\(\frac{V_{\text{CSD}}}{Q_{B}}=\ \left(2\text{\ G}^{2}+t_{f}\right)\text{\ erfc}\left(\frac{G}{\sqrt{t_{f}}}\right)+\frac{1}{H^{2}}\text{erfc}\left(\frac{G}{\sqrt{t_{f}}}\right)+\frac{2\ G\ H}{H^{2}}\text{\ erfc}\left(\frac{G}{\sqrt{t_{f}}}\right)-\frac{2\ G}{\sqrt{\pi}}\sqrt{t_{f}}\ e^{-\frac{G^{2}}{\text{\ t}_{f}}}\ \ -\frac{2}{\text{H\ }\sqrt{\pi}}\sqrt{t_{f}}\ e^{-\frac{G^{2}}{t_{f}}}-\frac{e^{2\ G\ H+H^{2}t_{f}}}{H^{2}}\text{\ \ erfc}\left(\frac{G}{\sqrt{t_{f}}}+H\sqrt{t_{f}}\right)\)
\(-\left(2\text{\ G}^{2}+t_{0}\right)\text{\ erfc}\left(\frac{G}{\sqrt{t_{0}}}\right)-\frac{1}{H^{2}}\text{erfc}\left(\frac{G}{\sqrt{t_{0}}}\right)-\frac{2\ G\ H}{H^{2}}\text{erfc}\left(\frac{G}{\sqrt{t_{0}}}\right)+\frac{2\ G\ }{\sqrt{\pi}}\sqrt{t_{0}}\ e^{-\frac{G^{2}}{\text{\ t}_{0}}}+\frac{2}{\text{H\ }\sqrt{\pi}}{\sqrt{t_{0}}\text{\ e}}^{-\frac{G^{2}}{t_{0}}}+\frac{e^{2\ G\ H+H^{2}t_{0}}}{H^{2}}\text{\ erfc}\left(\frac{G}{\sqrt{t_{0}}}+H\sqrt{t_{0}}\right)\) (39)