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Key Points: 10 

• A new numerical adjoint solution for cumulative streamflow depletion was derived 11 

• A new analytical solution for cumulative streamflow depletion was derived 12 

• The derived adjoint solution can be orders of magnitude more efficient than traditional 13 

perturbation-based approaches to estimating cumulative streamflow depletion 14 

Abstract 15 

The traditional metric of streamflow depletion represents the instantaneous change in the 16 

volumetric rate of aquifer–stream exchange after a finite period of continuous groundwater 17 

extraction. In the present study an alternative metric of streamflow depletion was considered: 18 

cumulative stream depletion (CSD), which described the total volumetric reduction in flow from 19 

an aquifer to a stream resulting from continuous groundwater extraction over a finite period, at 20 

the final time of extraction. A novel analytical solution for the prediction of CSD was derived, 21 
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based upon a forward solution that accounted for streambed conductance and partial stream 22 

penetration. Separately, a novel numerical solution for prediction of CSD was derived, based on 23 

the derivation and calculation of an adjoint state solution. The accuracy of these methods was 24 

demonstrated through benchmarking against existing analytical solutions and perturbation-based 25 

results, respectively. The derivation of the adjoint state solution identified three parameters of 26 

relevance to CSD prediction: streambed hydraulic conductivity and thickness, both of which 27 

contribute to the lumped parameterization of streambed conductance, as well as aquifer specific 28 

yield, which controls the rate at which hydraulic perturbations propagate through an aquifer. The 29 

computational advantage of the numerical adjoint solution was highlighted, where a single 30 

numerical model can be used to predict CSD resulting from any potential groundwater extraction 31 

location. The reduction in computational time required was proportional to the number of 32 

potential extraction well locations. If the number of potential locations is large then a reduction 33 

in model run time of nearly 100 % can be achieved. 34 

1. Introduction 35 

The concept of streamflow depletion typically describes a reduction in flow between an 36 

aquifer and a connected, gaining stream resulting from groundwater extraction (Barlow and 37 

Leake, 2012). This concept can be generalised to losing streams, where increases in stream 38 

discharge may occur, as well as to other surface water features such as rivers and lakes. 39 

Streamflow depletion can result in the reduction or cessation of aquifer–stream exchange fluxes. 40 

Where streams provide potable water supplies for municipal, domestic or agricultural uses, 41 

reductions in baseflow can put the security of such supplies at risk. Reductions to in-stream flow 42 

regimes and the resulting changes to water chemistry can also cause considerable negative 43 

ecological impacts. 44 
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1.1. Instantaneous streamflow depletion 45 

Traditionally, streamflow depletion metrics were conceptualized as the reduction in 46 

groundwater discharge to a stream (𝑄𝑆) resulting from continuous groundwater extraction at a 47 

rate, 𝑄𝐵, over a finite period (e.g. from 𝑡0 to 𝑡𝑓), at the final time of extraction (𝑡𝑓); i.e.: 48 

𝑄𝐼𝑆𝐷(𝑡𝑓) = ∆𝑄𝑆 =
𝑑𝑄𝑆(𝑡𝑓)

𝑑𝑄𝐵
𝑄𝐵 (1) 

where 𝑄𝐼𝑆𝐷(𝑡𝑓) is instantaneous streamflow depletion (ISD) with volumetric flow rate units. 49 

Alternatively, other studies used the ratio of ISD to volumetric extraction rate, which is unitless. 50 

Interactions between an unconfined aquifer and a stream can be conceptualized in various ways. 51 

The simplest approach involves calculating the exchange flow at a given time 𝑄𝑆(𝑡) as a 52 

function of the difference between aquifer hydraulic head, ℎ, and stream stage, ℎ𝑆; i.e.: 53 

𝑄𝑆(𝑡) = ∫ 𝐶𝑆(𝐱)

Ω

[ℎ(𝐱, 𝑡) − ℎ𝑆(𝐱, 𝑡)] 𝐴𝑆(𝐱) 𝑑𝐱 (2) 

where 𝐴𝑆 is a dimensionless function that has a value of unity along streams and zero elsewhere, 54 

and 𝐶𝑆 is a lumped parameter known as streambed conductance [L.T–1], defined as: 55 

𝐶𝑆(𝐱) =
𝐾𝑆(𝐱) 𝑊𝑆(𝐱)

𝑏𝑆(𝐱)
 (3) 

where 𝐾𝑆 is streambed hydraulic conductivity [L.T–1], 𝑊𝑆 is streambed width perpendicular to 56 

flow [L], and 𝑏𝑆 is streambed thickness parallel to flow [L]. The inclusion of the term 𝐴𝑠 in 57 

equation (2) ensures that, while integration is performed over the domain of interest, stream–58 

aquifer exchange occurs only at stream locations. When numerical solution methods are used, 59 

appropriate specification of the terms 𝑊𝑆 and 𝑏𝑆 is necessary to ensure accurate prediction of 60 

streamflow depletion (Mehl and Hill, 2010). Streambed conductance values can be estimated 61 

through inversion of simultaneous observations of stream flow, stream stage, and aquifer 62 
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hydraulic head. Alternatively, the component parameters of the streambed conductance term can 63 

be estimated independently using laboratory testing methods, such as streambed sediment 64 

particle size distribution analyses (Fox et al., 2011), or from field observations, such as falling 65 

head permeameter testing (Landon et al., 2001; Fox, 2004). Existing analytical and numerical 66 

methods of estimating ISD are summarized as follows. 67 

1.2. Analytical solutions for instantaneous streamflow depletion 68 

A vast number of analytical and semi-analytical solutions for the first-order prediction of 69 

ISD have been developed since the 1940s (Hunt, 2014; Huang et al., 2018), of which a handful 70 

have seen widespread uptake. The seminal ISD solution was derived by Theis (1941), the 71 

calculation of which was subsequently simplified by Glover and Balmer (1954). This solution 72 

featured a relatively large number of assumptions, including: the absence of a streambed 73 

conductance layer; that the stream and bore both fully penetrate the aquifer; that hydraulic 74 

properties are homogeneous; and that extraction is continuous.  75 

Theis (1941) and Glover and Balmer (1954) presented a closed-form analytical solution 76 

for the estimation of depletion of unconfined groundwater flow to a fully connected, fully 77 

penetrating stream featuring no resistance to flow (i.e. zero streambed thickness). Theis (1941) 78 

extended the Theis (1935) drawdown solution via the inclusion of an infinitely long Dirichlet 79 

boundary condition of infinitesimal width to represent a stream boundary. At the time of 80 

publication, the complementary error function had not been defined; therefore, the Theis (1941) 81 

solution was written in terms of a definite integral that required numerical evaluation. Glover and 82 

Balmer (1954) later derived a true closed-form solution using the complementary error function, 83 

which was by then widely available (Hunt, 2014). This conceptualization will hereafter be 84 

referred to as the “TGB solution”. The TGB solution describes instantaneous streamflow 85 
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depletion (𝑄𝐼𝑆𝐷) at time 𝑡 resulting from continuous groundwater extraction from time zero to 86 

time 𝑡 as: 87 

𝑄𝐼𝑆𝐷(𝑡) = 𝑄𝐵 erfc [√
(∆𝑥)2 𝑆𝑦

4 𝑇 𝑡
 ] (4) 

where ∆𝑥 is bore-stream separation distance (L), 𝑡 is the duration of time elapsed since the onset 88 

of groundwater extraction (T), 𝑇 is unconfined aquifer transmissivity (L2.T–1), 𝑆𝑦 is unconfined 89 

aquifer storage coefficient (unitless) and erfc is the complementary error function. In practice, 90 

specific yield values are used to parameterize the latter term, while a constant aquifer thickness is 91 

used to calculate an appropriate 𝑇 value. Importantly, this requires the assumption that 92 

reductions in aquifer saturated thickness due to extraction (i.e. drawdowns) are negligible with 93 

respect to total aquifer thickness. 94 

Hantush (1965) extended the TGB solution to include a relatively lower hydraulic 95 

conductivity conductance layer between the pumped aquifer and the stream (i.e. non-zero 96 

streambed thickness). The remainder of the assumptions used by the TGB solution were retained, 97 

including full aquifer penetration of both the production bore and stream. This conceptualization 98 

will hereafter be referred to as the “Hantush solution”. The Hantush solution described 99 

instantaneous streamflow depletion at time 𝑡 resulting from continuous groundwater extraction 100 

as: 101 

𝑄𝐼𝑆𝐷(𝑡) = 𝑄𝐵  {erfc [√
(∆𝑥)2 𝑆𝑦

4 𝑇 𝑡
 ] − exp [

𝑇 𝑡

𝑆𝑦 𝑅2
+
∆𝑥

𝑅
] erfc [√

𝑇 𝑡

𝑆𝑦 𝑅2
+√

(∆𝑥)2 𝑆𝑦

4 𝑇 𝑡
 ] } (5) 

where 𝑅 = 𝐾 𝑏𝑆  𝐾𝑆⁄ . 102 
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Hunt (1999) later derived a solution that accounted for the effects of a stream bed 103 

conductance layer, a partially penetrating stream, and a partially penetrating bore. This 104 

conceptualization will hereafter be referred to as the “Hunt solution”. The Hunt solution 105 

described instantaneous streamflow depletion at time 𝑡 resulting from continuous groundwater 106 

extraction as: 107 

𝑄𝐼𝑆𝐷(𝑡) = 𝑄𝐵  {erfc [√
(∆𝑥)2 𝑆𝑦

4 𝑇 𝑡
 ]

− exp [
𝜆2 𝑡

4 𝑆𝑦 𝑇
+
𝜆 ∆𝑥

2 𝑇
] erfc [√

𝜆2 𝑡

4 𝑆𝑦 𝑇
+ √

(∆𝑥)2 𝑆𝑦

4 𝑇 𝑡
 ] } 

(6) 

where 𝜆 = 𝐾𝑆 𝑏 𝑏𝑆⁄ . It is assumed that the watertable remains above the base of the stream at all 108 

times (Rushton, 1999); i.e. the stream is of losing connected type (Brunner et al., 2011). The 109 

TGB and Hantush solutions are special cases of the Hunt (1999) ISD solution. The Hunt solution 110 

is equivalent to the TGB solution as 𝑏𝑆 → 0. The Hunt solution is equivalent to the Hantush 111 

solution if 𝜆 is instead parameterized as 𝜆 = 2𝑇 𝑅⁄ = 2𝐾𝑆 𝑏 𝑏𝑆⁄ . 112 

Other ISD solutions addressed a range of unique hydrogeological conceptualisations. 113 

Unconfined conditions were most commonly simulated, although confined conditions were often 114 

assumed in order to simplify (i.e. linearize) governing equations. Solutions for leaky aquifers 115 

(Hunt, 2003; Butler et al. 2007; Zlotnik and Tartakovsky, 2008; Zlotnik, 2004) and multi-layer 116 

flow systems (Hunt, 2009; Ward and Lough, 2011; Ward and Falle, 2012) were also derived. 117 

Aquifer geometries considered included infinite (Hunt, 1999; Fox et al., 2002) or semi-infinite 118 

(Theis, 1941; Glover and Balmer, 1954; Hantush, 1965; Hunt, 2003), as well as rectangular 119 

(Chan, 1976; Huang et al., 2014, 2015), wedge-shaped (Chan et al., 1978; Yeh and Chang, 2006; 120 

Sedghi et al., 2009) or strip aquifers (Jenkins, 1968; Butler et al., 2001; Miller et al., 2007; Sun 121 
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and Zhan, 2007; Zlotnik, 2014). Bore construction geometries considered included fully 122 

penetrating bores (Theis, 1941; Glover and Balmer, 1954; Hantush, 1965) and partially 123 

penetrating bores (Hunt, 1999; Zlotnik and Huang, 1999), as well as vertical and slanted bores 124 

(Tsou et al., 2010). Constant extraction rates were typically assumed, although transient 125 

extraction was also considered, including cyclic extraction schemes (Wallace et al., 1990; 126 

Darama, 2001). Streams were typically simulated as featuring a single linear geometry, but also 127 

included multiple parallel streams (Sun and Zhan, 2007), as well as curvilinear streams (Huang 128 

and Yeh, 2015) or right-angled streams (Hantush 1967). Variations in stream penetration extent 129 

were also considered, including full aquifer penetration (Theis, 1941; Glover and Balmer, 1954; 130 

Hantush, 1965) or partial aquifer penetration (Butler et al., 2001; Chen and Yin, 2004). Various 131 

representations of streambed conductance were applied, including the use of Dirichlet conditions 132 

to represent the absence of streambed conductance (Theis, 1941; Glover and Balmer, 1954). 133 

Alternatively, Cauchy or Robin conditions were used to represent variations in streambed 134 

thickness and permeability (Hantush, 1965; Hunt, 1999).  135 

While many solutions assumed constant stream stage values, spatial and temporal 136 

variations in stream stages were also considered (Intaraprasong and Zhan, 2009; Neupauer et al., 137 

2021). Solutions that considered streams featuring finite widths were derived by Butler et al. 138 

(2001) and Hunt (2008). In addition to their use as forward models for the prediction of 139 

instantaneous streamflow depletion, analytical ISD solutions have also been used to inversely 140 

estimate hydrogeological and streambed parameters. For example, Christensen (2000) and Lough 141 

and Hunt (2006) used the Hunt (1999) and Hunt (2003) ISD solutions, respectively, to inversely 142 

estimate aquifer transmissivity and specific yield, as well as a streambed conductance term. 143 

Implementations of analytical ISD solutions are readily available in software such as 144 
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STRMDEPL08 (Reeves, 2008) and the streamDepletr package for R (Zipper et al., 2019). In the 145 

following subsections, each of the TGB, Hantush, and Hunt solutions for ISD are reviewed in 146 

detail. 147 

1.3. Numerical solutions for instantaneous streamflow depletion 148 

1.3.1. Perturbation solutions 149 

Numerical groundwater flow solutions are commonly used to assess ISD in contexts 150 

where sufficient data and/or subsurface complexity warrant the development of a numerical 151 

forward model. Numerical solutions feature far fewer assumptions than their analytical 152 

counterparts. For this reason, numerical solutions can be used to represent more complex 153 

conceptualisations and parameterizations, including irregular geometry and spatially 154 

heterogeneous parameters. Paired numerical forward models can be used to calculate ISD as the 155 

difference between aquifer–stream exchange fluxes using a perturbation approach.  156 

The perturbation approach involves solving an appropriate form of the groundwater flow 157 

equation using a defined set of parameter values; e.g. from the minimization of discrepancies 158 

between modelled and measured flow system states. Additional solutions are then obtained for 159 

each perturbation of interest. For the specific case of streamflow depletion, additional solutions 160 

would be sought for each potential extraction well location. Instantaneous streamflow depletion 161 

is then calculated as the difference in aquifer–stream exchange flux between (1) the original 162 

model and (2) each perturbed model. When using the perturbation approach to assess ISD, the 163 

number of model runs required scales linearly with the number of potential extraction locations. 164 

More generally, the perturbation approach to calculating model sensitivities is efficient for well-165 

posed inverse problems; i.e. when the number of potential states (whether forecast or hindcast) 166 
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exceeds the number of variations (e.g. in parameters, or source/sink term locations) under 167 

consideration.  168 

1.3.2. Adjoint solutions 169 

For ill-posed problems, the adjoint state approach is more efficient than perturbation 170 

approaches. In most cases, the output of a single, additional adjoint model can be post-processed 171 

to obtain multiple state sensitivities. For the specific case of streamflow depletion metrics, the 172 

adjoint approach allows estimates of ISD to be calculated for all potential groundwater extraction 173 

locations using only two models: (1) the original forward model, and (2) one additional adjoint 174 

state model. The development of the adjoint state approach across various scientific and 175 

engineering disciplines is summarized as follows.  176 

Use of the adjoint state approach to calculate the sensitivities of differential equations 177 

was first formalized for application to both linear and nonlinear systems by Cacuci (1981a, 178 

1981b). This followed a number of diverse implementations in fields such as nuclear engineering 179 

(Wigner, 1945; Weinberg and Wigner, 1958; Gandini, 1967), reservoir engineering (Jacquard 180 

and Jain, 1965; Carter et al., 1974; Chavent et al., 1975) and meteorology (Marchuk, 1975). The 181 

adjoint state approach to sensitivity analysis and optimal control has been described in 182 

monographs such as Marchuk (1994), Cacuci (2003), and Cacuci et al. (2005). Adjoint state 183 

approaches were first applied to problems in groundwater hydrology by Vemuri and Karplus 184 

(1969), Neuman and Yakowitz (1979) and Neuman et al. (1980). The framework for the 185 

application of adjoint solutions to saturated groundwater flow problems was later derived for 186 

steady (Sykes et al. 1985) and for transient (Wilson and Metcalfe, 1985) flow conditions. The 187 

method was used to calculate the sensitivities of saturated (Townley and Wilson, 1985; Wilson 188 

and Metcalfe, 1985) and unsaturated (Kabala and Milly, 1990; Lehmann and Ackerer, 1997) 189 
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groundwater flow solutions, and of solute transport solutions (Ahlfeld et al., 1988a, 1988b; 190 

Neupauer and Wilson 1999, 2001). Adjoint sensitivities were first derived for instantaneous 191 

streamflow depletion solutions by Neupauer and Griebling (2012) and Griebling and Neupauer 192 

(2013). The studies featured relatively complex, multi-layered hydrogeological flow systems 193 

featuring irregular geometries and nonlinear groundwater-surface water exchange mechanisms, 194 

as well as the evapotranspiration of shallow groundwater. The efficiency of the adjoint approach 195 

was shown to exceed that of the perturbation method by a factor of 250; i.e. by more than two 196 

orders of magnitude.  197 

1.4. Cumulative streamflow depletion 198 

The metric of instantaneous streamflow depletion represents the change in the volumetric 199 

rate of aquifer–stream exchange and therefore has units of L3.T–1. At a local scale this metric is 200 

appropriate, since it can be related to measurable rates of volumetric flow for processes located 201 

within both the stream and aquifer domains at a particular study location. However, conjunctive 202 

management of surface and groundwater resources at regional scales typically involves 203 

estimation of volumetric water balances, which are often averaged over finite (e.g. annual) time 204 

periods. This requires the integration of ISD through time, in order to estimate a total net annual 205 

volume, which can then be related to other water balance components. For this reason, an 206 

alternative metric of streamflow depletion was considered in the present study: cumulative 207 

stream depletion (CSD). This refers to the total volumetric reduction in flow from an aquifer to a 208 

stream (𝑉𝐶𝑆𝐷) resulting from continuous groundwater extraction over a finite period (i.e. from 𝑡0 209 

to 𝑡𝑓), at the final time of extraction (𝑡𝑓); i.e.: 210 

𝑉𝐶𝑆𝐷(𝑡𝑓) = ∫ 𝑄𝐼𝑆𝐷(𝑡) 𝑑𝑡

𝑡𝑓

𝑡0

= 𝑄𝐵 ∫
𝑑𝑄𝑆(𝑡)

𝑑𝑄𝐵
 𝑑𝑡

𝑡𝑓

𝑡0

 (7) 
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Cumulative stream depletion represents the cumulative volume of water that would otherwise 211 

have discharged to a stream in the absence of groundwater extraction. In comparison to the vast 212 

number of existing ISD solutions, solutions for the direct estimation of CSD do not currently 213 

existent, irrespective of whether they are solved analytically, semi-analytically, or numerically.  214 

In the present study, two new cumulative streamflow depletion solutions were derived: one 215 

closed-form analytical solution and one numerical adjoint solution. The analytical solution is 216 

suited to assessments of CSD in data poor areas or is suitable for didactic purposes. As a 217 

numerical solution, the adjoint solution features relatively fewer assumptions and is therefore 218 

suitable for assessments of CSD in data rich and/or hydrogeologically complex contexts. An 219 

additional key benefit of the adjoint solution is the ability to use a single numerical model to 220 

assess CSD resulting from any potential stressor location. 221 

2. Methods  222 

The numerical integration of analytical ISD solutions was used to provide benchmarks 223 

against which new analytical and numerical adjoint solutions were compared for three flow 224 

system conceptualizations. The Hunt (1999) analytical solution for ISD was used as the basis for 225 

derivation of a new closed-form analytical solution for CSD, which is appropriate for use in data 226 

poor investigations. A new numerical adjoint solution was also derived for the calculation of 227 

CSD, which is appropriate for use in data rich investigations. This was compared to both 228 

numerically integrated ISD solutions and the analytical CSD solution in a relatively simple 229 

application. The numerical adjoint CSD solution was also compared to numerical forward 230 

solutions in a relatively complex application. 231 
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2.1. Forward model 232 

The governing equation for groundwater flow in an unconfined aquifer featuring stream–233 

aquifer exchange and non-head-dependent flux boundary conditions (such as recharge) is:  234 

𝑆𝑦
𝜕ℎ(𝐱, 𝑡)

𝜕𝑡
+ ∇ ∙ [𝐓 ∇ℎ(𝐱, 𝑡)] −

𝐾𝑆 

𝑏𝑆
𝐴𝑆(𝐱)[ℎ(𝐱, 𝑡) − ℎ𝑆(𝐱, 𝑡)] − 𝑄𝐵 𝛿(𝐱 − 𝐱𝐵)

± 𝑁(𝐱, 𝑡) = 0  

(8) 

where ℎ is aquifer hydraulic head (L), ℎ𝑠 is stream stage (L), 𝑆𝑦 is aquifer specific yield 235 

(unitless), 𝐓 is a 3-D tensor of aquifer transmissivity (L2.T–1), 𝐾𝑠 is streambed hydraulic 236 

conductivity (L.T–1), 𝑏𝑠 is streambed thickness perpendicular to the orientation of stream–aquifer 237 

exchange (L), 𝐴𝑠 is a dimensionless function that has a value of unity along streams and zero 238 

elsewhere, 𝑁 represents non-head-dependent source/sink terms such as recharge (L3.T–1), 𝑄𝐵 239 

represents groundwater extraction (L3.T–1), and 𝛿 is a Dirac delta function. This equation can be 240 

solved using the boundary conditions: 241 

ℎ(𝐱, 𝑡) = 𝑔1(𝑡) on 𝛤1 (9) 

∇ℎ(𝐱, 𝑡) ∙ 𝐧 = 𝑔2(𝑡) on 𝛤2 (10) 

[𝛼 ℎ (𝐱, 𝑡) − 𝐓 ∇ℎ(𝐱, 𝑡)] ∙ 𝐧 = 𝑔3(𝑡) on 𝛤3 (11) 

and the initial condition: 242 

ℎ(𝐱, 𝑡 = 𝑡0) = ℎ0(𝐱) (12) 

where 𝛼 (L.T–1) represents the parameterization of a Cauchy boundary condition. 243 

2.2. Numerical integration of existing ISD solutions 244 

The numerical integration of analytical ISD solutions provided a benchmark against 245 

which other solutions were compared. The Theis, Hantush and Hunt ISD solutions were 246 

numerically integrated using Clenshaw–Curtis quadrature, which was implemented using the 247 

SciPy library for Python (Virtanen et al., 2020). Absolute discrepancies were calculated as the 248 



Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 13 of 46 

 

arithmetic difference between the results of alternative methods and those of numerical 249 

integration. Percent difference discrepancies were expressed as a proportion of absolute 250 

discrepancies calculated by numerical integration. 251 

2.3. Derivation of a new analytical solution for CSD 252 

A closed-form solution for the total volume of cumulative streamflow depletion (𝑉𝐶𝑆𝐷) 253 

resulting from continuous groundwater extraction over a finite period (i.e. from 𝑡0 to 𝑡𝑓), at the 254 

final time of extraction (𝑡𝑓) ,was derived through temporal integration of equation (6): 255 

  

𝑉𝐶𝑆𝐷(𝑡𝑓) =  𝑄𝐵 {(2 𝐺
2 + 𝑡𝑓 +

1

𝐻2
+
2 𝐺

𝐻
) erfc (

𝐺

√𝑡𝑓
) 

−
𝑒2 𝐺 𝐻+𝐻

2𝑡𝑓

𝐻2
  erfc (

𝐺

√𝑡𝑓
+ 𝐻√𝑡𝑓) −

2 (𝐺 𝐻 + 1) 

𝐻 √𝜋
√𝑡𝑓 𝑒

−𝐺2  𝑡𝑓⁄    

−(2 𝐺2 + 𝑡0 +
1

𝐻2
+
2 𝐺

𝐻
)erfc (

𝐺

√𝑡0
) 

+
𝑒2 𝐺 𝐻+𝐻

2𝑡0

𝐻2
 erfc (

𝐺

√𝑡0
+𝐻√𝑡0) +

2 (𝐺 𝐻 + 1) 

𝐻 √𝜋
√𝑡0 𝑒

−𝐻2  𝑡0⁄ } 

(13) 

where the coefficient 𝐺 is defined as: 256 

𝐺 = √
(Δ𝑥)2 𝑆𝑦

4 𝐾 𝑏
 (14) 

For the TGB case, the value of the 𝐻 coefficient is equal to infinity. In practical terms, this 257 

means that all terms in equation (13) that are a function of 𝐻 become zero-valued and can be 258 

omitted. For the Hunt case, the 𝐻 coefficient is defined as: 259 

𝐻 = √
𝜆2

4 𝑆𝑦 𝐾 𝑏
 (15) 
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For the Hantush case, the lambda parameter is defined specifically as 𝜆 = 2 𝐾𝑆 𝑏 𝑏𝑆⁄  ; therefore, 260 

the 𝐻 coefficient is defined as: 261 

𝐻 = √ 
4 𝐾𝑆

2 𝑏2

𝑏𝑆
2 (

1

4 𝑆𝑦 𝐾 𝑏
 ) =

𝐾𝑆
𝑏𝑆

√
𝑏

𝑆𝑦 𝐾
 (16) 

A comprehensive derivation of equation (13) is provided in Electronic Supplementary Material 262 

S1. If equation (13) can instead be applied as a function of time elapsed since the onset of 263 

extraction, rather than as a function of absolute time, then 𝑡0=0 and all terms dependent on 𝑡0 264 

become zero-valued. Under these conditions, equation (6) simplifies to:  265 

𝑉𝐶𝑆𝐷(𝑡𝑓) = 𝑄𝐵 [(2 𝐺
2 + 𝑡𝑓 +

1

𝐻2
+
2 𝐺

𝐻
)  erfc (

𝐺

√𝑡𝑓
)

−
𝑒2 𝐺 𝐻+𝐻

2𝑡𝑓

𝐻2
 erfc (

𝐺

√𝑡𝑓
+ 𝐻 √𝑡𝑓) −

2 (𝐺 𝐻 + 1)

𝐻 √𝜋
 √𝑡𝑓 𝑒

−𝐺2  𝑡𝑓⁄ ] 

(17) 

For a simplified conceptualization featuring a fully penetrating stream and bore in the absence of 266 

a stream bed conductance layer (i.e. which is consistent with the Theis-Glover-Balmer solution 267 

for ISD), equation (17) is not dependent on 𝐻 and therefore simplifies further to: 268 

𝑉𝐶𝑆𝐷(𝑡𝑓) = 𝑄𝐵  [(2 𝐺
2 + 𝑡𝑓) erfc (

𝐺

√𝑡𝑓
) −

2 𝐺√𝑡𝑓 𝑒
−𝐺2 𝑡𝑓⁄   

√𝜋
] (18) 

Equation (18) provides a useful upper limit for predictions of cumulative streamflow depletion. 269 

In particular, the assumptions of (a) full stream penetration and (b) zero streambed resistance 270 

will result in over-prediction of cumulative streamflow depletion, therefore ensuring that 271 

estimates are conservative. 272 

To the authors’ knowledge, these equations have not been derived previously. These expressions 273 

feature two dependent variables (i.e. ∆𝑥, 𝑡𝑓) and five parameters (𝐾, 𝑆𝑦, 𝑏, 𝐾𝑠, 𝑄𝐵), each of 274 

which are physically-based and are therefore measurable, or able to be estimated or constrained. 275 
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These equations can be implemented using scripted languages or spreadsheet software and will 276 

typically provide conservative predictions of maximum cumulative streamflow depletion, due to 277 

assumptions of full stream penetration extent, spatially uniform hydraulic properties, and (in the 278 

TGB case), the absence of a streambed conductance layer.   279 

2.4. Numerical perturbation solution for CSD 280 

The perturbation method of estimating cumulative streamflow depletion resulting from 281 

groundwater extraction at a given location and for a given duration involves the calculation of 282 

two solutions; i.e. representations of the flow system with and without the inclusion of the 283 

extraction term. The total volume of stream–aquifer exchange is calculated for each of (1) the 284 

reference case featuring zero extraction [i.e. 𝑉𝑆(𝑡𝑓; ℎ)] and (2) for the perturbed case featuring 285 

non-zero extraction [i.e. 𝑉𝑆(𝑡𝑓; ℎ, 𝐱𝐵)]. Cumulative streamflow depletion can then be calculated 286 

as the difference between these two results as: 287 

𝑉𝐶𝑆𝐷(𝑡𝑓) = 𝑉𝑆(𝑡𝑓; ℎ, 𝐱𝐵) − 𝑉𝑆(𝑡𝑓; ℎ) (19) 

2.5. Numerical adjoint solution for CSD 288 

The key benefit of the adjoint state approach is the ability to efficiently evaluate the 289 

volume of cumulative streamflow depletion resulting from extraction from a single bore at more 290 

than one potential location. Through the derivation of an appropriate adjoint model, 𝑉𝐶𝑆𝐷 was 291 

calculated as a function of the adjoint state variable (𝜓∗) which, for the present implementation, 292 

is dimensionless: 293 

𝑉𝐶𝑆𝐷(𝑡𝑓) = 𝑄𝐵 ∫ 𝜓∗(𝑡, 𝐱𝐵) 𝑑𝑡

𝑡0

𝑡𝑓

 (20) 
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where 𝜓∗ is the solution to the adjoint equation, as defined below. Full details of the derivation 294 

of equation (20) are provided in Electronic Supplementary Material S2. This expression states 295 

that, for any given extraction bore location, the performance measure can be calculated as the 296 

temporal integral of the adjoint state variable at that location. Unlike equation (19), this solution 297 

avoids the computationally expensive calculation of the sensitivity of stream–aquifer exchange 298 

(𝑄𝑆) to extraction rate (𝑄𝐵), as required by the numerical perturbation approach (Section 2.4). 299 

For this reason, CSD resulting from extraction at any potential location 𝐱𝐵 can be predicted 300 

using a single adjoint model. The governing equation for the adjoint model was defined as:  301 

𝑆𝑦
𝜕𝜓∗(𝐱, 𝜏)

𝜕𝜏
+ ∇ ∙ [𝐓 ∇𝜓∗(𝐱, 𝜏)] −

𝐾𝑆 

𝑏𝑆
𝐴𝑆(𝐱)[𝜓

∗(𝐱, 𝜏) − 1] = 0 (21) 

with boundary conditions: 302 

𝜓∗(𝐱, 𝜏) = 0 on 𝛤1 (22) 

∇𝜓∗(𝐱, 𝜏) ∙ 𝐧 = 0 on 𝛤2 (23) 

[𝛼 𝜓∗(𝐱, 𝜏) − 𝐓 ∇𝜓∗(𝐱, 𝜏)] ∙ 𝐧 = 0 on 𝛤3 (24) 

and the terminal condition: 303 

𝜓∗(𝐱, 𝜏 = 𝜏0) = 0 (25) 

where 𝛼 (L.T–1) represents the parameterization of a Cauchy boundary condition. To simplify the 304 

specification of the initial condition for the adjoint state model, the variable 𝜏 (which is equal to 305 

𝑡𝑓–𝑡) is used in place of 𝑡. Consequently, the adjoint state model is run backwards in time, from 306 

𝜏 = 𝜏0 = 𝑡𝑓 (the final time) to 𝜏 = 𝜏𝑓 = 𝑡0 (the initial time). 307 

The form of the governing equation for the adjoint state model (equation 21) is similar to 308 

that of the forward model, with the following exceptions. Recharge was omitted, since it is not 309 

dependent on the rate of groundwater extraction. The groundwater extraction term itself was 310 
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replaced by a value of unity, which was subsequently incorporated into the loading term. This 311 

source term (i.e. (𝐾𝑆 𝑏𝑆⁄ ) 𝐴𝑆(𝐱)[𝜓
∗(𝐱, 𝜏) − 1]) was applied along the length of the stream(s) of 312 

interest and is commonly known as the “loading term” in adjoint state solutions. The formulation 313 

of this term is of conceptual interest, as it can identify the model inputs to which a specified 314 

model output is sensitive. The formulation of the loading term in the present study, and the 315 

insights that it provided, are discussed in Section 5.2. Due to the similar form of the adjoint state 316 

equation (21) to the forward equation (8), it can be solved using the same numerical scheme. In 317 

the present study, the finite-difference code MODFLOW-2005 (Harbaugh, 2005) was used to 318 

solve both forward and adjoint models. 319 

Prior to numerical solution, a rescaling and offset was applied to the adjoint state 320 

variable. As described previously (Neupauer and Griebling, 2012; Griebling and Neupauer, 321 

2013), there are two reasons for this adjustment. First, for certain parameter values, the 322 

magnitude of the loading term will be small with respect to numerical solution precision. 323 

Similarly, the spatial gradient of the adjoint state in the local vicinity of the loading term may 324 

also be small in relative terms. Therefore, a scaling parameter (i.e. 𝛾) was used to increase the 325 

magnitude of the loading term. Second, depending upon the reference datum used in the vertical 326 

plane, the value of the loading term may be smaller than the specified bottom of aquifer 327 

elevation. Therefore, an offset parameter (i.e. 𝛽) was used to ensure that loading term values 328 

were always larger than bottom of aquifer elevations. The adjoint model state variable was 329 

therefore modified as: Ψ∗(𝐱, 𝜏) = 𝜓∗(𝐱, 𝜏) 𝛾 + 𝛽. The scaling parameter used here is the inverse 330 

of that used by Neupauer and Griebling (2012) and Griebling and Neupauer (2013). This 331 

alternative formulation was preferred as it better clarifies the linear transformation from 𝜓∗ to Ψ∗ 332 

during model pre-processing (and from Ψ∗ to 𝜓∗  during model post-processing). 333 
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Using a simple synthetic test case, the accuracy of the new analytical and numerical 334 

adjoint solutions for CSD were demonstrated through comparisons to an equivalent numerical 335 

forward model, as well as to the numerical integration of ISD analytical solutions for 336 

instantaneous streamflow depletion. The efficacy of the new numerical adjoint solution for the 337 

prediction of CSD in more complex contexts was subsequently demonstrated through application 338 

to a numerical groundwater flow model of the Gloucester River Basin alluvial aquifer in New 339 

South Wales, Australia. 340 

3. Synthetic demonstration 341 

Neupauer and Griebling (2012) (hereafter “N&G”) presented a conceptual model to 342 

demonstrate an adjoint solution for instantaneous streamflow depletion. This was modified to 343 

facilitate comparisons to numerical integration of analytical solutions. Specifically, the two-sided 344 

N&G solution was simplified to a single-sided solution by using a Cauchy boundary condition 345 

(BC) to represent a stream on one side of the model domain (Figure 1). Dirichlet boundary 346 

conditions were specified on all other boundaries. Model outputs were checked to ensure that 347 

inflows did not occur through Dirichlet boundaries. This arrangement of boundary conditions 348 

was consistent with an infinite aquifer extent, as assumed by the analytical streamflow depletion 349 

solutions to which numerical model results were compared. 350 

Initial hydraulic head values were set equal to the aquifer top elevation to avoid the 351 

desaturation of model cells. The stage parameter of the Cauchy boundary condition representing 352 

the stream was set equal to the aquifer top elevation to ensure equilibrium initial conditions, and 353 

therefore consistency with the analytical solutions to which results were compared. Streambed 354 

elevations were set equal to the base of the aquifer (i.e. 0 m), to ensure consistency with the 355 

assumption of full stream penetration extent used by the TGB and Hantush solutions. For the 356 



Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 19 of 46 

 

TGB conceptualization, streambed hydraulic conductivity was specified equal to aquifer 357 

hydraulic conductivity. Conversely, for the Hantush conceptualization, streambed hydraulic 358 

conductivity was specified as three orders of magnitude smaller than aquifer hydraulic 359 

conductivity. Model outputs were generated at every time step. For adjoint state model 360 

simulations, scaling and offset variables were set to 𝛾 = 10 and 𝛽 = 100 respectively. The 361 

effects of these parameters were subsequently removed during model post-processing.  362 

All numerical solutions (both forward and adjoint) were computed using the finite 363 

difference flow simulator MODFLOW-2005 (Harbaugh, 2005). The model domain was 364 

discretized using spatially uniform cell dimensions of 50 m × 50 m × 50 m, resulting in a total of 365 

100 rows and 100 columns. A simulated duration of 365 days was discretized using a uniform 366 

time step of 1 day, resulting in a total of 365 stress periods. The numerical solution was 367 

computed using the preconditioned conjugate gradient solver (Hill, 1990). Solver convergence 368 

criteria of 10–3 m and 10–3 m3.d–1 were specified for hydraulic head and flux calculations, 369 

respectively. 370 

3.1. Results 371 

For the conceptualization featuring a fully penetrating stream without a conductance 372 

layer present, numerical integration of the TGB ISD analytical solution (equation 4) was used as 373 

the basis for comparisons (Figure 2a-c). For the conceptualization featuring a fully penetrating 374 

stream with a conductance layer present, numerical integration of the Hantush ISD analytical 375 

solution (equation 5) was used (Figure 2d-f). For the conceptualization featuring a partially 376 

penetrating stream with conductance layer present, numerical integration of the Hunt ISD 377 

analytical solution was used (equation 6) (Figure 2g-i). 378 
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The analytical CSD solution was in near-exact agreement with the numerical integration 379 

of ISD solutions in all three conceptualizations (Figure 2a, 2d, 2g). In percentage terms, 380 

numerical CSD solutions were in near-exact agreement with numerical integration of ISD 381 

solutions when extraction occurred less than 3 km from the stream boundary condition (Figure 382 

2b, 2e, 2h). However, these were associated with discrepancies of relatively small magnitude 383 

(Figure 2c, 2f, 2i). Therefore, in practical terms, these percent discrepancies were not substantial. 384 

4. Real world case study 385 

To demonstrate the suitability of the numerical adjoint approach for the estimation of 386 

cumulative streamflow depletion, the method was applied to an existing numerical groundwater 387 

flow model of the Gloucester Basin, Australia. Complexities in this model included an irregular 388 

domain and river system geometry, and time-varying rates of net recharge. 389 

The Gloucester sedimentary basin is located approximately 200 km north-northeast of the 390 

city of Sydney in New South Wales, Australia. The region features a sub-tropical climate with a 391 

mean annual rainfall of 1100 mm and annual pan evaporation ranging from 1400 to 1700 mm. 392 

The Gloucester Basin contains up to 2500 m of faulted, deformed and eroded coal-bearing 393 

Permian sedimentary and volcanic rocks located along a sinuous north to northeast-oriented 394 

strike. The basin is entirely bounded by outcropping Carboniferous basement rocks. In the north 395 

of the basin the Avon River enters from the west and flows northward through the towns of 396 

Stratford and Gloucester before discharging into the Gloucester River at a confluence that also 397 

includes the Barrington River. Mean annual streamflow of 177×106 m3 occurs in the Avon River. 398 

An alluvial aquifer associated with the Avon River served as the real-world case study for the 399 

present study. This aquifer is composed of Quaternary sediments ranging in size from clays to 400 

gravels, the total thickness of which ranged up to 15 m. Mean annual diffuse net recharge to the 401 
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alluvial aquifer was estimated at 1 % of rainfall; i.e. 11 mm. Mean annual rates of 402 

evapotranspiration from shallow groundwater are estimated to range up to 50 % of rainfall; i.e. 403 

up to 550 mm. Watertable elevations are less than one metre below ground surface in locations 404 

proximal to the river. Under common flow conditions, the Avon River is characterised as a 405 

gaining system; i.e. local groundwater flows are consistently oriented toward the river and its 406 

tributaries. Limited extraction from the alluvial aquifer currently occurs for stock and domestic 407 

water supply (McVicar et al., 2014; Dawes et al., 2018; Peeters et al., 2018).  408 

The spatial extent of the alluvial aquifer was discretized using a uniform grid of 225 rows 409 

and 140 columns (Figure 3a). A total of 3850 active cells were used for model calculations, with 410 

uniform dimensions of 90 m x 90 m. While the top and bottom elevations of model cells were 411 

variable, all cells featured a thickness (and therefore maximum saturated thickness) of 15 m. A 412 

period of 120 years of extraction was simulated, which was discretized using 1440 month-long 413 

steps. Hydraulic properties were represented using uniform values, with horizontal hydraulic 414 

conductivity = 1.0725 m.d–1 and specific yield = 16 %. Time-varying net recharge was 415 

represented by applying a spatially distributed flux to each model cell, which ranged from 12 to 416 

22 mm.month–1. Groundwater discharge to the Avon River and its tributaries was represented 417 

using third-type (i.e. head-dependent) boundary conditions featuring a spatially uniform 418 

conductance value of 56 m2.d–1. (Peeters et al., 2018) (Figure 3a). Regional groundwater flow 419 

was oriented northwards and away from headwater areas (Figure 3b). All numerical solutions 420 

(both forward and adjoint) were computed using the finite difference flow simulator 421 

MODFLOW-2005 (Harbaugh, 2005), for which hydraulic head and flux convergence criteria of 422 

10–3 m and 10–3 m3.d–1 were specified respectively. Model outputs were generated at every time 423 

step. Pre- and post-processing of model outputs was undertaken using the FloPy library for 424 
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Python (Bakker et al, 2016). Additional model information, including discretization and 425 

parameterization details, are listed in Table 1.  426 

The prediction of interest for this case study was the volume of cumulative streamflow 427 

depletion resulting from groundwater extraction at a rate of 100 m3.d–1 (i.e. approximately equal 428 

to 1 L.s–1) at a single bore located in any given cell in the model domain, other than the cells 429 

representing the Avon River and its tributaries. The numerical adjoint solution was used to 430 

provide these predictions across the model domain. For comparison, predictions at a subset of 431 

locations were calculated using the perturbation approach. For adjoint state model simulations, 432 

scaling and offset variables were set to 𝛾=100 and 𝛽=200 respectively.  433 

4.1. Results 434 

Cumulative streamflow depletion volumes calculated from a total of 3850 models using 435 

the perturbation method ranged from near-zero values at model cells distant from the stream 436 

network (purple cells) to a maximum of 42.6×103 m3 at model cells adjacent to the stream 437 

network (yellow cells) (Figure 4a). In comparison, CSD volumes calculated by a single adjoint 438 

state model ranged from near-zero values to 43.1×103 m3 according to a consistent spatial 439 

structure (Figure 4b). Qualitative visual comparisons of adjoint state model results identified that 440 

orientations and magnitudes of spatial variations in CSD were consistent with perturbation 441 

method results. 442 

Percent difference values (i.e. the discrepancy between adjoint and perturbation results, 443 

normalized by the latter results) ranged from –12 % to +75 % (Figure 5a). Arithmetic differences 444 

between perturbation and adjoint method results ranged from –2×103 m3 to +16×103 m3 (Figure 445 

5b). The signs of arithmetic and percentage discrepancies were in agreement across the majority 446 
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of the model domain. Most locations featuring relatively large absolute percent difference values 447 

(i.e. >5 %) were coincident with relatively small absolute arithmetic differences (i.e. <5×103 m3). 448 

Exceptions included isolated areas where arithmetic differences were moderately large; i.e. 449 

>5×103 m3. These values were comparable in magnitude to the total volume of groundwater 450 

extracted over the simulated duration; i.e. approximately 4×103 m3. These areas were 451 

predominantly located in the eastern half of the model domain, including in some headwater 452 

areas of the Avon River catchment. However, the arithmetic discrepancy values located in these 453 

areas were small with respect to the magnitudes of water balance components. The total volumes 454 

of inflow (primarily occurring as recharge) and outflow (primarily occurring as groundwater 455 

discharge to rivers) over the simulated duration of 120 years were in the order of 1,000,000×103 456 

m3. Therefore, a maximum arithmetic discrepancy in the order of +16×103 m3 represented a 457 

small fraction of the total water balance calculated over the simulated duration of 120 years.  458 

5. Discussion 459 

The results of the two case study applications are now discussed in terms of four themes, 460 

including the computational efficiency of the numerical adjoint method and insights derived 461 

from the parameterization of the loading term in the adjoint state solution. Assumptions and 462 

limitations of the numerical adjoint solution are recognized, and potential broader applications of 463 

the numerical adjoint solution are also proposed. 464 

5.1. Computational efficiency 465 

In practical terms, the primary advantage of the adjoint state approach to CSD estimation 466 

was the substantial reduction in computational time that was achieved by avoiding the need to 467 

run a unique forward model for every potential extraction location. For the Gloucester Basin 468 

flow model, each single forward model run required approximately five seconds to achieve 469 
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numerical convergence. In addition, approximately 25 seconds were required for the automated 470 

pre- and post-processing of each model via a Python script. As the Gloucester Basin model 471 

contained 3850 active cells, the evaluation of all potential extraction locations using the 472 

perturbation approach required approximately 27 hours. In practice, the total time required when 473 

using the perturbation approach could be reduced through the use of parallel computing 474 

resources. In comparison, estimates of CSD resulting from all potential extraction locations were 475 

estimated simultaneously from a single numerical adjoint model run, which also required 476 

approximately five seconds to achieve numerical convergence. The comparatively high 477 

efficiency of the adjoint state approach is derived from the spatial integration (as implied in 478 

equation [21]) and temporal integration (as shown in equation [20]) used when defining the 479 

performance measure of interest. 480 

5.2. Insights from the definition of the numerical adjoint loading term 481 

An additional benefit of developing adjoint state solutions is the ability to derive closed-482 

form expressions for the sensitivity of a specified model output to a specified model input. For 483 

closed-form analytical solutions, similar expressions can be derived through direct differentiation 484 

of the governing equation. For more complex models which require the solution of ordinary or 485 

partial differential equations, adjoint state solutions provide a similar benefit. In the present 486 

study, the loading term contained in the governing equation for the for the adjoint state (equation 487 

21) was composed of two parameters: streambed hydraulic conductivity (𝐾𝑠) and streambed 488 

thickness (𝑏𝑠). In practice, when solving equation (21) the aquifer specific yield term is brought 489 

to the right-hand side; therefore, the loading term is effectively divided by aquifer specific yield 490 

(𝑆𝑦). The identification of these significance of these three parameters (i.e. 𝐾𝑠 , 𝑏𝑠 and 𝑆𝑦) to the 491 

estimation of CSD was consistent with past studies. Sophocleous et al. (1995) used numerical 492 
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models to demonstrate that fluxes through a third-type boundary (representing groundwater 493 

discharge to streams, for example) are most sensitive to the streambed conductance parameter. 494 

The presence of aquifer specific yield in the loading term is consistent with the influence of this 495 

parameter on the timing of responses to hydraulic perturbations more generally, as observed in 496 

pumping and slug test solutions (e.g. McElwee and Yukler, 1978). 497 

5.3. Assumptions and limitations of the numerical adjoint CSD solution 498 

It is widely acknowledged that making explicit the assumptions associated with a given 499 

model solution is best practice (Saltelli et al., 2013; Saltelli et al., 2020). Various simplified 500 

process representations were present in the Gloucester Basin forward model. A simplified 501 

representation of groundwater discharge to the Avon River and its tributaries was employed, 502 

based solely on the local stream-aquifer hydraulic gradient and mediated by a lumped 503 

conductance parameter. Additional necessary simplifications involved assuming that both (1) 504 

stream stage height and (2) unconfined aquifer saturated thickness were insensitive to extraction. 505 

However, both of these simplifications are common to many numerical groundwater flow 506 

models and are not unique to the numerical adjoint solution for CSD presented in this study. 507 

The numerical adjoint method derived and presented in the present study does rely, 508 

however, on one key assumption: the linearity of the relationship between groundwater discharge 509 

responses to variations in groundwater extraction. The linearity of this driver–response 510 

relationship underpins the adjoint state approach, which is consistent with analytical ISD 511 

solutions. Specifically, the system response to a perturbation applied at the observation of 512 

interest (in the present study, the total reduction in groundwater discharge to a stream network, 513 

summed over time) is proportional to the system response resulting from a perturbation applied 514 

at the driver of interest (in the present study, groundwater extraction). The simulation of confined 515 
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(rather than unconfined) aquifer conditions was required to ensure linearity, as was the linear 516 

parameterization of the third-type boundary conditions to represent groundwater discharge to the 517 

stream network. 518 

5.4. Potential broader applications of the numerical adjoint CSD solution 519 

The forward model also featured spatially uniform (and in some cases, isotropic) 520 

parameterizations of aquifer thickness, hydraulic conductivity, specific yield, and streambed 521 

conductance values. However, applications of the numerical adjoint solution are not limited to 522 

flow models featuring homogeneous parameterizations. Unlike many other performance 523 

functions assessed using groundwater flow models (e.g. Sykes et al., 1985; Metcalfe and Wilson, 524 

1985), the expression used to calculate CSD (equation 20) is entirely a function of the adjoint 525 

state variable. It does not depend explicitly on the results of the forward model upon which the 526 

adjoint solution is based. Nor are adjoint-based calculations of CSD explicitly dependent upon 527 

the parameterization of hydraulic properties. For these reasons, the numerical adjoint solution for 528 

CSD presented here is also appropriate for application to models featuring heterogeneous 529 

parameterizations. 530 

Two process representations were unique to the numerical adjoint solution, which related 531 

to (a) stream-aquifer interaction and (b) groundwater extraction. The Gloucester Basin flow 532 

model featured the representation of a perennial gaining stream network. The numerical adjoint 533 

solution is also appropriate for application to streams featuring non-monotonic interactions (i.e. 534 

fluctuations between gaining and losing type. Since the performance measure of interest (i.e. the 535 

volume of CSD) is a relative measure of change, it may represent any of: reductions in 536 

groundwater discharge to streams; a change from gaining to losing stream conditions; or an 537 

increase in aquifer recharge from streams. The key assumption here is that stream–aquifer 538 
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exchanges remain fully hydraulically connected, irrespective of the extraction rate and duration 539 

applied. 540 

In the present study, rates of groundwater extraction were assumed to be constant and 541 

uniform in time. The numerical adjoint solution presented here used the same temporal 542 

discretization scheme as the equivalent forward model. For this reason, the numerical adjoint 543 

solution presented is also appropriate to assess CSD resulting from discontinuous rates of 544 

groundwater extraction.  545 

6. Conclusions 546 

The traditional metric of streamflow depletion represents the instantaneous change in the 547 

volumetric rate of aquifer–stream exchange and is appropriate when applied at local scales. 548 

However, conjunctive management of surface and groundwater resources at regional scales 549 

typically involves estimation of volumetric water balances, which are often averaged over finite 550 

time periods. This requires a streamflow depletion metric that can be expressed as a total net 551 

annual volume, which can then be related to other water balance components. For this reason, an 552 

alternative metric of streamflow depletion was considered in the present study: cumulative 553 

stream depletion (CSD). This described the total volumetric reduction in flow from an aquifer to 554 

a stream resulting from continuous groundwater extraction over a finite period, at the final time 555 

of extraction.  556 

A novel analytical solution for the prediction of CSD was derived, based upon a forward 557 

solution that accounted for streambed conductance and partial stream penetration. The solution 558 

can alternatively be parameterized to represent full stream penetration. A simplified version of 559 

the analytical solution was also presented, which excluded the effects of both partial stream 560 
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penetration and streambed conductance. These analytical solutions for CSD are appropriate for 561 

use in data poor investigations and represent upper limits for CSD predictions.  562 

Separately, a novel numerical solution for prediction of CSD was presented, based on the 563 

derivation and calculation of an adjoint state solution. The accuracy and efficiency of the 564 

numerical adjoint solution was demonstrated through applications to simple and complex 565 

groundwater flow models. Numerical adjoint solution results were compared to those obtained 566 

from both (a) forward numerical models and (b) the newly derived closed-form analytical 567 

solutions. In all cases, the accuracy of numerical adjoint solutions was demonstrated. The 568 

parameterization of the loading term used in the adjoint state solution identified three parameters 569 

of relevance to CSD prediction. These were streambed hydraulic conductivity and thickness, 570 

both of which contribute to the lumped parameterization of streambed conductance, as well as 571 

aquifer specific yield, which controls the rate at which hydraulic perturbations propagate through 572 

an aquifer. These findings were consistent with past sensitivity analyses of streamflow depletion 573 

solutions (e.g. Sophocleous et al., 1995) and interpretations of hydraulic testing.  574 

The numerical adjoint method relied on the assumption that groundwater discharge 575 

responses to variations in groundwater extraction were linear. The simplified representation of 576 

unconfined conditions using confined flow was required to ensure linearity, as was the use of 577 

linear third-type boundary conditions to represent groundwater discharge to the stream network. 578 

For these reasons, the numerical adjoint approach to CSD is unsuitable for applications to 579 

circumstances in which linearized conditions are not met. These may include when extraction 580 

results in considerable variation in aquifer saturated thickness, or when stream-aquifer exchange 581 

fluxes are a nonlinear function of hydraulic gradient.  582 
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The computational advantage of the numerical adjoint solution was highlighted, where a 583 

single numerical model can be used to predict CSD impacts from all potential groundwater 584 

extraction locations in the vicinity of a gaining stream network. In comparison to the use of 585 

many forward models to calculate impacts by difference, the reduction in computational time 586 

required was equivalent to the number of potential extraction well locations. For the real-world 587 

case study presented, a substantial reduction in model run time of approximately 27 hours (i.e. a 588 

reduction of almost 100 %) was achieved. More generally, when the number of potential 589 

locations is large then similar reductions in model run times can be achieved when the adjoint 590 

state approach to CSD estimation is employed. 591 
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Figures 809 

 810 

Figure 1. Synthetic groundwater flow model boundary conditions, initial condition, and parameterization. 811 
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 812 

Figure 2. Analytical and numerical solutions for cumulative streamflow depletion (first column) and corresponding 813 

discrepancies with respect to numerical integration of ISD solutions, in percentage terms (second column) and as 814 

raw values (third column). All results are presented as functions of bore-stream separation distance. (a-c) streambed 815 

conductance layer absent (Theis-Glover-Balmer conceptualization); (d-f) streambed conductance layer present 816 

(Hantush conceptualization); (g-i) streambed conductance layer present and stream partially penetrating the aquifer 817 

(Hunt conceptualization). Extraction bore to stream distances were oriented perpendicular to the stream orientation. 818 

Abbreviations used: INT=numerical integration of analytical ISD solution; CFA=closed-form analytical CSD 819 

solution; PER=numerical perturbation-based solution; ADJ=numerical adjoint state solution, TGB=Theis-Glover-820 

Balmer solution. 821 



Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 41 of 46 

 

 822 

Figure 3. Numerical groundwater flow model of the Gloucester Basin alluvial aquifer. (a) Spatial discretization, 823 

with active cells shown in grey and stream boundary conditions shown in blue. (b) Spatial distribution of hydraulic 824 

head calculated by the forward model after 120 years of simulation. 825 



Turnadge et al.  |  Cumulative Streamflow Depletion Solutions  |  Page 42 of 46 

 

 826 

Figure 4. (a) Cumulative streamflow depletion volumes resulting from single bore extraction in the Gloucester 827 

Basin calculated via the perturbation method using 3850 forward model runs. (b) Equivalent results calculated via an 828 

adjoint state solution using a single model run. Model cells representing the Avon River network are presented as 829 

grey open squares for context. 830 
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 831 

Figure 5. (a) Discrepancies between cumulative streamflow depletion volumes calculated via the perturbation and 832 

adjoint state methods, expressed as percentage differences. (b) Discrepancies expressed instead as arithmetic 833 

differences. Model cells representing the Avon River network are presented as grey open squares for context. Note: 834 

non-uniform color bar bin sizes were used to maximize figure clarify. 835 
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Tables 836 

Table 1. Gloucester Basin groundwater flow model summary, including discretization and parameterization details. 837 

Parameter Value Units 

Spatial extent (x,y) 20.25 × 12.60 km 

Model cell size (x,y) 90 × 90 m 

Spatial extent (z) 15 m 

Model cell size (z) 15 m 

Temporal extent 120 y 

Time step length 30.4375 d 

Number of active cells 3850 cells 

Aquifer hydraulic conductivity, 𝐾 16 m.d–1 

Aquifer specific yield, 𝑆𝑦  1 %  

Streambed conductance, 𝐶𝑠 56 m2.d–1 

Extraction flux, 𝑄𝐵  100 m3.d–1 

 838 

Table 2. Table of symbols used 839 

Symbol Units Description 

𝐴𝑠 – Dimensionless function with a value of unity along streams and zero elsewhere 

𝑏 L Aquifer saturated thickness 

𝑏𝑆 L Streambed thickness 

𝐶𝑆 L2.T–1 Streambed conductance 

𝐺 – √[(Δ𝑥)2 𝑆𝑦] (4 𝐾 𝑏)⁄  

𝐻 – √𝜆2 (4 𝑆𝑦 𝐾 𝑏)⁄  

ℎ L Aquifer hydraulic head 

ℎ𝑆 L Stream stage height 

𝐾 L.T–1 Aquifer hydraulic conductivity 

𝐾𝑆 L.T–1 Stream bed hydraulic conductivity  

 𝑥 L Numerical model domain extent in x-plane 

 𝑦 L Numerical model domain extent in y-plane 

𝑁 L3.T–1 Source/sink term used in governing equation for saturated groundwater flow 

𝑄𝐵 L3.T–1 Volumetric rate of bore extraction 

𝑄𝑆 L3.T–1 Volumetric rate of aquifer–stream exchange 

𝑄𝐼𝑆𝐷 L3.T–1 Volumetric rate of instantaneous streamflow depletion 

𝑅 L 𝐾 𝐵𝑆 𝐾𝑆⁄  
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Symbol Units Description 

𝑆𝑦 – Aquifer specific yield 

𝑇 L2.T–1 Aquifer transmissivity 

𝑡𝑓 T Final time; i.e. at which groundwater extraction ceases 

𝑊𝑆 L Streambed width 

𝑉𝐶𝑆𝐷 L3 Cumulative streamflow depletion volume 

𝑉𝑆 L3 Total volume of stream–aquifer exchange 

𝐱𝐵 [L, L] Bore location vector 

𝛼 L2.T–1 Cauchy boundary condition parameter 

𝛽 – Adjoint state variable offset parameter for numerical simulation 

𝛾 – Adjoint state variable scaling parameter for numerical simulation 

𝜆 L Streambed leakance  

𝜓∗ – Adjoint state variable 

𝛹∗ – Scaled and offset adjoint state variable for numerical simulation 

𝜏 T Backwards time, with respect to the final time of simulation; i.e. 𝜏 = 𝑡 − 𝑡𝑓  
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