\(\frac{V_{\text{CSD}}}{Q_{B}}=\ \left(2\text{\ G}^{2}+t_{f}\right)\text{\ erfc}\left(\frac{G}{\sqrt{t_{f}}}\right)-\left(2\text{\ G}^{2}+t_{0}\right)\text{\ erfc}\left(\frac{G}{\sqrt{t_{0}}}\right)-\frac{2\ G\ \sqrt{t_{f}}\ e^{-\frac{G^{2}}{\text{\ t}_{f}}}}{\sqrt{\pi}}+\frac{2\ G\ \sqrt{t_{0}}\ e^{-\frac{G^{2}}{\text{\ t}_{0}}}}{\sqrt{\pi}}\)
\(-\frac{e^{2\ G\ H}}{H^{2}}\left[e^{B^{2}t_{f}}\text{\ erfc}\left(\frac{G}{\sqrt{t_{f}}}+H\sqrt{t_{f}}\right)-e^{H^{2}t_{0}}\text{\ erfc}\left(\frac{G}{\sqrt{t_{0}}}+H\sqrt{t_{0}}\right)\right]\)
\(-\frac{1}{H^{2}}\left[\text{erfc}\left(\frac{G}{\sqrt{t_{0}}}\right)-\text{erfc}\left(\frac{G}{\sqrt{t_{f}}}\right)\right]+\frac{2\ G}{\text{H\ }\sqrt{\pi}}\left\{\ \sqrt{\text{π\ }}\left[\text{erfc}\left(\frac{G}{\sqrt{t_{f}}}\right)-\text{erfc}\left(\frac{G}{\sqrt{t_{0}}}\right)\right]-\frac{\sqrt{t_{f}}\ e^{-\frac{G^{2}}{t_{f}}}}{G}+\frac{{t_{0}\text{\ e}}^{-\frac{G^{2}}{t_{0}}}}{G}\right\}\) (38)