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Key Points:6

• Dynamical downscaling at ∼ 1 km resolution produces reliable estimations of ex-7

treme rainfall but is computationally expensive.8

• Machine learning (ML) makes smart dynamical downscaling (SDD) possible, where9

ML models filter out irrelevant large-scale patterns.10

• We demonstrate that SDD can be enabled by support vector machines or deep neu-11

ral networks, of which the latter performs better.12
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Abstract13

The projection of extreme convective precipitation by global climate models (GCM) ex-14

hibits significant uncertainty due to the coarse resolution of GCMs, which cannot resolve15

fine-scale processes. Direct dynamical downscaling (DDD) of regional climate at convection-16

permitting resolutions (∼ 1 km) provides valuable insight into the potential changes in17

extreme precipitation, but its computational expense is formidable. Here we document18

the effectiveness of machine learning in enabling smart dynamical downscaling (SDD),19

which performs downscaling only for a small subset of GCM data. Trained with reanal-20

ysis and satellite data for three Asian cities, support vector machines can filter out ap-21

proximately 87% to 94% of circulation data, which are irrelevant to extremes. Deep con-22

volutional neural networks, trained with larger data sets, can filter out more than 97%23

of circulation data and in the selected subset, retrieve 72% to 81% of the circulation pat-24

terns responsible for extreme events (rain intensity higher than the 99th percentile).25

Plain Language Summary26

Climate scientists use supercomputers to simulate the climate and predict how it27

may change under global warming. Extreme precipitation, which can disrupt the soci-28

ety by causing disasters like floods and landslides, is of great interest in climate stud-29

ies. However, replicating severe rainstorms on a supercomputer, especially those in trop-30

ical and subtropical areas, is not easy because those rainstorms often contain fine-scale31

details that cannot be represented confidently without an extensive amount of compu-32

tational resource. If we use computationally cheap computer models to simulate those33

rainstorms, we obtain results with substantial uncertainties. If we use computationally34

expensive ones, we cannot simulate many scenarios, and thus cannot be confident about35

the results. The power of machine learning in pattern recognition is here used to help36

modelers use their computational resources more efficiently. Instead of simulating all kinds37

of weather events, including unimportant ones, at high resolutions, we use machine learn-38

ing algorithms to search coarse resolution climate data for those large-scale weather pat-39

terns that are more likely to cause severe rainstorms. Then modelers can make more ef-40

ficient use of supercomputing resources by simulating impactful weather events only and41

advance our understanding of extreme precipitation.42

1 Introduction43

Extreme precipitation events often disrupt the society by causing disasters such as44

floods and landslides. Thus, predicting the response of precipitation extremes to global45

warming is crucial for our adaptation to climate change. However, predicting such changes46

is not straightforward because the performance of numerical simulation of extreme pre-47

cipitation events is sensitive to model resolution (Li et al., 2018; Van Der Wiel et al., 2016),48

while grid spacings of current-generation climate models are still at a coarse ∼ 1◦ res-49

olution in the horizontal. Previous studies have demonstrated that to accurately predict50

future changes in extreme precipitation events, especially those associated with severe51

convection, it is necessary to resolve local storm dynamics with kilometer-scale resolu-52

tions, which are the so-called convection-permitting resolution (Kendon et al., 2014, 2017).53

Such high model resolution is necessary not only because of the small spatial scale of con-54

vective cells, but also because the essential roles played by the interaction between con-55

vection and large-scale dynamics, air-sea coupling, and topographic forcing in determin-56

ing the intensity of extreme events (Nie et al., 2016; Kendon et al., 2017; Rainaud et al.,57

2017).58

Modelers have been attempting to refine the resolution of global climate models,59

but the highest resolution so far is only ∼ 25 km (Haarsma et al., 2016). A direct dy-60

namical downscaling (DDD) approach has been adopted in the regional climate simu-61

lations at convection-permitting resolutions and valuable findings have been obtained62

–2–



manuscript submitted to Geophysical Research Letters

due to improved representation of fine-scale processes (Prein et al., 2015). For example,63

Prein et al. (2017) found that under the RCP8.5 scenario, the strengthening of precip-64

itation intensity and the expansion of impact area will combine to give 80% increases65

in the total precipitation volume of mesoscale-convective systems in the US. However,66

DDD at the convection-permitting resolution has a very high demand on computational67

resources (Prein et al., 2015).68

Is there a way to avoid the expensive computational cost of long-term DDD but69

still allow a convection-permitting resolution to be used? This question is the core prob-70

lem we want to address in this study. When our concern is not the mean climate but in-71

stead a special kind of weather (e.g., extreme precipitation), we can save a tremendous72

amount of computational resources if we do not have to perform the DDD for every day73

of an extended period. In this study, we harness the power of machine learning to ful-74

fill the goal of selecting a small subset of GCM data for the dynamic downscaling of ex-75

treme precipitation events. We call this modeling strategy smart dynamical downscal-76

ing (SDD).77

Machine learning has been increasingly used in geoscience in recent years. In the78

atmospheric science community, it has applied to real-time nowcasting (Han et al., 2017;79

McGovern et al., 2017), physical parameterization (Brenowitz & Bretherton, 2019; Gagne80

et al., 2020), and weather forecast (Weyn et al., 2019; Chattopadhyay et al., 2020). Here81

we harness the power of machine learning in pattern recognition to enable SDD. Because82

previous studies have suggested that the exact strengthening rate of extreme precipita-83

tion mostly relies on dynamic, instead of thermodynamic, response to warming (Lenderink84

& Van Meijgaard, 2008; Shi & Durran, 2016; Pfahl et al., 2017), such an SDD approach85

is urgently needed for fully utilizing the information from GCM simulations to explore86

the effect of changes in large-scale eddy circulations on extreme precipitation.87

2 Data and Methods88

2.1 Reanalysis and Satellite Data89

In this study, we train machine learning models with reanalysis data of circulation90

and satellite data of precipitation. We use the NCEP/NCAR Global Reanalysis Prod-91

ucts (Kalnay et al., 1996) to represent the state of the atmospheric circulation. This data92

set has 2.5◦ × 2.5◦ horizontal resolution. Though the original data set is available on93

17 pressure levels, we use only the lowest 8 vertical levels between 1000 hPa to 300 hPa94

in this study. The variables we use to depict the large-scale circulation include 7 three95

dimensional variables: geopotential height, relative humidity, temperature, u- and v-components96

of horizontal wind, vertical (pressure) velocity, and vorticity. For the training of support97

vector machine (SVM) models, we also included 3 additional single-level variables — sur-98

face pressure, tropopause pressure, and precipitable water. The temporal resolution of99

the reanalysis data is 6 hours. The period we used from the reanalysis data is June 2000100

to May 2019.101

The precipitation data we used is the final precipitation, Level 3 data of the Inte-102

grated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM IMERG;103

Huffman et al., 2019). This data set has 0.1◦ spatial resolution and 30 min temporal res-104

olution originally. We used the data set between the period of June 2000 to May 2019.105

Because the reanalysis data has 6-hour temporal resolution, we average the GPM data106

in time to get the mean precipitation rate in the 6-hour intervals between two consec-107

utive time slices of reanalysis data. To make it represent impactful events, we also av-108

erage the precipitation data spatially to obtain coarse-grained data on a 0.5◦×0.5◦ grid.109

The precipitation data from reanalysis was not used in this study because they only110

represent precipitation from large-scale circulation and have a significant bias. Supple-111

mentary Figure S1 shows the histogram of precipitation intensities and the temporal dis-112
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tribution of extreme precipitation events for the grid point nearest to Hong Kong in re-113

analysis and GPM data. From Figure S1a, it is evident that the reanalysis data signif-114

icantly underestimate the rain rates of intense precipitation events. Figure S1b suggests115

reanalysis cannot represent the correct timing of extreme events either. The satellite data116

suggest that extreme precipitation events peak in May and June, consistent with rain117

gauge observation (Su et al., 2019). In contrast, reanalysis data exhibit peak season of118

extreme rainfall from July to September.119

Our application of machine learning focused on the area surrounding three Asian120

cities, Hong Kong (HK), Manila (MN), and Singapore (SG). In the training of support121

vector machines (SVM), the input to one SVM are the circulation data (7 three-dimensional122

variables and 3 two-dimensional variables) in a 15◦×15◦ region centered at one of those123

three cities. Each time slice of the reanalysis data is categorized as producing “signif-124

icant rain” or “no significant rain”, “light rain” or “heavy rain”, based GPM precipita-125

tion in the next 6 hours at the 0.5◦×0.5◦ cell centered at the same city. The SVMs were126

trained to predict the correct categories from the large-scale circulation data.127

In our application of convolutional neural networks (CNN), we identified three “use-128

ful” regions surrounding each of those three cities. Those regions share similar dynamic129

characteristics of rainy weather and gave us larger data sets for training CNNs. 6-hourly130

precipitation data of each 0.5◦×0.5◦ cell within a “useful” regions are used to catego-131

rize the corresponding time (the beginning of 6-hour intervals) and location as produc-132

ing “extreme rainfall” or “non-extreme rainfall”. The input data for CNNs are the cir-133

culation data (7 three-dimensional variables) in 15◦×15◦ square regions centered at each134

of the 0.5◦ × 0.5◦ rainfall data cells within a “useful” region.135

2.2 Support Vector Machine (SVM)136

SVM is a machine learning model for binary classification problems. At its core,137

SVMs find a hyperplane in the feature space of data and separate points in the feature138

space into two different groups. The hyperplane in feature space is defined as the set of139

points x satisfying140

w · x + b = 0 (1)141

where the vector w and scalar b for the best hyperplane are determined by an optimiza-142

tion procedure which maximizes the margin between two classes in feature space. For143

a linearly separable problem, w and b are entirely determined by those sample points144

that are closest to the best hyperplane. Those sample points are called support vectors.145

When the data are not linearly separable, one can use a soft margin technique to allow146

a small number of instances to be misclassified.147

Furthermore, in nonlinear classification problems, it is common to use a kernel func-148

tion to replace dot product for operating the optimization algorithm in a transformed149

feature space implicitly. In our application, we used the Gaussian radial basis function,150

G(xi,xj) = exp

(
−||xi − xj ||2

2σ2

)
(2)151

where
√

2σ is called kernal scale. Besides σ, the other hyperparameter for training an152

SVM is the box constraint which appears in the soft margin formula and decides the tol-153

erance level of misclassification by the SVM.154

We used MATLAB R2019a in our study to train SVMs with 10-fold cross-validation.155

The hyperparameters were tuned using Bayesian optimization.156
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2.3 Convolutional Neural Network (CNN)157

In its essence, a neural network transforms the signal from one layer of neurons to158

the next through a linear transformation and the use of a nonlinear activation function,159

z[k] = W[k]a[k−1] + b[k] , a[k] = g[k](z[k]) (3)160

where a[k] is the activation of Layer k, W[k] is a weight matrix, and b[k] is a bias vec-161

tor. g[k] is a non-linear activation function. For Layer 0, the activation a[0] is simply the162

vector of input data x. A fully connected layer in a deep neural network connects ev-163

ery neuron in the previous layer to every neuron in the current layer. A convolution layer,164

by contrast, has multiple filters, which are used to convolve a sub-block of the activa-165

tion data from the previous layer and connect that subset of neurons in the previous layer166

to a neuron in the current layer.167

We again used MATLAB R2019a to train the CNNs in this study. 75% of input168

data were used to train the models and 25% used for cross-validation. The stochastic169

gradient descent with momentum (SGDM) method was used to find the optimal weights170

and bias of the CNNs.171

2.4 Performance Metrics172

In the training of SVMs and CNNs, algorithms try to achieve the highest classi-173

fication accuracy. However, because extreme precipitation events are only a small frac-174

tion of the entire data set, the accuracy of trained models always appears intuitively high.175

Thus, in our discussion below, we report the performance of trained models in terms of176

precision and recall.177

The precision is usually defined as the number of true positive instances divided178

by the number of true and false positive instances. The recall is usually defined as the179

number of true positive instances divided by the number of true positive and false neg-180

ative cases. However, because the distribution of rain intensity is continuous and we want181

to ensure the machine learning models can retrieve most of the extreme precipitation events,182

it is often necessary to train a machine learning model using a relatively low percentile183

of precipitation rate as the criterion for categorizing data, but evaluate the effectiveness184

of the trained model in retrieving the extreme events defined with a different, higher per-185

centile. Thus, we adopt the following notation for precision and recall,186

PM
y =

|{r > ry} ∩ {r′ > ry}|
|{r′ > ry}|

, (4)187

188

RM
y =

|{r > ry} ∩ {r′ > ry}|
|{r > ry}|

, (5)189

where PM
y and RM

y are the precision and recall of the model M when precipitation rates190

greater than the y-th percentile of rain rate, ry, are labeled as positive. ry may be dif-191

ferent from the actual threshold used in categorizing data when training the model M.192

{r > ry} represent the set of instances for which real precipitation rates (r) are higher193

than ry, and {r′ > ry} is the set of instances for which the model M predicts their pre-194

cipiation rates (r′) are greater than ry. r′ was not computed by the machine learning195

models explicitly, but rather the condition, r′ > ry, was judged by the classification model196

M.197

3 Results198

3.1 Dual SVM Model199

We first attempted to select instances for extreme events by training a pair of SVMs.200

The first SVM (SVM1) tells whether the circulation data of a time slice can produce “sig-201
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Figure 1. Precision (a–c) and recall (d–f) of the trained SVMs. a) and d) are the SVMs for

Hong Kong (HK), b) and e) for Manila (MN), c) and f) for Singapore (SG). The SVMs were

trained for the thresholds indicated below the horizontal axis, but their performance is evaluated

against the training criteria and the 90th and 99th percentiles of rain rates.

nificant” rainfall or not. It was trained with the 30th percentile of rain rates as the thresh-202

old for “significant” rainfall. The subset of circulation data which SVM1 predicts to pro-203

duce significant rain is then adopted by the second SVM (SVM2), which uses a higher204

percentile (60th, 70th, or 80th) as its criterion for “extremes”. We found that this dual-205

SVM strategy can yield higher precision and recall than using one SVM to predict “ex-206

tremes” directly.207

Figure 1 shows the performance of the Dual SVM model trained with the data for208

the three cities, HK, MN, and SG. The precision of SVM1 for its training criteria, P SVM1
30 ,209

is around 0.7, and the recall of SVM1 for its training criteria, RSVM1
30 , is between 0.48210

to 0.59. These recall rates are not very high. However, if we target retrieve precipita-211

tion event with rain rates higher than the 90th and 99th percentiles, we can find that212

the corresponding recall rates, RSVM1
90 and RSVM1

99 , are between 0.82 to 0.92 for HK and213

MN, and between 0.69 to 0.79 for SG. Thus, the trained SVM1 is effective in retrieving214

the majority of extreme precipitation events. It should be noted that because we did not215

include rain rates lower than 0.05 mm h−1 in calculating the percentiles, Thus SVM1 elim-216

inates much more than 30% circulation data from all time slices. Precipitation rates in217

HK, MN, and SG only exceed the corresponding 30th percentiles in 14.5%, 28.9%, and218

29.4%, respectively, of the 19 years.219

Figure 1 also shows the performance of SVM2 with respect to training criteria, as220

well as for real extreme events defined by the 90th and 99th percentiles. For SG, we were221

unable to obtain a converged solution when the training criterion was set as the 80th per-222

centile. The precision of SVM2 when evaluation criteria are the 90th and 99th percentiles223

increases as the training criteria increase, a natural result of the narrowing mismatch be-224

tween training and evaluation criteria. The recall of SVM2 decreases as the training cri-225

teria increases. A higher training threshold means that we can filter out more “irrele-226

vant” instances. However, it also increases our chance of losing actual extreme events227
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Figure 2. Precision (upper row) and recall (lower row) for the SVM1’s which were trained for

HK, MN, and SG but are applied to areas surrounding those cities here.

due to misclassification. Based on Fig. 1, the SVM2 trained with the 70th percentile of228

rain rates are the most balanced models for applications. If we target to retrieve extreme229

events defined by the 99th percentile in the selection, the SVM1 and the SVM2 trained230

with the 70th percentile can yield combined recall rates of RSVM1
99 RSVM2

99 = 0.81, 0.79, and 0.31,231

for HK, MN, and SG, respectively.232

As mentioned above, the number of time slices which produced significant rainfall233

is smaller than 30% (15% for HK) of the entire 19-year period of our data. If we use the234

SVM2 trained with the 70th percentile as the training criterion, SVM2 can eliminate ap-235

proximately another 4/7 data from the subsets selected by SVM1. Thus, the Dual SVM236

models, in total, can eliminate approximately more than 87% (94% for HK) of circula-237

tion data from extreme events candidates. That is a significant saving of computational238

cost in dynamic downscaling. However, it still means that we need to “waste” a notable239

fraction of our computation to ensure most extreme events are kept by the Dual SVM240

models. The unsatisfactory performance of the Dual SVM model in SG data suggests241

we cannot obtain a very reliable subset of data if we want to study deep tropical extreme242

rainfall. Can we overcome this difficulty with other machine learning algorithms? The243

answer is positive. In Section 3.3, we will demonstrate that the use of deep neural net-244

work can yield significantly better performance than the Dual SVM models.245

3.2 Useful Areas246

Large data set is needed for deep learning to prevent over-fitting. When we focus247

on only one point on a map, the availability of observation data is limited. In the train-248

ing of Dual SVM models above, we used 19 years of 6-hourly data, including 27,756 time249

slices. The areas surrounding the place of interest should be in a similar climate regime.250

Therefore, we evaluate the similarity of extreme event dynamics by applying the SVM1’s251

–7–



manuscript submitted to Geophysical Research Letters

Figure 3. Structure of the CNNs trained in this study. The size of one input “image”

is 7 (channels/variables) × 6 (height/latitude) × 6 (width/longitude) × 8 (depth/altitude).

The first convolution layer has 64 filters and the second has 128 filters. The size of filters is

3 (height) × 3 (width) × 5 (depth). The number of neurons in the five fully connected layers is

256, 512, 128, 16, and 2, respectively.

trained above to regions surrounding HK, MN, and SG, the data of which, except right252

at the three cells of those three cities, were not seen during training SVM1.253

Figure 2 shows the performance of the SVM1’s in relevant regions. What might254

be surprising is that the spatial distribution of precision and recall exhibit some depen-255

dence on the terrain. What is most impressive is the case of HK. In Figure 2a and d, pre-256

cision and recall are maximized along the South China coast, suggesting that precipi-257

tation events in HK are significantly affected by coastal location and topography.258

Good precision and recall in Figure 2 indicate the applicability of the model trained259

at a city only to its surrounding areas, thereby the similarity in the dynamics of extreme260

events. We can define “useful” areas as those exhibiting relatively high precision and re-261

call. For HK and MN, we select grid points at which P SVM1
30 > 0.60 and RSVM1

30 > 0.50.262

For SG, we select grid points at which P SVM1
30 > 0.45 and RSVM1

30 > 0.35. Using those263

“useful” areas allows us to enlarge the training data set for HK, MN, and SG to 1.2, 1.3,264

and 1.4 million instances, respectively.265

3.3 Convolutional Neural Networks266

The structure of the CNNs trained in this study is shown in Fig. 3. It is a series267

network with 2 three-dimensional convolution layers and 5 fully connected layers. The268

convolution layers are followed by batch normalization layers, rectified linear unit (ReLU)269

layers, and a three-dimensional max-pooling layer (for the first convolution layer) before270
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Figure 4. Precision (a–c) and recall (d–f) of the trained CNNs (RxNet). a) and d) are the

RxNet for Hong Kong (HK), b) and e) for Manila (MN), c) and f) for Singapore (SG). The

CNNs were trained for the thresholds indicated below the horizontal axis but their performance

is evaluated against the training criteria and the 90th and 99th percentiles of rain rates.

connecting the fully connected layers. Training the CNNs is much more time-consuming271

on a multi-core CPU than training the SVMs. However, training the CNNs on a GPU272

is fast and can finish 100 epochs of iteration within a day. We trained our CNNs with273

two criteria for categorizing “extremes”, the 70th and 90th percentiles of rain rates, and274

we call them RxNet70 (RN70) and RxNet90 (RN90). RxNet70 was trained for 100 epochs275

of iteration, RxNet90 was trained for 60 epochs. The latter were trained for fewer iter-276

ations because we found RxNet90 appears to converge faster than RxNet70, probably277

because the number of “extreme” events is significantly less in training the RxNet90’s278

than that in training RxNet70’s.279

Figure 4 shows the performance of the trained RxNet70 and RxNet90. For train-280

ing criteria, RxNet70 exhibits precision around 0.5 and recall around 0.6. When eval-281

uated with higher percentiles (90th and 99th), its precision becomes lower than that for282

the training criterion, but its recall becomes high. RRN70
90 is between 0.8 and 0.9 for the283

three regions. RRN70
99 is above 0.95 for all three regions, which is much higher than the284

recall of the Dual SVM model mentioned above (< 0.81).285

The trained RxNet90 exhibits precision between 0.3 to 0.4 for training criteria, which286

is lower than that of RxNet70. However, when evaluating its performance in retrieving287

the extreme events defined with the 99th percentile, PRN90
99 is significantly higher than288

PRN70
99 . The recall of RxNet90 for training criteria is slightly low, between 0.35 to 0.5289

for the three regions. However, when being evaluated against the 99th percentile, RRN90
99290

is 0.81, 0.81, and 0.72 for those three regions surrounding HK, MN, and SG, respectively.291

Those recall rates are decent, considering the rarity of the extreme events with rain rates292

higher than the 99th percentile.293

The performance of the CNNs is significantly better than the Dual SVM models.294

The training of Dual SVM models failed to converge for SG when the training criterion295
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was raised to the 80th percentile. By contrast, RxNet90 can reach a converged solution296

and has a decent recall for extreme events with rain rates higher than the 99th percentile.297

The optimal Dual SVM models can only filter out approximately 87% irrelevant instances298

of circulation data for MN and SG (94% for HK), but by contrast, applying RxNet90299

to circulation data can filter out approximately more than 97% (98% for HK) of irrel-300

evant instances. Meanwhile, the recall of RxNet90 for extreme events defined by the 90th301

and 99th percentiles is no less than that of the optimal Dual SVM models.302

4 Conclusions303

The sensitivity of tropical and subtropical extreme precipitation to global warm-304

ing is highly uncertain. By constraining climate model results with satellite observation,305

O’Gorman (2012) estimated that the sensitivity of tropical extreme rainfall to global warm-306

ing is 6–14 % K−1, which contains a significant range of uncertainty. The high end of this307

estimate represents the result from not only thermodynamic scaling, which is approx-308

imately 7 % K−1 due to the moistening of the atmosphere, but also from enhanced up-309

ward motions in extreme events. This dynamic strengthening is certainly possible, given310

that the high percentiles of convective available potential energy (CAPE) increase ro-311

bustly in the tropics and subtropics of GCM simulations under warming (Singh et al.,312

2017). However, to what extent can the increase in CAPE be realized as ascending mo-313

tions in extreme rainstorms is not precisely known.314

To narrow the uncertainty in the estimation of future extreme precipitation, dy-315

namic downscaling would give us the most reliable results. DDD is straightforward but316

prohibitively expensive regarding computational resource. Meanwhile, high degree of in-317

ternal climate variability (Deser et al., 2012; Wallace et al., 2012) requires us to sam-318

ple a reasonably large number of climate simulations if possible.319

Here we demonstrated that machine learning can indeed enable SDD, in which only320

the large-scale patterns that have a high probability of producing extreme events are dy-321

namically downscaled. In our study, the best performance was obtained when training322

CNNs using the 90th percentile of rain rates as the threshold for labeling “extremes”.323

Because the distribution of precipitation intensities is continuous, it is unavoidable to324

have a significant number of misclassifications in the machine learning models. For this325

reason, we chose to train the machine learning model with a relatively low percentile (e.g.,326

90th percentile) as the categorizing criterion when we target to retrieve most of the ex-327

treme events defined by a higher percentile (e.g., 99th percentile). We found that trained328

deep neural network, RxNet90, is very effective in filtering out irrelevant large-scale cir-329

culation patterns and retaining the majority instances which are very likely to generate330

extreme events. We advocate using deep learning techniques to enable the SDD of ex-331

treme events in climate studies and advance our understanding of future climate.332
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