References
Adams, C. J., & Graham, I. J. (1996). Metamorphic and tectonic
geochronology of the Torlesse Terrane, Wellington, New Zealand.New Zealand Journal of Geology and Geophysics , 39 (2),
157–180. https://doi.org/10.1080/00288306.1996.9514703
Aretusini, S., Meneghini, F., Spagnuolo, E., Harbord, C. W., & Di Toro,
G. (2021). Fluid pressurisation and earthquake propagation in the
Hikurangi subduction zone. Nature Communications , 12 (1),
2481. https://doi.org/10.1038/s41467-021-22805-w
Arp, V. D., McCarty, R. D., & Friend, D. G. (1998).Thermophysical Properties of Helium-4 from 0.8 to 1500 K with
Pressures to 2000 MPa (Technical Report No. 1334 (revised)). NIST.
Audet, P., Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2009).
Seismic evidence for overpressured subducted oceanic crust and
megathrust fault sealing. Nature , 457 , 76–78.
https://doi.org/10.1038/nature07650
Barnes, P. M., Wallace, L. M., Saffer, D. M., Bell, R. E., Underwood, M.
B., Fagereng, A., et al. (2020). Slow slip source characterized by
lithological and geometric heterogeneity. Science Advances ,6 (13). https://doi.org/10.1126/sciadv.aay3314
Bassett, D., Arnulf, A., Henrys, S., Barker, D., Avendonk, H., Bangs,
N., et al. (2022). Crustal Structure of the Hikurangi Margin From SHIRE
Seismic Data and the Relationship Between Forearc Structure and Shallow
Megathrust Slip Behavior. Geophysical Research Letters ,49 (2). https://doi.org/10.1029/2021GL096960
Bell, R., Sutherland, R., Barker, D. H. N., Henrys, S., Bannister, S.,
Wallace, L., & Beavan, J. (2010). Seismic reflection character of the
Hikurangi subduction interface, New Zealand, in the region of repeated
Gisborne slow slip events. GJI , 180 , 34–48.
https://doi.org/10.1111/j.1365-246X.2009.04401.x
Birch, F. (1960). The velocity of compressional waves in rocks to 10
kilobars: 1. Journal of Geophysical Research , 65 (4),
1083–1102. https://doi.org/10.1029/JZ065i004p01083
Bland, K. J., Uruski, C. I., & Isaac, M. J. (2015). Pegasus Basin,
eastern New Zealand: A stratigraphic record of subsidence and
subduction, ancient and modern. NZJGG , 58 , 319–343.
https://doi.org/10.1080/00288306.2015.1076862
Boisson, J.-Y., Bertrand, L., Heitz, J.-F., & Golvan, Y. (2001). In
situ and laboratory investigations of fluid flow through an argillaceous
formation at different scales of space and time, Tournemire tunnel,
southern France. Hydrogeology Journal , 9 (1), 108–123.
https://doi.org/10.1007/s100400000119
Carman, P. C. (1997). Fluid flow through granular beds. Chemical
Engineering Research and Design , 75 , S32–S48.
https://doi.org/10.1016/S0263-8762(97)80003-2
Dutilleul, J., Bourlange, S., & Géraud, Y. (2021). Porosity and
compaction state at the active Pāpaku thrust fault in the frontal
accretionary wedge of the north Hikurangi margin. G3 , 22 ,
e2020GC009325. https://doi.org/10.1029/2020GC009325
Dvorkin, J., & Nur, A. (1996). Elasticity of high‐porosity sandstones:
Theory for two North Sea data sets. GEOPHYSICS , 61 (5),
1363–1370. https://doi.org/10.1190/1.1444059
Ellis, S., Fagereng, Å., Barker, D., Henrys, S., Saffer, D., Wallace,
L., et al. (2015). Fluid budgets along the northern Hikurangi subduction
margin, New Zealand: the effect of a subducting seamount on fluid
pressure. GJI , 202 , 277–297.
https://doi.org/10.1093/gji/ggv127
Fagereng, Å., Savage, H. M., Morgan, J. K., Wang, M., Meneghini, F.,
Barnes, P. M., et al. (2019). Mixed deformation styles observed on a
shallow subduction thrust, Hikurangi margin, New Zealand.Geology , 47 , 872–876. https://doi.org/10.1130/G46367.1
Freed, R. L., & Peacor, D. R. (1989). Variability in temperature of the
smectite/illite reaction in Gulf Coast sediments. Clay Minerals ,24 (2), 171–180. https://doi.org/10.1180/claymin.1989.024.2.05
French, M. E., & Morgan, J. K. (2020). Pore Fluid Pressures and
Strength Contrasts Maintain Frontal Fault Activity, Northern Hikurangi
Margin, New Zealand. GRL , 47 , e2020GL089209.
https://doi.org/10.1029/2020GL089209
Gase, A. C., Van Avendonk, H. J. A., Bangs, N. L., Bassett, D., Henrys,
S. A., Barker, D. H. N., et al. (2021). Crustal Structure of the
Northern Hikurangi Margin, New Zealand: Variable Accretion and
Overthrusting Plate Strength Influenced by Rough Subduction.Journal of Geophysical Research: Solid Earth , 126 (5),
e2020JB021176. https://doi.org/10.1029/2020JB021176
Gassmann, F. (1951). Elastic waves through a packing of spheres.GEOPHYSICS , 16 (4), 673–685.
https://doi.org/10.1190/1.1437718
Griffiths, F. J., & Joshi, R. C. (1989). Change in pore size
distribution due to consolidation of clays. Géotechnique ,39 (1), 159–167. https://doi.org/10.1680/geot.1989.39.1.159
Hunt, J. M. (1996). Petroleum geochemistry and geology (2nd ed).
New York: W.H. Freeman.
Im, K., Saffer, D., Marone, C., & Avouac, J. P. (2020).
Slip-rate-dependent friction as a universal mechanism for slow slip
events. Nature Geoscience , 13 (10).
https://doi.org/10.1038/s41561-020-0627-9
Intera Eng. Ltd. (2011). Descriptive Geosphere Site Model . 2011:
Intera Eng. Ltd.
Kerschnitzki, M., Kollmannsberger, P., Burghammer, M., Duda, G. N.,
Weinkamer, R., Wagermaier, W., & Fratzl, P. (2013). Architecture of the
osteocyte network correlates with bone material quality: OSTEOCYTE
NETWORK ARCHITECTURE CORRELATES WITH BONE MATERIAL QUALITY.Journal of Bone and Mineral Research , 28 (8), 1837–1845.
https://doi.org/10.1002/jbmr.1927
Kobayashi, T., & Sato, T. (2021). Estimating Effective Normal Stress
During Slow Slip Events From Slip Velocities and Shear Stress
Variations. Geophysical Research Letters , 48 (20).
https://doi.org/10.1029/2021GL095690
Kodaira, S., Iidaka, T., Kato, A., Park, J.-O., Iwasaki, T., & Kaneda,
Y. (2004). High pore fluid pressure may cause silent slip in the Nankai
Trough. Science , 304 , 1295–1298.
van de Lagemaat, S. H. A., Mering, J. A., & Kamp, P. J. J. (2022).
Geochemistry of syntectonic carbonate veins within Late Cretaceous
turbidites, Hikurangi margin (New Zealand): Implications for a
mid-Oligocene age of subduction initiation. G3 , 23 ,
e2021GC010125. https://doi.org/10.1029/2021GC010125
Leah, H., Fagereng, Å., Bastow, I., Bell, R., Lane, V., Henrys, S., et
al. (2022). The northern Hikurangi margin three-dimensional plate
interface in New Zealand remains rough 100 km from the trench.Geology , 50 , 1256–1260. https://doi.org/10.1130/G50272.1
Lee, T. C., Kashyap, R. L., & Chu, C. N. (1994). Building Skeleton
Models via 3-D Medial Surface Axis Thinning Algorithms. CVGIP:
Graphical Models and Image Processing , 56 (6), 462–478.
https://doi.org/10.1006/cgip.1994.1042
Liu, H.-P., Anderson, D. L., & Kanamori, H. (1976). Velocity dispersion
due to anelasticity; implications for seismology and mantle composition.Geophysical Journal International , 47 (1), 41–58.
https://doi.org/10.1111/j.1365-246X.1976.tb01261.x
Magara, K. (1978). Compaction and fluid migration: practical
petroleum geology . Amsterdam, New York: Elsevier Scientific Pub. Co. ;
Distributors for the U.S. and Can., Elsevier North-Holland.
Maurer, C. R., Rensheng Qi, & Raghavan, V. (2003). A linear time
algorithm for computing exact Euclidean distance transforms of binary
images in arbitrary dimensions. IEEE Transactions on Pattern
Analysis and Machine Intelligence , 25 (2), 265–270.
https://doi.org/10.1109/TPAMI.2003.1177156
Mavko, G., Mukerji, T., & Dvorkin, J. (2019). The rock physics
handbook (Third edition). Cambridge, United Kingdom: Cambridge
University Press.
Mazengarb, C., & Speden, I. G. (2000). Geology of the Raukumara area.
geological map 6 60 p. + 1 fold. map, Lower Hutt: Institute of
Geological & Nuclear Sciences.
Mondol, N. H., Bjørlykke, K., & Jahren, J. (2008). Experimental
compaction of clays: relationship between permeability and petrophysical
properties in mudstones. Petroleum Geoscience , 14 (4),
319–337. https://doi.org/10.1144/1354-079308-773
Mortimer, N., Rattenbury, M., King, P., Bland, K., Barrell, D., Bache,
F., et al. (2014). High-level stratigraphic scheme for New Zealand
rocks. New Zealand Journal of Geology and Geophysics ,57 (4), 402–419. https://doi.org/10.1080/00288306.2014.946062
Neglia, S. (1979). Migration of Fluids in Sedimentary Basins1.AAPG Bulletin , 63 (4), 573–597.
https://doi.org/10.1306/2F918194-16CE-11D7-8645000102C1865D
Neuzil, C. E. (1994). How permeable are clays and shales? Water
Resources Research , 30 (2), 145–150.
https://doi.org/10.1029/93WR02930
Neuzil, C. E. (2019). Permeability of Clays and Shales. Annual
Review of Earth and Planetary Sciences , 47 (1), 247–273.
https://doi.org/10.1146/annurev-earth-053018-060437
Ortiz-Vega, D., Hall, K., Holste, J., Arp, V., Harvey, A., & Lemmon, E.
(2020). Helmholtz equation of state for helium. Journal of
Physical and Chemical Reference Data .
Passarelli, L., Selvadurai, P. A., Rivalta, E., & Jónsson, S. (2021).
The source scaling and seismic productivity of slow slip transients.Science Advances , 7 (32), eabg9718.
https://doi.org/10.1126/sciadv.abg9718
Pecher, I. A., Villinger, H., Kaul, N., Crutchley, G. J., Mountjoy, J.
J., Huhn, K., et al. (2017). A Fluid Pulse on the Hikurangi Subduction
Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas
Hydrate Stability. Geophysical Research Letters , 44 (24).
https://doi.org/10.1002/2017GL076368
Prelicz, R. M. (2005). Seismic anisotropy in peridotites from the
Western Gneiss Region (Norway): laboratory measurements at high PT
conditions and fabric based model predictions [Application/pdf].
ETH Zurich. https://doi.org/10.3929/ETHZ-A-005115293
Rabinowitz, H. S., Savage, H. M., Skarbek, R. M., Ikari, M. J.,
Carpenter, B. M., & Collettini, C. (2018). Frictional behavior of input
sediments to the Hikurangi trench, New Zealand. G3 , 19 ,
2973–2990. https://doi.org/10.1029/2018GC007633
Reece, J. S., Flemings, P. B., Dugan, B., Long, H., & Germaine, J. T.
(2012). Permeability-porosity relationships of shallow mudstones in the
Ursa Basin, northern deepwater Gulf of Mexico: MUDSTONE
PERMEABILITY-POROSITY BEHAVIOR. Journal of Geophysical Research:
Solid Earth , 117 (B12), n/a-n/a.
https://doi.org/10.1029/2012JB009438
Reisdorf, A. G., Hostettler, B., Jaeggi, D., Deplazes, G., Blaesi, H.,
Morard, A., et al. (2016). Litho- and biostratigraphy of the 250 m-deep
Mont Terri BDB-1 borehole through the Opalinus Clay and bounding
formations, St Ursanne, Switzerland.
https://doi.org/10.13140/RG.2.2.15045.04322
Roberts, R., Chace, D., Beauheim, R., & Avis, J. (2011). Analysis
of straddle-packer tests in DGR boreholes (Technical report No.
TR-08-32). Ottawa, Canada: Geofirma Eng. Ltd.
Saffer, D. M., & Bekins, B. A. (1998). Episodic fluid flow in the
Nankai accretionary complex: Timescale, geochemistry, flow rates, and
fluid budget. Journal of Geophysical Research: Solid Earth ,103 (B12), 30351–30370. https://doi.org/10.1029/98JB01983
Saffer, D. M., & Wallace, L. M. (2015). The frictional, hydrologic,
metamorphic and thermal habitat of shallow slow earthquakes. NG ,8 , 594–600. https://doi.org/10.1038/ngeo2490
Saxena, N., & Mavko, G. (2014). Exact equations for fluid and solid
substitution. GEOPHYSICS , 79 (3), L21–L32.
https://doi.org/10.1190/geo2013-0187.1
Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic
tremor at circum-Pacific subduction zones. RG , 45 , RG3004.
https://doi.org/10.1029/2006RG000208
Shaddox, H. R., & Schwartz, S. Y. (2019). Subducted seamount diverts
shallow slow slip to the forearc of the northern Hikurangi subduction
zone, New Zealand. Geology , 47 , 415–418.
https://doi.org/10.1130/G45810.1
Shreedharan, S., Ikari, M., Wood, C., Saffer, D., Wallace, L., &
Marone, C. (2022). Frictional and Lithological Controls on Shallow Slow
Slip at the Northern Hikurangi Margin. G3 , 23 ,
e2021GC010107. https://doi.org/10.1029/2021GC010107
Skempton, A. W. (1969). The consolidation of clays by gravitational
compaction. Quarterly Journal of the Geological Society ,125 (1–4), 373–411. https://doi.org/10.1144/gsjgs.125.1.0373
Sun, T., Saffer, D., & Ellis, S. (2020). Mechanical and hydrological
effects of seamount subduction on megathrust stress and slip.Nature Geoscience , 13 (3), 249–255.
https://doi.org/10.1038/s41561-020-0542-0
Sutherland, H. J., & Cave, S. P. (1980). Argon gas permeability of new
mexico rock salt under hydrostatic compression. International
Journal of Rock Mechanics and Mining Sciences & Geomechanics
Abstracts , 17 (5), 281–288.
https://doi.org/10.1016/0148-9062(80)90810-4
Tisato, N., & Marelli, S. (2013). Laboratory measurements of the
longitudinal and transverse wave velocities of compacted bentonite as a
function of water content, temperature, and confining pressure: ELASTIC
PROPERTIES OF BENTONITE. Journal of Geophysical Research: Solid
Earth , 118 (7), 3380–3393. https://doi.org/10.1002/jgrb.50252
Tisato, N., Madonna, C., & Saenger, E. H. (2021). Attenuation of
Seismic Waves in Partially Saturated Berea Sandstone as a Function of
Frequency and Confining Pressure. Frontiers in Earth Science ,9 , 641177. https://doi.org/10.3389/feart.2021.641177
Villar, M. V., Martín, P. L., & Barcala, J. M. (2005). Modification of
physical, mechanical and hydraulic properties of bentonite by
thermo-hydraulic gradients. Engineering Geology , 81 (3),
284–297. https://doi.org/10.1016/j.enggeo.2005.06.012
Vora, H. B., & Dugan, B. (2019). Porosity‐Permeability Relationships in
Mudstone from Pore‐Scale Fluid Flow Simulations using the Lattice
Boltzmann Method. Water Resources Research , 55 (8),
7060–7071. https://doi.org/10.1029/2019WR024985
Wallace, Laura M. (2020). Slow Slip Events in New Zealand. AREPS ,48 , 175–203. https://doi.org/10.1146/annurev-earth-0717190055104
Wallace, L.M., Saffer, D. M., Barnes, P. M., Pecher, I. A., Petronotis,
K. E., LeVay, L. J., & the Expedition 372/375 Scientists. (2019).Hikurangi Subduction Margin Coring, Logging, and Observatories .
College Station, TX: Proceedings of the International Ocean Discovery
Program, 372B/375. https://doi.org/10.14379/iodp.proc.372B375.102.2019
Walsh, R. (2011). Compilation and consolidation of field and
laboratory data for hydrogeological properties (DGR Site Charact. Doc.
No. TR-08-10). Ottawa, Canada: Geofirma Eng. Ltd.
Warren-Smith, E., Fry, B., Wallace, L., Chon, E., Henrys, S., Sheehan,
A., et al. (2019). Episodic stress and fluid pressure cycling in
subducting oceanic crust during slow slip. Nature Geoscience ,12 (6), 475–481. https://doi.org/10.1038/s41561-019-0367-x
Yohler, R., Bartlow, N., Wallace, L. M., & Williams, C. (2019).
Time‐Dependent Behavior of a Near‐Trench Slow‐Slip Event at the
Hikurangi Subduction Zone. Geochemistry, Geophysics, Geosystems ,20 (8), 4292–4304. https://doi.org/10.1029/2019GC008229
Yu, C., Matray, J.-M., Gonçalvès, J., Jaeggi, D., Gräsle, W., Wieczorek,
K., et al. (2017). Comparative study of methods to estimate hydraulic
parameters in the hydraulically undisturbed Opalinus Clay (Switzerland).Swiss Journal of Geosciences , 110 (1), 85–104.
https://doi.org/10.1007/s00015-016-0257-9