\(\therefore\frac{V_{\text{CSD}}}{Q_{B}}=\ \left(2\text{\ G}^{2}+t_{f}\right)\text{\ erfc}\left(\frac{G}{\sqrt{t_{f}}}\right)-\left(2\text{\ G}^{2}+t_{0}\right)\text{\ erfc}\left(\frac{G}{\sqrt{t_{0}}}\right)-\frac{2\ G\ \sqrt{t_{f}}\ e^{-\frac{G^{2}}{\text{\ t}_{f}}}}{\sqrt{\pi}}+\frac{2\ G\ \sqrt{t_{0}}\ e^{-\frac{G^{2}}{\text{\ t}_{0}}}}{\sqrt{\pi}}\)
\(-e^{2\ G\ H}\left\{\frac{1}{H^{2}}\left[e^{H^{2}t_{f}}\text{\ erfc}\left(\frac{G}{\sqrt{t_{f}}}+H\sqrt{t_{f}}\right)-e^{H^{2}t_{0}}\text{\ erfc}\left(\frac{G}{\sqrt{t_{0}}}+H\sqrt{t_{0}}\right)\right]-\frac{1}{H^{2}\ \sqrt{\pi}}\int_{t_{0}}^{t_{f}}{\ \frac{\left(\frac{G}{\sqrt{t}}-H\sqrt{t}\right)\ e^{H^{2}t}\ e^{-\left(\frac{G}{\sqrt{t}}+H\sqrt{t}\right)^{2}}\ }{t}\text{dt}}\right\}\) (24)