining activities on
streamflow and selected metal’s loading in the Chindwin River, Myanmar.
Environmental Research 181, 108942.
https://doi.org/10.1016/j.envres.2019.108942
Sinharoy, A., Pakshirajan, K., Lens, P.N.L., 2020. Biological Sulfate
Reduction Using Gaseous Substrates To Treat Acid Mine Drainage. Curr
Pollution Rep 6, 328–344. https://doi.org/10.1007/s40726-020-00160-6
Virpiranta, H., Taskila, S., Leiviskä, T., Rämö, J., Tanskanen, J.,
2019. Development of a process for microbial sulfate reduction in cold
mining waters – Cold acclimation of bacterial consortia from an
Arctic mining district. Environmental Pollution 252, 281–288.
https://doi.org/10.1016/j.envpol.2019.05.087
Wu, S., Jeschke, C., Dong, R., Paschke, H., Kuschk, P., Knöller, K.,
2011. Sulfur transformations in pilot-scale constructed wetland treating
high sulfate-containing contaminated groundwater: A stable isotope
assessment. Water Res. 45, 6688–6698.
https://doi.org/10.1016/j.watres.2011.10.008
Xia, D., Ye, H., Xie, Y., Yang, C., Chen, M., Dang, Z., Yi, X., Lu, G.,
2017. Isotope geochemistry, hydrochemistry, and mineralogy of a river
affected by acid mine drainage in a mining area, South China. RSC Adv.
7, 43310–43318. https://doi.org/10.1039/C7RA07809A
Xiao, H.-Y., Li, N., Liu, C.-Q., 2015. Source Identification of Sulfur
in Uncultivated Surface Soils from Four Chinese Provinces. Pedosphere
25, 140–149. https://doi.org/10.1016/S1002-0160(14)60084-9
Xu, Y.-N., Chen, Y., 2020. Advances in heavy metal removal by
sulfate-reducing bacteria. Water Sci. Technol. 81, 1797–1827.
https://doi.org/10.2166/wst.2020.227
Yngström, S., Nord, A.G., Åberg, G., 1986. A sulphur and strontium
isotope study of the Aitik copper ore, northern Sweden. Geologiska
Föreningen i Stockholm Förhandlingar 108, 367–372.
https://doi.org/10.1080/11035898609454727
Zhang, M., Wang, H., 2016. Preparation of immobilized sulfate reducing
bacteria (SRB) granules for effective bioremediation of acid mine
drainage and bacterial community analysis. Minerals Engineering 92,
63–71. https://doi.org/10.1016/j.mineng.2016.02.008