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Abstract16

Linking large-eddy simulations to local observations of clouds enables us to investigate17

clouds and microphysical processes and to improve our understanding as well as the re-18

spective representation in coarser models. Insights gained with large-eddy simulations19

can be applied within the development and evaluation of parameterizations for larger20

scale models, to bridge the gap between those models and the detailed local observations.21

In this study, various approaches for large-eddy simulations around local observations22

are explored and investigated with respect to remote sensing observations of clouds and23

their representation. By adding more ’realism’ to the simulations and defining a well con-24

strained setup, the representation of the daily variability at a mid-latitude site could be25

improved and shows promising results for continued research in the future. Especially26

the shown potential to investigate representativeness of column measurements will pro-27

vide new insights into the analysis and construction of observational experiments.28

Plain Language Summary29

Clouds are still a cause for uncertainty in our understanding of climate and climate30

feedbacks. Due to the large range of involved scales – from small droplets up to storm31

systems – their representation in weather and climate models is an ongoing challenge.32

While new and sophisticated measurements of the atmospheric column could provide new33

insights into important processes, their linking to models is not trivial and is ongoing34

research. In this study, we are presenting and exploring different approaches to combine35

local observations of clouds with state-of-the-art high-resolution simulations. And we are36

presenting a setup, which shows a promising representation of the observed clouds and37

is constrained enough to be applicable for long-term statistics – one of the key require-38

ments for improvements and evaluation clouds in of weather and climate models.39

1 Introduction40

Clouds and cloud feedback mechanisms have, for quite some time, contributed sub-41

stantial uncertainty to estimates of how the climate system responds to radiative forc-42

ing (Cess et al., 1990; Bony et al., 2006; Boucher et al., 2013; Stevens et al., 2016). Even43

as a new generation of climate models, with kilometer scale horizontal meshes, are show-44

ing great promise for better representing precipitation processes (Satoh et al., 2019; Stevens45

et al., 2019), clouds remain challenging to represent, with expected, but largely unquan-46

tified sensitivity to cloud microphysical processes (Stevens et al., 2020). An ability to47

accurately represent clouds in meteorological models is important for all types of weather48

forecasts, but also new application sectors such as renewable energy. For these reasons49

there has been a tremendous effort over the past decades to improve observations, sim-50

ulations, and models of cloud processes, as well as interest in new methods for harmo-51

nizing these methodologies (Schneider et al., 2017).52

In a new twist on an old approach, Schneider et al. (2017) propose to spawn mul-53

titudes of idealized large-eddy simulations for the large-scale conditions associated with54

important cloud regimes. The simulations would then be constrained by satellite data,55

and their dynamics would be learned by machines. Advances in computing, and in ma-56

chine learning, would thus allow the replication of the GCSS (GEWEX (Global Energy57

and Water Experiment) Cloud Systems Studies) approach outlined by Browning et al.58

(1993) on a massive scale. The GCSS approach, like its more modern incarnation, adopts59

the scale-separation hypothesis inherent to the parameterization problem; whereby it is60

assumed that small scale processes respond to much larger-scale forcing, to set the prop-61

erties of clouds and precipitation. This assumption gives relevance to the study of the62

dynamics of very high-resolution simulations over very small domains for large-scale con-63

ditions that are prescribed and stationary. Essentially it allows for the study of quite ide-64

alized problems, whereby heterogeneity of any kind in the forcing is neglected. The sim-65
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ulation of stratocumulus idealized from observations taken during the First ISCCP (In-66

ternational Satellite Cloud Climatology Project) Regional Experiment (FIRE) is an early67

example of this approach (Moeng et al., 1996). But over the years there have been a great68

many studies of this kind and the approach, can under some conditions yield quite sat-69

isfactory results, and remains quite popular (Holloway et al., 2014), and – forshadow-70

ing its almost industrial application as suggested by Schneider et al. (2017) – has begun71

to be applied also to routine observations from local sites (Neggers et al., 2012; Schalk-72

wijk et al., 2015).73

Parallel to these developments some groups have been experimenting with approaches74

that relax the parameterization assumption, by embedding smaller domain very high-75

resolution simulations in a more dynamic large-scale environment. Notably Chow et al.76

(2006) embedded LES in a mesoscale model to study boundary layer processes over com-77

plex terrain, an approach developed simultaneously and applied to idealized problems78

by Moeng et al. (2007). In doing so, Chow et al. (2006) noted the importance of an ac-79

curate representation of surface forcing, but also sensitivities to how the nested simu-80

lations were set up, an issue also investigated by Moeng et al. (2007). In a later, related81

study, adopting a similar approach of nesting a Large-Eddy Simulation within larger-82

scale mesoscale model, Talbot et al. (2012) also highlight the importance of the mesoscale83

meteorological forcing for the LES. These approaches make it possible to use observa-84

tions from regions, or for time-periods, where there is not a strong separation between85

the large and small scales. As computational capacity has increased it has also become86

possible to simply do away with the nesting and begin performing large-eddy simulations87

over very large domains, thereby coupling the mesoscale with the turbulence scale more88

organically, and allowing the representation of more realistic situations (Heinze, Dipankar,89

et al., 2017; Stevens et al., 2020).90

In this study, we systematically explore the trade-offs associated with some of the91

different approaches outlined above. For instance, the benefits of a large-domain which92

allows a realistic coupling between turbulent and mesoscale motions, versus a local do-93

main which might allow a tighter prescription of the large-scale flow and a higher res-94

olution representation of turbulent processes. In the latter case one can further ask how95

much additional information is imprinted by heterogeneity in the lower boundary con-96

dition, or through the open boundary conditions. To perform the study we take advan-97

tage of and expand upon the capabilities of the large-eddy simulation model configura-98

tion of ICON (ICON-LEM; Dipankar et al., 2015). ICON can be run with open lateral99

boundary conditions and a heterogeneous and complex surface over very large domains100

(Heinze, Dipankar, et al., 2017) as well as in semi-idealized mode (Heinze, Moseley, et101

al., 2017), or with the small and computationally more efficient setup as used in Marke102

et al. (2018) and Schemann and Ebell (2020). In this study, with applications such as103

the LES Symbiotic simulation and observation workflow (LASSO; W. Gustafson et al.,104

2019) in mind, we also include in our comparison suite simulations with the Dutch At-105

mospheric Large-Eddy Model (DALES; Heus et al., 2010).106

The focus of our study will be on the representation of clouds through the vary-107

ing approaches to perform LES around local observations. As a reference site for com-108

parison, we choose the Jülich Observatory for Cloud Evolution (JOYCE, Löhnert et al.109

(2015)), which provides several remote sensing observations and is surrounded by an area110

of modest heterogeneity. But in general, the setups should be applicable for different lo-111

cations and conditions.112

The manucsript is organized as follow: In Sec. 2 the different model setups as well113

as the observational basis of evaluation is introduced. This will be followed by a basic114

comparison (Sec. 3) and a discussion of the resolution dependency (Sec. 4) as well as the115

dependency on different forcing data. Further details, such as the role of the modest to-116

pography in the study area, are explored through the analysis of a specific case study117
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in Sec. 5. We conclude, as is customary with a brief summary and a restatement of our118

major findings.119

2 Model setup and Data120

Different models and model configurations (see Tab. 1) are applied to study the121

weaknesses and strengths in their ability to capture different synoptic conditions, on the122

one hand, and the details provided by measurements, on the other hand. Simulations123

are compared to observations from the measurement site JOYCE (Löhnert et al., 2015).124

In this section, the different model setups as well as the observational site and its data125

are introduced. References are provided for information already in the published liter-126

ature.127

Setup Top Domain size Horz. Mesh Boundary conditions

ICON-DE 21 km 1000 km 156 m O/Het (C)

“ “ “ 312 m “

“ “ “ 624 m “

ICON-LOC ” 20 km 78 m O/Het (C,I)

“ ” 30 km 156 m “

“ ” 60 km 312 m “

“ ” 110 km 624 m “

ICON-SI 13 km 7 km 50 m P/Hom (C)

DALES-SI 5 km 6.4 km 50 m P/Hom (I)

Table 1. Overview of the applied model setups summarizing the height of the model top, the

domain size (linear dimension), horizontal mesh size (linear dimension), and boundary conditions.

Boundary conditions are either open and heterogeneous (O/Het) and thus including different sur-

face types as well as topography, or Periodic (lateral) and homogeneous (surface) as designated

by P/Hom. Boundary conditions are provided by either COSMO-DE (C) or the ECMWF-IFS

(I).

Often the word “resolution” is used as short hand for the grid spacing. As many128

studies have shown, they are not the same thing, but the former generally scales with129

the latter, and we use the terms synonymous. In addition, at least for the ICON model130

there is also ambiguity in what is meant by grid spacing. Values given in Tab. 1, mea-131

sure the edge length of a grid-cell, which – due to the triangular grid – has to be scaled132

by a factor of 2/3 to provide an area-based resolution. Hence an edge length of 78 m cor-133

responds to a 50 m area-based resolution, however each cell has less information than in134

a rectangular grid, i.e., because the velocities are defined on cell faces, triangles come with135

three velocities instead of four. This is expected to impact (reduce) the resolution for136

a given grid spacing as compared to a quadrilateral discretization.137

2.1 Analyzed time period138

To capture different synoptic situations and investigate the overall performance as139

well as looking into specific case studies, our study focuses on 9 d of the Observational140

Prototype Experiment (HOPE; Macke et al., 2017). HOPE comprised a 2 month field141

study in the vicinity of Jülich, Germany, during April and May 2013. The time period142
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24 April 2013 to 2 May 2013 was chosen to allow the use of previously performed sim-143

ulations with the very large domain (ICON-DE). Within this period, two (relatively) clear-144

sky days were followed by a passage of a frontal system (26 and 27 April). The rest of145

the period consisted of more mixed conditions with the exception of two days with shal-146

low cumulus clouds (1 and 2 May). Hence, we can investigate the performance of the dif-147

ferent models and model configurations for different atmospheric situations.148

2.2 Realistic setup (ICON-LEM)149

What we call the ’realistic’ set-up of the ICON-LEM (Large-Eddy Model) is one150

where the simulations are subject to lateral boundary and surface conditions that attempt151

to mimic reality as closely as possible. For the surface conditions this includes both the152

specification of the topography and the land-surface properties. As a default these sim-153

ulations are initialized and forced every hour with output from the COSMO-DE, the op-154

erational numerical weather prediction model of the German Meteorological Service (Deutscher155

Wetterdienst, DWD) with a grid spacing of 2.8 km (e.g. Baldauf et al., 2011). As described156

below, both large and small domain simulations are performed using the realistic set up.157

The small domain simulations (ICON-LOC) are performed twice, once with the COSMO-158

DE forcing and once with forcing data from the Integrated Forecasting System (IFS) of159

the European Centre for Medium-range Weather forecasts (ECMWF). This allows us160

to assess the sensitivity to uncertainty in the boundary and initial data.161

The large-domain simulations (ICON-DE) cover the whole of Germany (Fig. 1, left)162

which allows mesoscale processes to develop and interact freely with smaller scale, tur-163

bulent, features as are the normal focus of LES. The simulations incorporate two nests.164

Each nest refines the grid spacing by a factor of two, and slightly reduces the size of the165

domain to smooth the change in grid-spacing at the lateral boundaries. Compared to166

the domain as a whole these transition regions are very small, and because the nesting167

is one way, this effectively provides three simulations with progressively refined meshes168

(from 624 m to 156 m) over all of Germany. The ICON-DE simulations have been per-169

formed within the HD(CP)2 project (Heinze, Dipankar, et al., 2017; Stevens et al., 2020)170

and are used as a reference. They are very computationally expensive, and thus have been171

performed only for selected days (24-26 April 2013, 2 May 2013).172

The ICON-LOC simulations are a smaller version of the ICON-DE simulations. They173

start with a domain size of 110 km and a 624 m grid mesh. They are nested three times174

with the smallest domain having a size of ca. 20 km and 78 m resolution (Fig. 1, mid-175

dle). Like the ICON-DE simulations the one-way nesting effectively results in four sim-176

ulations as described in Table 1. To reduce the computation expense and allow yet finer177

scale simulations, the domain size of each finer mesh is reduced more than is done for178

the ICON-DE simulations, combined with the smaller sizes of the domains to begin with179

this results in roughly a factor of two reduction in the domain size with each factor of180

two reduction in mesh size. An obvious advantage of the small domains is the limited181

computational demand, which allows the whole analysis period to be simulated. ICON’s182

unstructured mesh and the use of open boundary conditions made it possible to define183

a roughly circular domain, centered on the JOYCE observational site. By choosing a cir-184

cular domain the quality of the simulation should not be effected by the direction of the185

flow. Experiments were performed with domains of different sizes, but systematic dif-186

ferences were difficult to identify and this aspect of the set-up was not further explored.187

All of the ICON setups share the same set of parameterizations including a Smagorin-188

sky turbulence scheme (see Dipankar et al. (2015) for more details). For the cloud mi-189

crophysics parameterization, the two-moment scheme by Seifert and Beheng (2006) is190

used, which is based on six hydrometeor classes (liquid, ice, rain, snow, graupel, hail).191

The model nesting is for both setups one-way. This means that information is only pro-192
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Figure 1. Model domains of the different setups. Left: ICON-DE. The circle indicates the do-

main of the ICON-LOC; middle: ICON-LOC with the 4 nested domains; right: sketch for domain

size of DALES-SI (green shading), ICON-SI (blue shading) and ICON-LOC for smallest domain.

The x indicates the location of JOYCE, and the orange rectangle encloses the subdomain used in

the analysis. For ICON-DE and ICON-LOC, the colors show the topography (in m).

vided from the coarser to the finer resolutions. For both realistic configurations (ICON-193

DE and ICON-LOC) 150 levels are used, reaching up to 21 km.194

For the realistic simulations, we have different output possibilities. For most of our195

analysis we will use the “meteogram” output. This consists of quantities taken from the196

model column closest to the location of the observational site. In case of the ICON-LOC197

setup, this is the center of the domain. As it is only the output of one column, the out-198

put frequency is rather high with every 9 seconds. This output is designed to mimic how199

we observe the atmosphere with automated measurements, but it provides no (horizon-200

tal) spatial information, which is the main drawback of this type of output.201

For comparison and to investigate the question of how valid the point-to-point eval-202

uation is and how we can use models to put column observations into a 3 dimensional203

context, we also use 2D information of vertically integrated quantities. The output fre-204

quency of the 2D data for the ICON-LOC is every 10 minutes.205

2.3 Semi-idealized setup (DALES and ICON-LEM)206

What we call the semi-idealized simulations follow the more traditional way of con-207

figuring and performing large-eddy simulation. These simulations are idealized in that208

they adopt a simplified surface forcing (i.e. homogeneous land surface types) and peri-209

odic horizontal boundary conditions. In addition, the large scale forcing (both horizon-210

tal advection and subsidence) is applied in a horizontally homogeneous way, meaning that211

all columns experience the same associated tendencies. We use the term “semi-idealized”212

in this study, to point out, that we still use time-varying large-scale forcing in order to213

introduce changes in the synoptic situation – the weather – to the LES instead of stick-214

ing to one special case (Neggers et al., 2012). The ICON-LEM model also offers the pos-215

sibility to be run in a more fully idealized mode (Heinze, Moseley, et al., 2017). How-216

ever this set up is less well tested. For this reason we decided to also include results from217

a more well established model, DALES (Heus et al., 2010) . The DALES model has al-218

ready been used for semi-idealized simulations (Neggers et al., 2012) over a wide vari-219

ety of conditions (van Laar et al., 2019; Neggers et al., 2019; Reilly et al., 2020). The220

model version that has been used for this study (DALES-SI) only takes warm microphysics221

(without ice) into account.222
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Whereas the ICON-LEM semi-idealized version (ICON-SI) (Heinze, Moseley, et al.,223

2017)) is forced with COSMO-DE data, the DALES-SI is forced with IFS data. The ex-224

act construction of the IFS forcing is described by van Laar et al. (2019). For semi-idealized225

simulations, different forcing datasets can result in different atmospheric conditions. For226

our study, this is an advantage as we would like to span a rather wide range of possible227

outcomes from semi-idealized models to investigate how close they can come to obser-228

vations and how they compare to the more realistic setup. A sketch of the model domain229

of DALES-SI and ICON-SI as well as the domain size of the innermost domain of ICON-230

LOC can be seen in Fig. 1 (right).231

For the analysis of the semi-idealized simulations we mostly focus on domain mean232

output. The DALES model additionally offers the possibility to have a vertical cross-233

section output with a frequency of 30 seconds, these are used for the hydrometeor clas-234

sifications. For the ICON-LEM, we added 2D output for integrated values every 10 min-235

utes similar to what is done for the realistic setup.236

2.4 Observations (JOYCE)237

The observations used in this study were performed at JOYCE, the Jülich Obser-238

vatory for Cloud Evolution (Löhnert et al., 2015). JOYCE was founded in 2008 and be-239

came a comprehensive site for ground-based observations of the atmosphere with the main240

focus on profiling clouds, precipitation, wind, and the thermodynamic state of the at-241

mospheric column using different remote sensing methods. The observations are performed242

by several cloud and precipitation radars, a microwave radiometer, Doppler lidar, ceilome-243

ter, and various other instruments. All these measurements are performed continuously244

with a temporal resolution of less than a minute. In 2013, JOYCE was part of the HOPE245

campaign (Macke et al., 2017) where additional ground-based remote sensing instruments246

were installed in the vicinity of JOYCE to observe local variability. Observational data247

from HOPE will be used in this study.248

Since 2011, JOYCE is part of the European network Cloudnet (Illingworth et al.,249

2007) within the European Research Infrastructure for the observation of Aerosol, Clouds250

and Trace Gases (ACTRIS). The Cloudnet network consists of currently 15 stations around251

Europe which operate the combination of cloud radar, microwave radiometer and ceilome-252

ter. From these observations, Cloudnet provides many cloud properties, such as classi-253

fication (phase, precipitation), extent and liquid water/ice water content on a constant254

temporal (30 s) and vertical grid (30 m).255

3 Capturing the weather256

To enable the comparison of simulations around heavily instrumented observational257

sites, it is important to capture the general weather or synoptic conditions. These large-258

scale features should be provided by the forcing model, while the high-resolution model259

should resolve and focus on the small-scale features like turbulence and clouds within260

the given weather regime. To evaluate the representation of the general weather, we com-261

pare the integrated water vapor (IWV), which is a good measure for the synoptic struc-262

ture. As the evolution of the IWV will be dominated by the large scale forcing models263

it proves sufficient to compare this quantity from the ICON-LOC 78 m and the ICON-264

SI, as two examples covering the range of model configurations. Given that we are first265

interested in whether the general weather situation is well captured, we calculated a 30-266

minute running mean of the IWV for the period 29 April to 2 May 2013. Figure 2 (top)267

shows a good agreement of the simulated IWV and the observed one. Even though the268

information is given at the boundaries in the ICON-LOC setup, while the output is taken269

in the center, it covers nicely the increase and decrease of the IWV over the 9 d. Whereas270

the IWV is dominated by the large scales, the cloud liquid water path (LWP) provides271

an estimate of the model’s ability to represent the small scales through the the liquid272
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cloud occurrence. With respect to the liquid cloud occurrence, the simulations differ more273

markedly. ICON-LOC shows a reasonable agreement with the observations (Fig. 2 bot-274

tom) while ICON-SI often underestimates the observed LWP.275

The LWP already gives a hint on the representation of cloudy versus non-cloudy276

situations. To evaluate the representation of clouds in more detail, particularly their ver-277

tical distribution, we use the Cloudnet classification (Illingworth et al., 2007). The clas-278

sification for the model data is done by simple thresholds. If the frozen hydrometeors279

are larger than 1× 10−8 kg kg−1 the point is classified as “ice”, if the liquid water is larger280

than the threshold it is classified as “cloud droplets” and if both are larger as “ice & su-281

percooled droplets”. Similarly we use the same threshold to define the “rain” and the282

“drizzle/rain & cloud droplets” category. The Cloudnet classification of the measurements,283

which is used as the reference dataset, can be seen in the first panel of Figure 3. It pro-284

vides an overview of the varying situations, comprising clear sky days with a frontal sys-285

tem and rather fair weather conditions. Already the coarse 624 m simulation of the ICON-286

LOC setup (Fig. 3b) is able to reproduce this variability to a large extent. The higher287

resolution (78 m, Fig. 3c) seems to be beneficial mainly for its improved representation288

of shallow cumulus clouds at the end of the time period. As those clouds are strongly289

influenced by the small scales, a higher resolution improves their representation. The higher290

resolution also shows less precipitation events on 1 and 2 May 2013, which is also closer291

to the observations. The ICON-DE simulation (Fig. 3d) shows at the available days a292

similar representation of the daily variability, except for 2 May 2013, where the shallow293

cumulus clouds seem to be underestimated. We will investigate these differences further294

in section 5. Whereas the high ice clouds seem to be large-scale driven and are also nicely295

represented in the ICON-SI (DALES-SI only has warm cloud microphysics), the repre-296

sentation of the boundary layer clouds in the semi-idealized simulations deviates strongly297

from the observed conditions. The rather smooth appearance is due to the applied do-298

main average, but additionally the semi-idealized setups emphasize the response of the299

small scales to the large-scale situation. The influence of mesoscales as well as a hetero-300

geneous surface are neglected for a reduced complexity, but proves detrimental for the301

comparison to the observations. Figure 3 suggests that these external drivers play an im-302

portant role in setting the variability. For a day-to-day comparison between column ob-303

servations and simulations, the realistic simulations (ICON-DE, ICON-LOC) seem to304

be more generally suitable than the semi-idealized simulations.305

4 Methodological biases306

For the best representation of the turbulence and to facilitate comparisons with high-307

frequency measurements it is helpful to simulate the atmosphere at the finest possible308

resolution. However, limited computational resources and a desire to simulate many dif-309

ferent cases encourages the use of coarser simulation grids. The tension between these310

two demands motivates a study of the resolution dependency of our simulation output.311

A second question that arises, is the trade-off between better resolution, and the effects312

of variability associated with the local conditions of the measurement site. To the ex-313

tent the latter is less important it can be advantageous to use simpler and more com-314

putationally efficient semi-idealized set ups, which by virtue of their reduced overhead,315

would then allow simulations with higher resolution at the same cost. Finally, as a third316

question we ask to what extent small differences in the forcing condition the response.317

4.1 Resolution Effects318

4.1.1 Vertical wind319

The vertical wind is fundamental for transport, and is associated with both cloud320

and precipitation formation. Representing its variability should thus be a metric of model321

fitness. In the boundary layer it mostly measures the structure of the turbulence, and322
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Figure 2. Time series of IWV (top) and LWP (bottom) for 29 April-2 May 2013 for JOYCE.

Values are 30-min running means with observations (black), ICON-LOC with 78 m resolution

(red) and ICON-SI (green).

above the boundary layer it will be sensitive to the development of convection. For a quan-323

titative idea about the effect of resolution on the vertical wind, we compare an average324

profile of the variance of the vertical wind from the meteogram output over all nine days325

for the four different ICON-LOC simulations (Fig. 4). All the simulations capture the326

basic structure of the vertical velocity field, but especially in the turbulent boundary layer327

(up to 2 km), the benefit of a higher resolution is clear. Between 2 km to 4 km only the328

coarsest resolution differs substantially from the finer resolution simulations, and even329

this difference vanishes above 5 km height. Below 2 km, differences between the two finest330

resolutions suggest that an even higher resolution than the 78 m will be required to fully331

resolve the fluctuations in the vertical velocity. On the other side, above 5 km a 624 m332

model resolution might already be sufficient for most studies.333

4.1.2 Liquid water path334

As seen in Fig. 2, LWP is more variable and probably more sensitive to resolution335

than IWV. For the LWP, two quantities are of interest – the mean amount of cloud wa-336

ter and its variance. In Fig. 5, the difference between simulated mean (variance) and ob-337

served mean (variance) of cloud water are shown. The left panel of Fig. 5 depicts the point338

to point comparison of the meteogram output and the column observations, which shows339

for many days an improvement with increasing resolution (e.g. for the 25 or 27 April).340

The shallow cumulus days (1 and 2 May) are also rather well represented, while the dis-341

tribution of the almost clear sky or frontal system are more sensitive and difficult to cap-342

ture. For this reason, days with more than 40 % missing values or values smaller than343

1 g/m2 are highlighted. For the point measurements, we are still left with the question344

of how much of the differences between model and observations are due to hits or misses.345

To answer this question, we selected a sub-region (see Fig. 1), which is included in each346

domain of the ICON-LOC and ICON-DE and compared the domain mean of LWP for347

the different resolutions (Fig. 5, right). For the domain means, the improvement by in-348

creasing resolution can be seen in the tendency for each setup to reduce the differences349

in mean LWP and in the variance of LWP, i.e. the symbols in Fig. 5 (right) denoting higher-350
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Figure 3. CLOUDNET classification at JOYCE for 26 April to 2 May 2013 and hydrometeor

classification for varying model setups: ICON-LOC with 624 m and 78 m resolution, ICON-DE,

ICON-SI and DALES-SI (from top to bottom). Model classifications are calculated based on

a threshold of 1.0 × 10−8 kg kg−1 for the different hydrometeors. Grey color indicates missing

simulation days.
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Figure 4. Mean variance of vertical wind from ICON-LOC meteogram output for different

resolutions. The variance is calculated for each day and then averaged over all nine days (29

April-2 May 2013).

resolution are shifted progressively towards the origin (esp. 29 April or 1 May). An in-351

teresting feature can be seen at the right panel for the ICON-LOC at the 2nd of May,352

where the difference in the mean LWP is decreasing, but the difference in the variance353

of LWP is increasing. In general, the symbols on the left plot are rather clustered around354

the y-axis, while the symbols on the right plot are closer to the x-axis. This supports355

the expected improved representation of the variability of LWP by applying the meteogram356

output vs. an improved representation of the general amount by taking the domain mean.357

4.2 Representativeness of column observations358

One important question for column observations is always how representative these359

observations are for the surrounding region. By including surface heterogeneity and mesoscale360

circulations, the model has the potential to tackle this question. As our main interest361

are clouds and their representation in the model, we continue analyzing the represen-362

tativeness of LWP, as might be observed within a single column, for a larger domain, and363

vice versa. The question is how well the LWP distribution at one point compares to the364

LWP distributions of the neighboring points. To answer this, we need a measure to com-365

pare different density functions. For this we use the Hellinger distance H, which is de-366

fined as:367

H(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2 ,

where P = (p1, . . . , pk) and Q = (q1, . . . , qk) are two different discrete probability dis-368

tributions. H(P,Q) = 0 implies that the distributions are identical, while H(P,Q) =369

1 stands for completely disjunct distributions.370

We calculated H for each day and for each grid cell in a sub-region, that is con-371

tained in all 4 nests, by comparing the LWP distribution of a given grid-column to the372

reference grid-column covering the observational site. For each day the probability of the373
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Figure 5. Percentage difference of mean LWP and variance of LWP between simulations and

observations at JOYCE for each day (26 April - 2 May 2013). Model data are the meteogram

output (9-s resolution, left) and the domain mean (10-min resolution, right). The colors indicate

the different model setup, the symbols the different days. Days with more than 40 % of missing

values or values smaller than 1 g/m2 are highlighted with blue.

given grid column and the reference column is constructed from the temporal data, as374

if each measurement were an independent sample. Figure 6 shows H for each grid col-375

umn averaged over all nine days. By definition H = 0 at the reference column. Even376

though the average is presented, all resolutions show a similarly distinct regional pat-377

tern. Higher values are apparent to the East, and there also appears wind-aligned (roughly378

east-west oriented) structures of small and large H. This points out the importance of379

taking the surface and also the meteorological conditions (e.g. wind direction) into ac-380

count, as they are most likely dominating the pattern. While our statistic is still lim-381

ited, the setup could be used to determine a region for which the column observations382

are still representative. This likely depends on the meteorological regime, and for this383

a longer time period of simulations would be beneficial. Especially in regions dominated384

by topography or surface features (like the open-pit mine a few kilometers East of the385

observation site) such a study could be informative for discussions of where to set up cer-386

tain observing systems. Another application could be the investigation of changes in the387

pattern due to surface changes, created intentionally, e.g., the mining activities, or by388

climate change.389

Figure 7 shows the relative bias of the domain average of LWP with respect to the390

observed mean and the corresponding domain mean of H. The domain mean of H is used391

as a measure for the similarity between the LWP density function at the grid-cell of the392

observations and the surrounding. For H, we see two different clusters: one around H ≈393

0.25 and one with H ≈ 0.45. Additionally, there is a tendency towards larger H for larger394

mean LWP differences. So in cases where the bias is large, we also have a higher LWP395

variability within the domain and the point-to-point comparison is less representative.396

Figure 7 as well as Fig. 5 additionally show that the spread of the results for the397

different resolutions of ICON-DE is larger than for the different resolutions of ICON-LOC.398

This can most likely be explained by the more constrained forcing and setting for the399

small domains, compared to the large domains of the ICON-DE which allow for the rep-400

resentation of a wider range of scales. This can be beneficial as the mesoscale circula-401
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Figure 6. Mean Hellinger distance, H, with respect to the central cell closest to the location

of JOYCE. The Hellinger distance has been calculated for each day (26 April - 2 May 2013) and

then averaged over all 9 days.

tions have more time to evolve, but the more realistic setting, with rich mesoscale vari-402

ability, also poses additional challenges to the comparison with point measurements.403

4.3 Influence of the forcing dataset404

An important question for limited area simulations (including regional climate mod-405

els) is always the dependency on the large-scale forcing (e.g. Warner et al., 1997; Køltzow406

et al., 2011; Laprise et al., 2012). Especially the semi-idealized LES are known to de-407

pend strongly on the large-scale forcing (e.g. W. I. Gustafson et al., 2020). In this sec-408

tion, we will show that one advantage of the forcing at the open boundaries is a reduced409

dependency on the large-scale forcing. To do so we compare the previous ICON-LOC410

simulations forced with COSMO-DE with an additional set of ICON-LOC simulations411

forced with IFS data.412

Figure 8 shows the hydrometeor classification for the location of JOYCE from the413

COSMO-DE and the IFS, the two models used to create the local forcings. The two fore-414

cast systems produce a similar picture of the synoptic situation (cf. Fig. 3a), something415

also shown by Barthlott and Hoose (2015), but differ substantially in their details. These416

differences are most pronounced in the lower atmosphere (below 4 km) where the IFS417

forcing supports the development of more liquid and mixed-phase clouds and precipi-418

tation in the lower boundary layer as compared to both COSMO-DE and the Cloudnet419

observations. The better representation of the lower atmosphere by the COSMO-DE sim-420

ulations is, by virtue of its much finer resolution to be expected. Our point here is not421

which system is better, but to then ask to what extent the LEM simulations inherit the422

differences apparent in the forcing data sets.423

Despite differences in the host models used to produce the forcing datasets, the re-424

sults of the ICON-LOC simulations forced with COSMO-DE and IFS, respectively (Fig. 9),425

compare very well to each other. Thus, the differences in the forcing seem to be reduced426

through the high-resolution setup. The simulations forced by the IFS seem to have an427

slightly enhanced precipitation frequency, suggesting that the higher amount of clouds428

and precipitation in the IFS itself, may be partially forced. Past work has shown, in other429

context, that large differences can occur, as shown for an example in case of Arctic mixed-430

phased clouds (Schemann & Ebell, 2020). We speculate that this reflects a reduced role431

for surface driven turbulence and the complexity of mixed-phase clouds in those situa-432

tions. In the present context of early summer convection over land, the results seem less433

sensitive to the forcing. The more realistic set-ups, which admit a larger role for the mesoscale,434

may also make the results less sensitive to the large-scale forcing.435
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Figure 7. Absolute value of the difference (%) of domain mean LWP between simulations

and observations at JOYCE and domain mean Hellinger distance for each day (26 April - 2 May

2013). Red indicates the two days without observed liquid clouds, and cyan the frontal day,

which includes a large uncertainty in the measurements.

Figure 8. Hydrometeor classification at the location of JOYCE for 26 April to 2 May 2013

from the COSMO-DE forcing data (hourly data, top) and the IFS forcing data (hourly data,

bottom). Model classifications are calculated based on a threshold of 1 × 10−8 kg kg−1 for the

different hydrometeors.
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Figure 9. Hydrometeor classification at the location of JOYCE for 26 April to 2 May 2013

from ICON-LOC at 78 m resolution forced with COSMO-DE (top) and IFS (bottom). Model

classifications are calculated based on a threshold of 1 × 10−8 kg kg−1 for the different hydromete-

ors.

5 Case study - Zooming in on 2 May 2013436

While large-scale forcing always plays a role, especially idealized LES are useful for437

highlighting particular features in a general way - e.g. shallow cumulus convection. In-438

deed, that is the purpose of the idealization. For this reason, we will focus in this sec-439

tion on 2 May 2013 where a convectively driven boundary-layer development topped with440

afternoon shallow cumulus was observed. This situation is typical of the type of situa-441

tion often studied with LES, and the enhanced homogeneity is better suited for the ap-442

plication of ICON-SI and DALES-SI, allowing them to be compared to the more real-443

istic set-ups in the most favorable manner possible. Our analysis focuses on the devel-444

opment of the cloud field, and at the end explores to what extent differences between445

the ICON-LOC and ICON-SI/DALES-SI can be explained by the influence of topogra-446

phy alone.447

5.1 Hydrometeor classification448

A more detailed assessment of the cloud classification of 2 May 2013 (Fig. 10) shows449

that all model setups can capture the typical shallow cumulus clouds during mid-day.450

The cloud classification based on domain averages – for the semi-idealized (Fig. 10e,f)451

as well as for the realistic setup (Fig. 10d) – accentuates the cloud features. This is par-452

ticularly pronounced for the case of the boundary layer cloud development; the semi-idealized453

cases emphasize the canonical development of the convective boundary layer with a grow-454

ing cloud layer between approximately 12 noon and 4 pm (cf., Brown et al., 2002). In the455

meteogram output of the realistic setups (Fig. 10a,b), the clouds are more scattered through-456

out the day and their representation seems to improve with resolution. The 78 m sim-457

ulation with the ICON-LOC shows a cloud structure that is most similar to the observed458

clouds – suggesting that indeed as more detail is added to the turbulent flow and the sur-459

face representation, the simulations more closely approximate the observations.460

Also the clouds near the surface in the morning are apparent in the more realis-461

tic simulations, but either not apparent or distorted by the semi-idealized framework.462

Wind lidar measurements (not shown) suggest these to be decoupled from the surface.463

The absence of these clouds in the ICON-SI and their prevalence in DALES-SI suggests464

that these clouds are likely driven by differences in the large-scale flow, as DALES-SI is465

forced by the IFS and the ICONS-SI by COSMO-DE.466
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Figure 10. Hydrometeor classification at JOYCE for 2 May 2013. a) CLOUDNET. Me-

teogram output of b) ICON-LOC with 78 m resolution and c) ICON-DE. Results based on

domain mean profiles of d) ICON-LOC with 78 m resolution, e) ICON-SI and f) DALES-SI.

Model classifications are calculated based on a threshold of 1 × 10−8 kg kg−1 for the different

hydrometeors.
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For the ice clouds on 2 May 2013, more systematic differences occur. In the very467

early morning, all realistic simulations with COSMO-DE forcing (Fig. 10b-d) show some468

ice clouds between 7 and 11 km height which are not seen in the observations. These sim-469

ulated ice clouds are related to ice clouds which have been observed late in the evening470

on the previous day and linger longer in the simulations than they did in reality. The471

high ice cloud seen by the observations between 7 pm and midnight on 2 May 2013 is472

well captured by the realistic setups but missed by the semi-idealized models. This is473

reasonable for DALES-SI as it was run without ice-microphysics, but ICON-SI uses the474

same 2-moment microphysics scheme as ICON-LOC. Probably this ice cloud is due to475

inflow at the domain boundaries and not captured by the mean nudging profile. Addi-476

tionally, all realistic setups have ice/mixed-phase clouds at a height of around 4 km in477

the afternoon, which are not seen by the observations. These simulated ice clouds might478

trigger the precipitation development around 4 and 5 pm in ICON-LOC and ICON-DE479

which is not observed either. The ICON-DE setup produces even more ice clouds than480

the ICON-LOC, which leads especially for the coarse resolution to even more precipi-481

tation.482

Based on these analyses, the early boundary layer clouds are probably due to in-483

flow into the boundary, the mid-day clouds due to typical boundary layer development484

and the afternoon clouds due to the influence by the topography which will be analyzed485

in more detail in Sec. 5.3.486

5.2 Horizontal LWP variability487

As seen in the previous section, it is difficult to establish if a disagreement between488

observations and simulations is due to physical reasons or due to a displacement in space489

or time. For liquid clouds, the assessment of the two-dimensional output of LWP can pro-490

vide some insights here. We thus selected a sub-domain that is included in all domains491

of the ICON-LOC and ICON-DE setups and counted all time steps with LWP greater492

than 1 g/m2 between 11 am and 1 pm on 2 May 2013. Figure 11 shows the occurrence493

of liquid clouds in the selected domain for ICON-LOC (156 and 78 m), ICON-DE and494

ICON-SI. Indeed, the ICON-LOC simulations show clearly more liquid cloud cases than495

the ICON-DE 156 m simulations. However, by far the most liquid clouds are counted for496

the ICON-SI simulation. For the ICON-LOC simulations, the amount of clouds around497

JOYCE (central point) is increasing with increasing resolution. The two-dimensional pic-498

ture shows that the underestimation of the mid-day boundary layer clouds on 2 May 2013499

for ICON-DE at 156 m resolution (Fig. 10) is not simply due to a misplacement of the500

clouds. Overall the comparison gives the impression, that at least for this case, enhanced501

spatial variability reduces cloudiness.502

5.3 Topography experiment503

To test the hypothesis that the afternoon clouds are less synoptically, and more to-504

pographically, driven, we performed a sensitivity experiment with ICON-LOC at 624 m505

resolution where the topography (Fig. 1, middle) has been removed. For this, the sur-506

face height was set to 110 m in all grid cells which is approximately the surface height507

at JOYCE. This reduces the influence of the topography, even though some trace of it508

will still be present in the forcing, e.g., pressure profiles or humidity gradients. The com-509

parison of the hydrometeor classification between the runs with and without topogra-510

phy (Fig. 12) supports our hypothesis that the topography mainly influences the after-511

noon boundary layer clouds. While the morning and mid-day clouds are almost not at512

all influenced by the change in the topography, the afternoon clouds disappear in the model513

run without topography. The result is a litte surprsing, because the semi-idealized frame-514

works also lack topography but have a very strong development of fair-weather cumu-515

lus in the afternoon. We suspect that the presence of topography either contributes to516

the moistening or deepening of the boundary layer in ways that support cloud develop-517
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Figure 11. Number of timesteps per gridcell with LWP > 1 g/m2 between 11 am and 2 pm

(18 timesteps) for selected model setups.
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Figure 12. Hydrometeor classification at JOYCE for 2 May 2013 for ICON-LOC with 624 m

resolution and a) the default topography and b) no explicit topography. Model classifications are

calculated based on a threshold of 1 × 10−8 kg kg−1 for the different hydrometeors.

ment. Further experiments, not shown, but with less extreme changes in topography sup-518

port this finding. In the realistic configuration of the model cloudiness increases with the519

strength of the topographic forcing. In someways this finding is counter to what we found520

previously, whereby the inclusion of mesoscale variability as we progressively transition521

from the semi-idealized to the large-domain ICON-DE simulations (e.g., Fig. 11), led to522

a reduction in cloudiness. It suggests that the enhanced cloudiness of the semi-idealized523

simulations is if anything understated by virtue of their missing topographic forcing.524

6 Summary and Conclusion525

With the ongoing evolution of observational and computational capabilities, the526

interest to compare high-resolution simulations and observations on a day-to-day basis527

has grown (e.g. van Laar et al., 2019; W. I. Gustafson et al., 2020). Such comparisons528

are difficult if the models exhibit large biases in the representation of the synoptic set-529

ting. In this study, we compared three different approaches for bringing models together530

with observations from a fixed ground location: the traditional semi-idealized LES (ICON-531

SI, DALES-SI), defined as simulations without externally imposed heterogeneity, neither532

at the surface, nor in the forcing, the more realistic setup on a very large domain (ICON-533

DE), and the realistic setup on a small and constrained domain (ICON-LOC). By an-534

alyzing a 9-day period in spring 2013 (26 April - 2 May 2013) in Germany, we could point535

out advantages and disadvantages of the various setups.536

The semi-idealized LES are designed to emphasize particular flow features, this leads537

to a distortion – usually by over-emphasis – of those features as compared to what is ob-538

served. Especially for the shallow cumulus days, they produce, as expected, cumulus clouds539

on top of a well-mixed boundary layer. These setups may be suitable to analyze processes540
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but are less well adapted to assessing their compatibility with observations, particularly541

over land sites with even modest heterogeneity.542

The more realistic setups that take these effects into account by incorporating lat-543

eral boundary conditions from NWP models and a heterogeneous surface capture the544

different atmospheric conditions of the 9-day period: they show a reasonable represen-545

tation of the general cloud structure, including height, time and phase. Especially for546

the days when small-scale processes are more important – as the mentioned shallow-cumulus547

days – higher resolution and smaller domains are beneficial for a better cloud represen-548

tation. In initiating this study we expected that the very large domain of the ICON-DE549

would lead to the best results, due to the possibility of freely evolving meso-scale pro-550

cesses. As we learned, this free evolution causes some drawbacks. It seems that a more551

constrained and smaller domain allows for a tighter control on the synoptic situation,552

and may be the preferred choice if the aim is a better comparison to observations with553

point measurements from the surface.554

Another advantage of the small domain is the relatively low computational demand,555

which makes it possible to run enough simulations for a statistical analysis and to in-556

vestigate sensitivities by additional experiments. We shortly touched the issue of rep-557

resentativeness, which is a longstanding question for column observations and also gains558

importance due to specific output strategies, such as the meteogram output used in much559

of our analysis. A small domain setup as the ICON-LOC provides a reasonable repre-560

sentation of the cloud structure and can be used to tackle the question of representative-561

ness in the future by using long-term simulations and e.g. analyzing measures as the Hellinger562

distance to compare distributions of atmospheric variables at different points in space563

and time.564

We highlighted the importance of including a realistic topography in the high-resolution565

simulations by means of a sensitivity study. Such model experiments are not limited to566

changes in topography but also can be applied to changes of other surface properties,567

e.g. land cover, which can either be natural or man-made. The potential of the model568

to characterize the impact of such changes will play a large role in future research.569

By comparing three different model setups with column observations, we showed570

the advantages and disadvantages of the different setups. An encouraging aspect of the571

exercise was that as more ’realism’ was added, either by the inclusion of finer scales of572

turbulence or through more realistic boundary conditions, the simulations more closely573

approximated the observations. Simulations over a realistic domain localized around the574

observational site appear to be a computationally expedient and effective way to bring575

modelling and observations together to develop understanding the physics underpinning576

how condensate forms and is distributed within atmospheric circulations.577

Acknowledgments578

The project HD(CP)2(High Definition Clouds and Precipitation for advancing Climate579

Prediction) was funded by the German Federal Ministry of Education and Research within580

the framework programme “Research for Sustainable Development (FONA)” under the581

numbers 01LK1501 – 01LK1508A and 01LK1509A. The authors gratefully acknowledge582

the computing time granted on the supercomputer MISTRAL at Deutsches Klimarechen-583

zentrum GmbH (DKRZ) through its Scientific Steering Committee (WLA). Data were584
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