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/ﬂmmce and Motivation

e Severe weather has tremendous
impacts on human life and the
economy:

e https://www.ncdc.noaa.gov/billions/

* Convective-scale numerical weather
prediction is an important tool for
Preparedness and Response to severe
weather hazards

-

* Good forecasts require data to
initialize storms in the models

* Motivation: to bring the benefits of
GOES'ROSe”eS observatlo.ns_to . Severe storms sweeping across the Midwest
convective-scale data assimilation Image credit: Dakota Smith (CIRA)

http://rammb.cira.colostate.edu/ramsdis/online/loop_of the day/
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’ 'm uction -

* Statement of the problem

* GOES data have long been used by human
forecasters for situational awareness

* Limited usage in numerical weather

Extreme Ultraviolet

prediction, especially in cloudy or L S
precipitating pixels \ Sih o mswswetus
* Statement of the opportunity s it o
» 3x greater spectral resolution /i
* 4x greater spatial resolution oot el O\
* 5x greater temporal resolution GOES-R Satellite
. Lightning mapping Image credit: NASA

https://www.nasa.gov/content/goes-r/index.html
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Connecting Models and Observa tions
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* Convolutional approaches use spatial

information and spatial context ;
* No spatial information: Panel D i
* With spatial information: Panel G ' (a;“ ' e o, :
e Truth: Panel C Cs135=001, POD33-0.01 E”A‘é??o.u CSI3320,52, PODI3=0.62. FARSS0.61  CSI33-0.52, POD33=0.65, FAR35-0.62
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* Critical for cloudy and precipitating | SN = s e
scenes wWhere radiances saturate s - ‘

 Machine learning (ML) provides ’ ” s ﬂ :
CO nve n i e nt fra m eWO r k fo r fu Si n g RMSD=7.;(,;)R§(;:O?T;:, MAX=52 RMSDL:.)I(,:EESSI(;ZI;);:AX:SAl RMSD=6.6(,I)R2;I;:.);?), MAX=55

CSI35=0.18, POD35=0.24, FAR35=0.56 CSI35=0.34, POD35=0.55, FAR35=0.53 CSI35=0.34, POD35=0.55, FAR35=0.53

radiances and lightning 7] : o e
* Panel H, Panel | | ; ' 5 : f
Hilburn, K. A., |. Ebert-Uphoff, and S. D. Miller, 2020: Development s e A 7 3
and interpretation of a neural network-based synthetic radar Y )
reflectivity estimator using GOES-R satellite observations. J. Appl. * 24, B X SRS HES

Meteor. Climatol., https://doi.org/10.1175/JAMC-D-20-0084.1. 4




 Datasets

* These datasets combine GOES and Effective
MRMS data on the HRRR grid (3x3 km) Dataset ol:’ll:rr::gecers Image Size | Number Reference
* The smallest dataset (CONUS1) gave Samples
good results when data augmentation Hilburn et al. (2019)
was used CONUS1 225 256 x 256 5,850 Joint Satellite
. Conf
* The medium dataset (CONUS2) gave a T
good depiction of warm season Hilburn et al. (2020)
. lourn et al.
convective-scale phenomena o) (V7 1,800 256 x 256 46,800 J. Appl. Meteor.
e Effective number of samples is based cimetel

on 50x50 pixel (150x150 km) receptive
field for GREMLIN model 63,850 1799 x 1059 48,653,700  This presentation

* The largest dataset (CONUS3) has been
prepared and experiments are
underway




‘ML Models

* GREMLIN: GOES Radar Estimation
via Machine Learning to Inform
NWP

* The theoretical receptive field for
this model is 50x50 pixels, which is
the neighborhood over which
inputs are combined to produce
one output pixel

* The new larger dataset will allow
experiments with deeper models
that have larger receptive fields

Trainable params: 47457

==p convd
== max_pooling2d
=> up_sampling2d




Loss Functions and Metrics

* The GREMLIN model was trained using a
weighted loss function to put more
emphasis on the relatively infrequent
higher reflectivity values

* A performance diagram was used to
ensure that GREMLIN provides good
estimates across all reflectivity values

* Recent work using neighborhood loss
functions, such as Fraction Skill Score,
show promise to improve results by
avoiding the double-penalty problem
with misplaced convective-scale features

Hilburn, K. A., |. Ebert-Uphoff, and S. D. Miller, 2020: Development
and interpretation of a neural network-based synthetic radar
reflectivity estimator using GOES-R satellite observations. J. Appl.
Meteor. Climatol., https://doi.org/10.1175/JAMC-D-20-0084.1.
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Ongoing and Future Work

* Extending GREMLIN to all conditions
using:
e Larger dataset
* Deeper model
* Solar reflective bands

 Vertical profile model

e Using a fully-connected (dense) NN shows
promise based on WRF OSSEs (left panels)

* Latent heating profiles show expected
physical relationship with cloud top
temperature (right panel)

* Uncertainty estimator
* Estimating observation errors for DA

* DA experiments, OSSEs

50 4 Mean profiles
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Yoonijin Lee, PhD Dissertation: Using GOES-16 ABI
Data to Detect Convection, Estimate Latent Heating,
and Initiate Convection in a High-Resolution Model.



Mes ults

* The ability of Convolutional Neural Networks to utilize spatial context
is essential for this application and offers breakthrough improvement
in skill compared to traditional pixel-by-pixel based approaches.

* The usage of Machine Learning in Data Assimilation applications
provides new information content from satellite data that is currently
going unused, especially for cloudy and precipitating scenes.
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~Significance and Broader Impact

* Addresses NOAA goals and NESDIS Strategic Plan

e Utilization of GOES-R sensors
 ABI+GLM data fusion

* Supports NWS Commitment to building Weather-Ready Nation
* Extending the value of satellite imagery and products
* Improving weather forecast services and numerical predictions

* |n addition to data assimilation applications, this work is also relevant to
aviation and nowcasting applications

* Contact:
e Kyle Hilburn (Kyle.Hilburn@colostate.edu)
* Yoonjin Lee (Yoonjin.Lee@colostate.edu)
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/ﬂmmce and Motivation

e Severe weather has tremendous
impacts on human life and the
economy:

e https://www.ncdc.noaa.gov/billions/

* Convective-scale numerical weather
prediction is an important tool for
Preparedness and Response to severe
weather hazards

-

* Good forecasts require data to
initialize storms in the models

* Motivation: to bring the benefits of
GOES-R Series observations to
convective-scale data assimilation

Severe storms sweeping across the Midwest
Image credit: Dakota Smith (CIRA)
http://rammb.cira.colostate.edu/ramsdis/online/loop_of the_day/



Mes ults

* The ability of Convolutional Neural Networks to utilize spatial context
is essential for this application and offers breakthrough improvement
in skill compared to traditional pixel-by-pixel based approaches.

* The usage of Machine Learning in Data Assimilation applications
provides new information content from satellite data that is currently
going unused, especially for cloudy and precipitating scenes.
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* |n addition to data assimilation applications, this work is also relevant to
aviation and nowcasting applications

* Contact:
e Kyle Hilburn (Kyle.Hilburn@colostate.edu)
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