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Abstract 15 

Attaining a comprehensive and reliable water balance of snow-dominated alpine catchments is 16 

fundamental for a holistic representation of the hydrological and hydrogeological processes. A 17 

major limitation to the elaboration of this balance in alpine terrain is the difficultly of data 18 

acquisition as well as the limited presence of meteorological stations. Remotely sensed data can 19 

provide valuable information for the balance elaboration at a regional scale. We exploited 20 

Sentinel-satellite data to estimate the groundwater storage for one hydrologic year in an 21 

extensive Alpine catchment located in northern Italy. Evapotranspiration (ET) and Snow Water 22 

Equivalent (SWE) were estimated once weekly with the combined use of Sentinel data, at a 23 

spatial resolution of 20 m and 30 m, respectively. Finally, the groundwater storage was estimated 24 

by means of the residual water balance approach. The results show that the adopted satellite-25 

based methods allow obtaining consistent and physically realistic values to describe the 26 

groundwater storage dynamics, with a relatively low uncertainty (36%). For the studied 27 

hydrologic year, a positive storage occurred only in the snowmelt period and the overall storage 28 

was negative, leading to a lowering of the groundwater level in the floodplain. In addition, the 29 

influence of physiographic parameters (altitude, slope, and aspect) and the seasonal conditions 30 

on the estimates of ET and snow-depth were investigated. For SWE estimates, an altitude-31 

dependent effect and a lower accuracy in the snowmelt phase were observed. Finally, the 32 

estimated values of ET and the SWE-linked components were verified for a gauged tributary 33 

valley with negligible groundwater storage.  34 

1. Introduction 35 

Understanding the storage dynamics of the groundwater resources represents one of the major 36 

contemporary challenges for water management (Bales et al., 2006; Sheffield et al., 2018; Sorg 37 

et al., 2012; Taylor et al., 2013). This is especially true for mountain areas that are recognized to 38 

be the source of much of the world’s surfaces water supply (Fayad et al., 2017; Viviroli et al., 39 

2007). In the Alpine zone, the snow-dominated catchments show a high potential of recharge due 40 

to a large precipitation and the relatively small evapotranspiration (Wilson and Guan, 2004; 41 

Hayashi, 2020). However, climate change affects surface processes such as runoff, snowpack 42 

dynamics, or evapotranspiration (Clow, 2010; Cochand et al., 2019; Rodell et al., 2018), 43 

conditioning water availability.  44 

https://ngwa.onlinelibrary.wiley.com/doi/full/10.1111/gwat.12965#gwat12965-bib-0070
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A major issue for alpine catchments is the heterogeneous distribution and the rapid dynamics of 45 

hydrological processes thanks to the local-scale variability of meteorological conditions and the 46 

terrain complexity. These prevent a spatial and temporal efficient input-data collection, even 47 

considering the relative scarcity of hydro-meteorological stations in such low-population areas. 48 

Accordingly, these limitations in data acquisition introduce significant approximations and 49 

uncertainty (West et al., 2019). 50 

In the past 30 years, the advance in the ability to observe some hydrological phenomena from 51 

space has given new opportunities for their monitoring (Lettenmaier et al., 2015; McCabe et al., 52 

2017; Tang et al., 2009) thanks to a wide variety of spatial, spectral and temporal resolutions. At 53 

watershed and regional scales, remote sensing products are deemed as a complementary source 54 

of information to in situ monitoring networks and, in many cases, the only feasible source 55 

(Sheffield et al., 2018). Except for a few studies that approached the estimation of groundwater 56 

storage in the alpine zone by using remote sensing data (Bibi et al., 2019; Gemitzi et al., 2017), 57 

most of the satellite-based methods proposed to calculate the main components of the water 58 

balance (i.e., evapotranspiration and snow water equivalent) are poorly suitable for large alpine 59 

catchments. These methods do not allow to capture topography variability, as a result of the low 60 

spatial resolution, or are still impracticable in extensive catchments (Dozer et al., 2016).  61 

For evapotranspiration (ET), satellite data are used in several methods and models (Zhang et al., 62 

2016). MOD16, a physical model based on the Penman-Monteith’s equation, is routinely applied 63 

to generate a global ET dataset (MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m) 64 

by using NASA MODIS (MODerate Resolution Imaging Spectroradiometer) data. This dataset 65 

provides an 8-day averaged value of ET with a spatial resolution of 500 m. Other satellite-based 66 

approaches developed in the last two decades, such as METRIC (Mapping Evapotranspiration 67 

with Internalized Calibration, Allen et al., 2007), SSEBop (Simplified Surface Energy Balance; 68 

Senay et al., 2013), ALEXI/DisALEXI (Atmosphere–Land Exchange Inverse, Anderson et al., 69 

1997, 2007), fall into the category of the surface energy balance (SEB). In these models, ET is 70 

linked to Land Surface Temperature (LST) derived from thermal infrared (TIR) of Meteosat, 71 

MODIS and Landsat remote sensing dataset (Bhattarai et al., 2016; Castelli et al., 2018). The 72 

thermal input affects the quality and the spatial and temporal resolution of these products 73 

(Cammalleri et al., 2014). In particular, the coarse resolution does not yet completely fulfil the 74 
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requirements of applications in heterogeneous areas, such as the mountain regions (Cammalleri 75 

et al., 2014; Guzinski et al., 2019; Kustas et al., 2004). 76 

The spatial-distributed quantification of snow depth and snow water equivalent (SWE) is still 77 

problematic in mountain hydrology (Dozier et al., 2016; Liu et al., 2020). One of the most 78 

consistent methods is the spatial interpolation of local measurements of SWE, constrained by 79 

remotely sensed snow cover area (SCA) (Dozier et al., 2016). This method is physically realistic 80 

but affected by high uncertainty in the unrepresented areas and influenced by the location of the 81 

monitoring sites on flat terrain (Bavera et al., 2009; Rice et al., 2011). Another method is the 82 

backward reconstruction of the SWE accumulation time series, with a high spatial resolution (10-83 

30m) and based on daily snowmelt and SCA changes from the last significant snowfall (Jonas et 84 

al., 2009; Liu et al., 2020). This method is still impracticable on extensive catchments for its 85 

computational load (Dozier et al., 2016). The passive microwave is at the basis of the available 86 

SWE maps (spatial resolution of 10-25km) of the northern hemisphere, such as NASA/JAXA's 87 

AMSR-E/Aqua Daily L3 Global Snow Water Equivalent EASE-Grids (AE_DySno) (Tedesco et 88 

al., 2004), NSIDC's Global EASE-Grid 8-day Blended SSM/I and MODIS Snow Cover 89 

(NSIDC-0321) (Brodzik et al., 2007). The use of the passive microwave has the advantage in the 90 

day-night all-weather capability, but it is strongly affected by the texture of the snow and the 91 

content of liquid water in the snowpack.  92 

Recently, new opportunities for an accurate, operational, and multiply-scale estimation of the 93 

hydrological parameters are opened by Sentinel data (Guzinski et al., 2019; Veloso et al., 2017). 94 

These new freely and globally available data are collected in the Sentinel missions, launched in 95 

the last 6 years by ESA, acquiring frequent observations from a combination of optical, thermal 96 

and microwave sensors with high spatial and temporal resolutions (Guzinski et al., 2019; 97 

Malenovský et al., 2012; West et al. 2019). 98 

The main objectives of this study are (i) to obtain a Sentinel-based methodology to quantify the 99 

seasonal groundwater storage in a snow-dominated catchment, and (ii) to apply the methodology 100 

to an extensive alpine catchment (Valtellina Valley, North Italy) for one hydrologic year (March 101 

2018 to February 2019). For these purposes, we quantified the seasonal groundwater storage 102 

volume according to the residual water budget method (Healy et al., 2010), starting from multi-103 

sensory Sentinel data. In particular, we tested new promising methods for the estimation of ET 104 
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(Guzinski et al., 2020) and snow depth (Lievens et al., 2019), and we investigated the inherent 105 

uncertainties. To assess the effect of physiographic characteristics (altitude, slope, and 106 

exposition) and seasonality on the storage quantification, we analysed the root mean square error 107 

(RMSE) concerning available ground truth data or to other satellite databases. Finally, we 108 

verified the ET and SWE-linked component volumes in a tributary valley, where the 109 

groundwater storage is assumed negligible. 110 

2. Methods 111 

2.1.Groundwater storage dynamics  112 

The dynamics of water during the hydrologic year were investigated with the residual water-113 

budget method (Healy et al., 2010), where all the terms of the governing equation are 114 

independently measured or estimated, and groundwater storage (∆𝑆𝑔𝑤, [𝑚3/𝑑𝑎𝑦]) is set equal to 115 

the residual. The groundwater storage volumes were quantified for 3 different phases of the 116 

hydrologic year: (1) snowmelt; (2) snow-free; (3) snow accumulation. 117 

For a watershed, considering snowpack (snow), surface water (sw), and water in the unsaturated 118 

(uz) and saturated (gw) zone, the water budget corresponds to the following equation: 119 

𝑷 + 𝑸𝒐𝒏
𝒔𝒘 + 𝑸𝒐𝒏

𝒈𝒘 = 𝑬𝑻𝒔𝒘 + 𝑬𝑻𝒈𝒘 + 𝑬𝑻𝒖𝒛 + ∆𝑺𝒔𝒏𝒐𝒘 + ∆𝑺𝒔𝒘 

+∆𝑺𝒈𝒘 + ∆𝑺𝒖𝒛 + 𝑸𝒐𝒇𝒇
𝒈𝒘 + 𝑸𝒐𝒇𝒇

𝒔𝒘 + 𝑨𝒃𝒔 

(1) 

where P is the precipitation [𝑚3/𝑑𝑎𝑦], , 𝑄𝑜𝑛 and 𝑄𝑜𝑓𝑓  are the water flow [𝑚3/𝑑𝑎𝑦] into and 120 

out from surface water and groundwater systems, ET is the evapotranspiration [𝑚3/𝑑𝑎𝑦], ∆S is 121 

the water storage, and Abs is the anthropic abstraction [𝑚3/𝑑𝑎𝑦]. The volume of each 122 

component was calculated considering the entire area of the catchment. 123 

In an extensive snow-dominated catchment, the precipitation (𝑃) and the surface-water flow into 124 

the watershed (𝑄𝑜𝑛
𝑠𝑤), such as the snowmelt, are the two main sources of recharge during the 125 

hydrologic year. Meanwhile, the depletion of water is produced by the effect of 126 

evapotranspiration (𝐸𝑇 = 𝐸𝑇𝑠𝑤 + 𝐸𝑇𝑢𝑧 +  𝐸𝑇𝑔𝑤 ), the storage of water in the snow-packs 127 

(∆𝑆𝑠𝑛𝑜𝑤), the main river outflow from the catchment (𝑄𝑜𝑓𝑓
𝑠𝑤) and by the abstraction (𝐴𝑏𝑠). The 128 

storage of the surface-water (∆𝑆𝑠𝑤) and of the unsaturated zone (∆𝑆𝑢𝑧) and the flows into and 129 

out of the groundwater system (𝑄𝑜𝑛
𝑔𝑤 and 𝑄𝑜𝑓𝑓

𝑔𝑤) were assumed negligible given the 130 
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topographical and geological setting of the catchment. Consequently, the volume of groundwater 131 

storage (∆𝑆𝑔𝑤, [𝑚3]) was estimated with the water budget equation as following: 132 

∆𝑺𝒈𝒘 = (𝑷 + 𝑸𝒐𝒏
𝒔𝒘) − (𝑬𝑻 + ∆𝑺𝒔𝒏𝒐𝒘 + 𝑸𝒐𝒇𝒇

𝒔𝒘 + 𝑨𝒃𝒔) (2) 

In the present work, the quantification of 𝑄𝑜𝑓𝑓
𝑠𝑤 was carried out with the rating curves 133 

procedures at the outlet point of the catchment, the 𝐴𝑏𝑠 from the public wells and springs data, 134 

and the daily 𝑃 from PERSIANN-Cloud Classification System (PERSIANN-CCS) database 135 

(https://chrsdata.eng.uci.edu, Nguyen et al.,2019). Meanwhile, as described in the next 136 

paragraphs, 𝑄𝑜𝑛
𝑠𝑤, ∆𝑆𝑠𝑛𝑜𝑤 and the 𝐸𝑇 were quantified with the spatial-time-series of the ET and 137 

the SWE achieved with Sentinel-based methods. The uncertainty [%] derived from Sentinel-138 

based data in the estimation of groundwater storage was calculated as:  139 

∆= √∆𝑬𝑻𝟐 + 𝚫𝑺𝑾𝑬𝟐 (3) 

In which Δ𝐸𝑇, [%], and Δ𝑆𝑊𝐸, [%], are the values of uncertainty calculated as RMSE. 140 

Moreover, to verify the Sentinel-based estimates of 𝑄𝑜𝑛
𝑠𝑤, ∆𝑆𝑠𝑛𝑜𝑤, and 𝐸𝑇, the 𝑄𝑜𝑓𝑓

𝑠𝑤 of a 141 

tributary valley was achieved with equation (4), assuming a negligible ∆𝑆𝑔𝑤over the year and 142 

compared with the measured discharge at the outlet point: 143 

𝑸𝒐𝒇𝒇
𝒔𝒘 = (𝑷 + 𝑸𝒐𝒏

𝒔𝒘) − (𝑬𝑻 + ∆𝑺𝒔𝒏𝒐𝒘 + 𝑨𝒃𝒔) (4) 

2.2.Evapotranspiration 144 

A new method based on the synergistic use of Sentinel 2 and 3 satellite data was explored for the 145 

estimation of evapotranspiration (Guzinski et al., 2020, 2019). This method, implemented in an 146 

open-source Python library in the “Sentinels for Evapotranspiration (SEN-ET)” project (by DHI 147 

GRAS, IRTA and Sandholt ApS), aims at modelling evapotranspiration at the highest possible 148 

spatial resolution without sacrificing the output accuracy. In particular, we used the plugin of the 149 

SEN-ET algorithms (http://esa-sen4et.org/outputs/software) in the SNAP (ESA Sentinel 150 

Application Platform 7.0.0) graphical user interface (GUI). This plugin is designed to work with 151 

the products of the second level of processing for SLSTR and MSI instrument data, respectively 152 

onboard the Sentinel-3 and Sentinel-2, available for the download from the Copernicus Open 153 

Access Hub (COAH - https://scihub.copernicus.eu ). 154 

https://chrsdata.eng.uci.edu/
http://www.sandholt.eu/
http://esa-sen4et.org/outputs/software/
https://scihub.copernicus.eu/
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The model requires as input morphological (STRM DEM), land-use (ESA-CCI-LC 2015, 155 

available at http://maps.elie.ucl.ac.be/CCI/viewer) and meteorological (ECMWF ERA-5 dataset) 156 

data. In particular, the plugin enables to reanalyse the meteorological ERA-5 products using the 157 

DEM, to obtain the air temperature, vapour pressure, air pressure, wind speed, clear-sky 158 

incoming solar radiation, and average daily solar irradiance data. 159 

The method involves two steps: the thermal sharpening and the land-surface energy flux model. 160 

The former allows to obtain high-resolution (20 m) Land Surface Temperature (LST) maps using 161 

a multivariate regression model with the biophysical and topographic information and exposure 162 

maps at the S3 overpass time (2020; Gao et al., 2012; Guzinski et al.,). To ensure the 163 

conservation of energy and reduce the residual bias, a bias-correction between the two thermal 164 

images with different spatial resolutions is provided within the algorithm. The land-surface 165 

energy flux model applied in this study is based on the Two-Source Energy Balance (TSEB) 166 

model (Colaizzi et al., 2012; Guzinski et al., 2020; Norman et al., 1995), which splits the surface 167 

energy fluxes between two sources, canopy and soil, derived from a measurement of the bulk 168 

surface radiometric temperature. As a result, four instantaneous land-surface energy fluxes at the 169 

time of Sentinel-3 overpass are produced by means of the Priestley-Taylor’s approximation: 170 

sensible heat flux (𝐻, [𝑊/𝑚2]), latent heat flux (𝐿𝐸, [𝑊/𝑚2]), ground heat flux (𝐺, [𝑊/𝑚2]) 171 

and net radiation (𝑅𝑛, [𝑊/𝑚2]):  172 

𝑹𝒏 − 𝑮 = 𝑯 + 𝑳𝑬 (5) 

Finally, the daily evapotranspiration (𝐸𝑇, [𝑚𝑚/𝑑𝑎𝑦]) is extrapolated by the ratio between the 173 

instantaneous latent heat flux and daily solar irradiances [𝐽/𝑚2]. 174 

However, in order to evaluate the generated maps in extensive mountain areas, a comparison 175 

with two different datasets was performed. The first dataset was obtained by the meteorological 176 

stations' data applying the FAO Penman-Monteith’s equation (Allen et al., 1998). The second 177 

was the MOD16A2 global evapotranspiration (MODIS/Terra Snow Cover 8-Day L3 Global 178 

500m SIN Grid, Version 6) dataset. The correlation coefficient (r) and root mean square error 179 

(RMSE) were used to assess the goodness of fit of the satellite to the ground-based 180 

evapotranspiration estimated.  181 

http://maps.elie.ucl.ac.be/CCI/viewer
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Finally, the numerical integration of the total daily evapotranspiration volume 182 

(𝐸𝑇𝑑𝑎𝑖𝑙𝑦, [𝑚3 𝑑𝑎𝑦⁄ ]), calculated over the entire catchment, was used to calculate the 𝐸𝑇   for each 183 

i-th phase of the hydrologic year, as: 184 

𝑬𝑻𝒊 = ∫ 𝑬𝑻𝒅𝒂𝒊𝒍𝒚 𝒅𝒕 
𝒕𝒇

𝒕𝟎

   
(6) 

Where 𝑡0 and 𝑡𝑓 are the time at the beginning and at the end of the i-th phase, respectively. The 185 

uncertainty of the ET estimation (Δ𝐸𝑇 ) corresponds to that of the SEN-ET method, which is 186 

reported equal to 30%, considering the root mean square error of instantaneous latent heat flux in 187 

agricultural areas (Guzinski et al., 2020). 188 

2.3.Snow Water Equivalent 189 

The 30-m resolution SWE maps were calculated, starting from the snow depth (SD, [𝑚]) and 190 

spatially-distributed snow/water density ratio (𝜌𝑏 𝜌𝑤⁄  , [-]) datasets, as: 191 

𝑺𝑾𝑬 = 𝑺𝑫 ∗
𝝆𝒃

𝝆𝒘
 

(7) 

where 𝜌𝑏, [𝑘𝑔/𝑚3] and 𝜌𝑤, [𝑘𝑔/𝑚3] are the snow bulk density and the water density, 192 

respectively. 193 

The SD dataset is produced by the C-Snow project (https://ees.kuleuven.be/project/c-snow), 194 

which retrieves the snowpack depth from cross-polarized backscatter measurements of the 195 

Sentinel-1 C-band (5.4 GHz, 10m) with a revisit time of 6 days. The algorithm details are 196 

presented in Lievens et al. (2019). The C-Snow dataset includes northern hemisphere maps of the 197 

snow-depth at 1km
2
 spatial resolution, starting from September 2016. To improve the resolution 198 

of the snow detection, snow-cover mask for each month of the hydrologic year was applied on 199 

the SD maps. The masks were performed by processing Sentinel-2 images (20 m resolution) with 200 

cloud-free pixels classified as snow when: 201 

𝑵𝑫𝑺𝑰 < 𝟎. 𝟒 𝒂𝒏𝒅 𝝆𝒓𝒆𝒅 < 𝟎. 𝟐 (8) 

where NDSI is the Normalized Difference Snow Index, [-], and ρ red  [-] is the value of the red 202 

band (B4). The thresholds were set conservatively high to avoid false detection. Moreover, 203 

Forest Type 2015 High Resolution Layer (https://land.copernicus.eu/pan-european/high-204 

https://ees.kuleuven.be/project/c-snow
https://land.copernicus.eu/pan-european/high-resolution-layers
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resolution-layers) was considered to remove dense forest areas that generally could be 205 

misclassified as “no-snow”.  206 

The spatially-distributed snow density maps were achieved by applying an empirical relationship 207 

on the SRTM DEM provided by NASA JPL at a resolution of 1 arc-second (approximately 30 m 208 

at the latitude of the case study). Among the several empirical relationships to obtain 𝜌𝑏 (Jonas et 209 

al., 2009; Valt et al., 2018), we adopted the linear regression equation of Bavera and De Michele 210 

(2009). This relationship considers the altitude, 𝑧 [𝑚 𝑎. 𝑠. 𝑙], the number of days after 1st of 211 

September, 𝐷 [𝑑], and the local slope, 𝐼 [%], as predictors of the 𝜌𝑏: 212 

𝝆𝒃 = 𝟎. 𝟎𝟑𝟖𝒛 + 𝟎. 𝟔𝟒𝟗𝑫 − 𝟏. 𝟒𝟑𝟒𝑰 + 𝟏𝟒𝟓. 𝟎𝟑           𝑹𝟐 = 𝟎. 𝟒𝟑 (9) 

To assess the validity of the method based on the use of Sentinel data, the accuracy of the SD 213 

was cross-checked with available snow gauge data. The correlation coefficient (r), and the 214 

dependence of the root mean squared error (RMSE) on physiographic parameters (altitude, slope, 215 

and aspect) and on the seasonal conditions were examined. Moreover, the uncertainty of SWE 216 

estimates, Δ𝑆𝑊𝐸, was considered equal to the RMSE of snow-depth values calculated for all the 217 

available monitoring sites. 218 

Finally, the hydrologic components linked to the snow were quantified from the time-series of 219 

the total SWE calculated at the catchment scale. As described in equation (10), the 𝑄𝑜𝑛
𝑠𝑤, [𝑚3/220 

𝑑𝑎𝑦], of each i-th phase of the hydrologic year is the sum of difference for each time step t(i) 221 

between the SWE, [𝑚3/𝑑𝑎𝑦], at time t and at time t+1, only if the difference is positive. 222 

 𝑸𝒐𝒏
𝒔𝒏𝒐𝒘

𝒊
 = ∑ 𝑺𝑾𝑬𝒕 − 𝑺𝑾𝑬𝒕+𝟏

𝒕(𝒊)
𝑺𝑾𝑬𝒕>𝑺𝑾𝑬𝒕+𝟏

 
(10) 

Conversely, the total volumes of ∆𝑆𝑠𝑛𝑜𝑤, [𝑚3/𝑑𝑎𝑦], were estimated as the positive difference 223 

between the volume of SWE at the end, tf, and at the beginning, t0, of the i-th phase of the 224 

hydrologic year, as: 225 

∆𝑺𝒔𝒏𝒐𝒘
𝒊 = {

𝟎, 𝑺𝑾𝑬𝒕𝒇
≤ 𝑺𝑾𝑬𝒕𝟎

𝑺𝑾𝑬𝒕𝒇
− 𝑺𝑾𝑬𝒕𝟎

, 𝑺𝑾𝑬𝒕𝒇
> 𝑺𝑾𝑬𝒕𝟎

 
(11) 

  226 

https://land.copernicus.eu/pan-european/high-resolution-layers
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3. Case study 227 

The study was conducted in the alpine catchment of Valtellina Valley, Italy (between longitude 228 

46° 08’00E and 46° 29’00E, and latitude 9° 31’ 00N and 10° 22’00N, Fig. 1) and in the 229 

Poschiavo tributary valley to verify the Sentinel-based estimates of the hydrological components. 230 

Valtellina valley stretches along the Adda River and covers 2,600 km
2
 with a maximum relief 231 

difference of 3,000 m. Valtellina is an east–west-trending valley superimposed on the Insubric 232 

tectonic line and has a U-shaped profile derived from glacial activity. Due to a well-developed 233 

surface drainage network, several tributary valleys are located on both valley sides. The area is 234 

mostly characterised by grassland on the valley floor and broad-leaved/coniferous forest and bare 235 

rocks on the slopes. In particular, the tributary valleys, such as the Poschiavo Valley (Fig. 1), are 236 

characterized by a crystalline bedrock covered by quaternary glacial tills, fossil and recent rock 237 

glaciers, talus deposits, and large rockslides of variable thickness (De Franco et al., 2009; de 238 

Palézieux et al., 2019). Considerable glacial areas are located in three lateral valleys (Val 239 

Masino, Valmalenco and Valfurva valleys). Due to the wide range of altitude and slope aspect, a 240 

strong climatic variability and seasonal thermal contrasts characterize the area (Colombo et al., 241 

2000). Like in other large alpine valleys, the groundwater flow in the floodplain is characterized 242 

by a relatively shallow system, in which an active circulation and a rapid response to changes in 243 

discharge and recharge are observed. Moreover, the system is highly influenced by the large 244 

hydropower production in the twenty-seven hydropower dams (from the biggest plants, such as 245 

Cancano, Alpe Gera and San Giacomo di Fraele, to the smallest ones; such as Ganda and 246 

Moledana) (D’Agata et al., 2018). For the whole catchment area, meteorological and 247 

hydrological datasets are collected continuously and made available online by the Environmental 248 

Protection Agency of Lombardia Region (ARPA-Lombardia) but some large areas, inevitably, 249 

remain unmonitored. In Table 1, the database characteristics for the present study are described. 250 

The hydrologic year considered for the application of the Sentinel-based method is March 2018 251 

to March 2019. 252 

  253 
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 254 

  255 

Figure 1. Map of the study area with simplified land cover and geomorphological 

classification and location of monitoring stations (see Table 1). 



manuscript submitted to Water Resources Research 

 

Table.1 Available monitoring stations (see Fig.1 for location) in the catchment area. T is temperature, P precipitation, SD snow depth, 256 

W is wind speed , Hum is relative humidity, R is global radiation, and Q and Hsw are discharge and stage of the stream.  257 

 258 
 STATION ALT 

 [m a.s.l.] 
LAT WGS84 

[DD] 
LON WGS84 

[DD] 
VARIABLE  RESOLUTION USED  TIME INTERVAL 

MS01 Aprica 1950 46.129688 10.148266 SD, P Daily 2016-2020 

MS02 BORMIO eliporto 1172 46.453701 10.366032 P, T Daily 2016-2020 

MS03 CAIOLO  274 46.154927 9.792523 P, T, W, Hum, R Daily 2016-2020 

MS04 CHIESA IN VALMALENCO Alpe dell'Oro 2040 46.321466 9.763076 SD, P Daily 2016-2020 

MS05 CHIESA IN VALMALENCO Funivia Bernina 2014 46.290759 9.863706 SD, P Daily 2016-2020 

MS06 DUBINO La Piazza 993 46.167263 9.458140 P Daily 2016-2020 

MS07 GERA LARIO - Fuentes 199 46.150329 9.412275 P, T, Q Daily 2016-2020 

MS08 GEROLA ALTA Pescegallo 1875 46.026197 9.571121 SD, P Daily 2016-2020 

MS09 GROSIO Diga Fusino 1220 46.327062 10.245981 SD, P Daily 2016-2020 

MS10 LANZADA Campo Moro 1970 46.305757 9.927520 SD, P Daily 2016-2020 

MS11 LANZADA Palù 2151 46.292907 9.884528 SD, P Daily 2016-2020 

MS12 LANZADA Passo Marinelli 3032 46.349810 9.915154 SD, P  Daily 2016-2020 

MS13 LIVIGNO - La Vallaccia 2660 46.477098 10.205837 SD, P  Daily 2016-2020 

MS14 MORBEGNO eliporto 230 46.136635 9.584344 P, T, W, Hum, R Daily 2016-2020 

MS15 PONTE IN VALTELLINA Lago Reguzzo 2440 46.096514 9.969999 SD, P Daily 2016-2020 

MS16 POSCHIAVO 959 46.291989 10.082806 Hsw-Q Daily 2018-2019 

MS17 SONDRIO Fond.Fojanini 307 46.165595 9.848505 P, T, W, Hum, R Daily 2016-2020 

MS18 TEGLIO S. Giacomo 357 46.158277 10.038480 P, Hsw-Q Daily 2016-2020 

MS19 TIRANO Monte Masuccio 1750 46.244091 10.173320 SD Daily 2016-2020 

MS20 TIRANO eliporto 481 46.218168 10.182292 P, T, W, Hum, R Daily 2018-2020 

MS21 VALDIDENTRO - Cancano 1948 46.512933 10.323059 SD, P Daily 2016-2020 

MS22 VALDISOTTO Oga S. Colombano 2300 46.453565 10.305964 SD, P Daily 2016-2020 

MS23 VALDISOTTO Arginone 1050 46.384385 10.353989 SD, P Daily 2016-2020 

MS24 VALFURVA S. Caterina  1730 46.412150 10.494665 SD, P Daily 2016-2020 

MS25 VAL MASINO S.Martino 1950 46.229316 9.581636 SD, P Daily 2016-2020 

 259 

https://context.reverso.net/traduzione/inglese-italiano/wind+speed
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4. Analysis and Results 260 

4.1.Evapotranspiration estimation 261 

Spatial distribution of evapotranspiration was produced for the 2018-2019 hydrologic year with a 262 

monthly average of 8 maps using: 263 

- 34 Sentinel-2A and Sentinel-2B MSIL2A images, selected from the T32TNS and 264 

T32TPS tiles with a maximum cloud cover percentage of 20%. The downloaded data of the two 265 

tiles were extracted in the area of interest and merged into 17 images. 266 

- 163 Sentinel-3A SL_2_LST images with sensing data in the morning. After the 267 

extraction into the area of interest, 109 images were selected by considering cloud cover 268 

percentage. 269 

During the first part of the hydrologic year, the results show an ET increase from March to the 270 

15 June, with a mean of 4.0±1.0 mm/day for the grassland and of 3.9±1.3 mm/day for the forest 271 

cover (Fig. 2a). An anomalous spike of evapotranspiration is observed at the end of April (Fig. 272 

3). The maximum ET value is recognized at the beginning of the snow-free phase, with the peak 273 

recorded on the 18
 
July with a mean value of 5.2±0.9 mm/day for the grassland and of 5.8±0.7 274 

mm/day for the forest cover (Fig. 2b). Successively, the ET shows a strong decrease until the end 275 

of October, with a minimum value equal to 1.5±0.5 mm/day in the grassland and of 1.8±0.4 276 

mm/day in the forest area (Fig. 2c). At the end of the hydrologic year, the results show a constant 277 

minimum value of ET (≈0.01 mm/day) with a slight increment in February. Due to the snow 278 

accumulation and the decrease in average temperature, the ET is equal to 0 mm/day over an 279 

increasingly higher percentage (max≈17%) of the area. Anyway, at the end of February (Fig. 2d), 280 

the ET average stands at 1.5±0.8 mm/day and of 1.1±0.8 mm/day for the grassland and the forest 281 

cover, respectively. 282 
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 283 

Figure 2 Maps of daily evapotranspiration (ET) during four representative days in different 284 

seasons of the 2018-2019 hydrologic year and corresponding evapotranspiration frequency 285 

distributions in grassland and forest areas. a) 15 June 2018; b) 18 July 2018; c) 19 October 2018; 286 

d) 21 February, 2019. 287 
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 288 

Figure 3 a) Time series of daily evapotranspiration volumes estimated at the basin scale with 289 

Sentinel data (red diamonds) and MODIS (green circles) data. b) and c) maps of daily ET spatial 290 

distribution on 20 April 2018 with Sentinel (b) and MODIS (c) data, showing the capability of 291 

Sentinel to recognize the temperature anomaly of April. 292 

 293 

The comparison among the ET values estimated with the Sentinel and Modis data and the ground 294 

data at 4 locations is shown in Fig. 4. The results indicate a significant correlation (p<0.05) with 295 

the ground-based ET for both the MOD16A2 (r=0.72, RMSE=0.82 mm) and the Sentinel 296 

products (r=0.72, RMSE=1.0 mm). However, the Sentinel product provides a better fitting with 297 

ground data during the snowmelt phase.  298 
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 299 

Figure 4 Comparison among the ET time series for the 2018-2019’s hydrologic year, estimated 300 

with the Sentinel and Modis data and the ground data at the monitoring stations Ms07, Ms14, 301 

Ms17 and Ms20 (see Fig.1). 302 

 303 

At the catchment scale, the comparison between the two different satellite data products shows a 304 

comparable total volume of evapotranspiration during the hydrological year (9.3x1E8 m
3
/year vs 305 

9.1X1E8 m
3
/year), considering the uncertainty (Δ𝐸𝑇) of the 30%.  306 

4.2.Snow water equivalent estimation 307 

The SWE product for the 2018-2019 hydrologic year consists of 113 maps at the resolution of 30 308 

m. For the spatial constrain, the monthly S2-based snow cover area was considered. Figure 5 309 

shows the distribution of the snow water equivalent during the hydrologic year. At the starting 310 

point of the snowmelt phase (Fig.5a), the snow line is located between 1,800 m a.s.l. and 2,300 311 

m a.s.l and the maximum height of the snow equivalent is estimated equal to 2.00 m at high 312 

altitude. The total volume of water stored in the snow was estimated equal to 4.7E8 m
3
. The 313 

retrieves of the snow depth confirm a snow-free phase between July and September, in line with 314 
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historical trends (Bavera et al 2009). The first evidence of snow is observed after the first 315 

snowfall event at the end of October (Fig.5b), storing 1.1E+08 m
3 

of water. The accumulation of 316 

the snow increases until February when the snow line reaches the altitude of 1,800 m a.s.l., and 317 

the low-altitude slopes exposed to the north locally. At the end of the hydrologic year (Fig.5c) 318 

the maximum snow water equivalent was 2.0 m at high altitude, and the total water volumes 319 

stored was 7.65E+08 m
3
.  320 



manuscript submitted to Water Resources Research 

 

 321 

Figure 5 Maps of daily snow water equivalent (SWE) for three representative days in different 322 

seasons of the 2018-2019 hydrologic year. a) 1 March 2018; b) 7 November 2018; c) 24 323 

February 2019. 324 

The uncertainty and the variability of the RMSE of the results, for the aim of this research, is 325 

linked only to the SD and not to the density. The snow-density distribution, empirically obtained 326 

(Bavera et al., 2009) on the SRTM DEM at 30m of resolution, has an average of 240±30 kg/m³ 327 

during the snow accumulation phase, and an average of 350±30 kg/m³, with a maximum value of 328 

460 kg/m³ at high altitude, in the snowmelt phase. For the validation of the C-snow database 329 
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(from 2016 to 2020), the data from 16 snow gauge stations were available in the catchment, 330 

covering different altitude zones (Tab 1). The average weekly snow depth (m) at the 331 

measurement sites and corresponding Sentinel-1 grid cells were compared. The uncertainty 332 

(Δ𝑆𝑊𝐸), considering the total time series, amounts to 20%. The reliability is proved by a 333 

significant temporal correlation (r=0.66, p<0.05) and a RMSE of 0.57m (Tab.2), although the 334 

trend of the residuals (Fig. 6a) during the year underestimate the snow depth in the snowmelt 335 

phase. Moreover, considering the four winter seasons available, the higher average RMSE at the 336 

gauge stations was recorded for the 2018-2019’s year (Fig. 6b). Figures 6c-e show the analysis 337 

of the dependence of the RMSE on the spatial location. It is worth remarking that, to exposure 338 

and slope, altitude influences more the difference between the Sentinel and in-situ data, with an 339 

increase in RMSE of ca. 0.02 m every 100 m and that, in the proximity of the snow line, the 340 

correlation is reduced.  341 

Table.2 Statistical relations between measured and retrieved snow depths for the total time series 342 

and for the time series of the season available. 343 

SERIES PEARSON'S R RMSE [m] NRMSE [-] 

TS_TOTAL 0.66 (<0.01) 0.57 0.20 

TS_2016-2017 0.47 (<0.01) 0.45 0.19 

TS_2017-2018 0.51 (<0.01) 0.62 0.23 

TS_2018-2019 0.76 (<0.01) 0.66 0.19 

TS_2019-2020 0.76 (<0.01) 0.53 0.18 

 344 
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 345 

Figure 6 Comparison between C-SNOW and ground-monitored weekly snow-depth values at 346 

monitoring stations (Tab 1). a) Temporal pattern of the difference between snow-depth values 347 

during four hydrologic years. b) RMSE of snow-depth values. c, d, and e) relationship of RMSE 348 

of snow-depth values with: c) slope gradient (RMSE = 0.50 -5.6e-5 Slope, R
2
 = 0.0); d), altitude 349 

(RMSE =2.5e-4 Altitude, R
2
 = 0.5); and e) slope aspect (RMSE = 0.52-1.1E-4 Aspect, R

2
 = 0.0) 350 

 351 

4.3.Quantification of groundwater storage dynamics 352 

The dynamics of storage was achieved by quantifying the volumes involved in each hydrologic 353 

process during the 3 phases of the 2018-2019 hydrologic year in the Valtellina valley. The 354 

overall uncertainty (Δ) of the Sentinel-based method amounts to about 36%, due to the 355 

uncertainty of ET (30%) and SWE (20%). 356 
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 357 

Figure 7 a) Water balance for different periods of the year (snowmelt period, snow‐free period, 358 

and snow accumulation period) between the 01 March 2018 and 28 February 2019. Error bars 359 

represent the uncertainty associated to the use of Sentinel-based method for the estimation of the 360 

groundwater storage. In the background, the fluctuations of the groundwater level measured in 361 

the floodplain during the year. b) Comparison of the volumes of water output to the MS16 362 

obtained with the method based on sentinel data and with the data in situ, for the valley of 363 

Poschiavo (in red in the map). Error bars represent the uncertainty associated to the use of 364 

Sentinel-based method for the prediction of discharge. 𝑃 = Persian-based precipitation; 𝑄𝑜𝑛
𝑠𝑤 = 365 

Sentinel-based snowmelt; 𝐸𝑇𝑠𝑤= Sentinel-based Evapotranspiration; 𝑄𝑜𝑓𝑓
𝑠𝑤  = measured 366 

discharge; ∆𝑆𝑠𝑛𝑜𝑤= Sentinel-based stored snow; 𝐴𝑏𝑠 = measured anthropic abstraction; ∆𝑆𝑔𝑤 = 367 

Sentinel-based groundwater storage; 𝑄𝑜𝑓𝑓(𝑆)= Sentinel-based discharge. 368 
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At the catchment scale, the residual water-budget (Fig.7a) was achieved considering the Ms07 369 

(Fig.1) as outlet point. During the first phase (March to June), the groundwater storage reaches 370 

the peak value, with an average of 1.3±0.4 mm/day, mainly due to the effect of precipitation and 371 

snowmelt. During the snow-free phase (July to September), we observe the first part of the 372 

recession curve in which the catchment outflow is larger than the total precipitation. The loss of 373 

water amounts to about 45% of the antecedent-phase recharge. The decrease is due almost 374 

equally to the evapotranspiration (43.5% of the output) and the runoff (56.5% of the output) 375 

related to heavy and instantaneous rainfall events. In the snow accumulation phase (October to 376 

February), additional depletion of the storage (1.3±0.4 mm/day) is observed as a result of the 377 

surface flow (50.4% of the output) and the storage of water as snow (37.6% of the output), 378 

despite the instantaneous peaks of recharge due to the heavy rainfall events. 379 

For the Poschiavo valley, the estimated surface-flow in the main river, Poschiavino River, was 380 

compared with the discharge data at the Ms16 (Fig. 7b). For the whole year, the volume of 381 

𝑄𝑜𝑓𝑓
𝑠𝑤 corresponds well to the measured discharge, with a difference of 27.4%. Considering the 382 

three phases, we observe that the measured discharges lie within the uncertainty range of the 383 

estimated 𝑄𝑜𝑓𝑓
𝑠𝑤, except for the snow-accumulation phase. In this phase, the Sentinel-based 384 

𝑄𝑜𝑓𝑓
𝑠𝑤 significantly underestimate the measured discharge. 385 

5. Discussion  386 

5.1.Water dynamics 387 

The application of Sentinel-based methods for the analysis of the groundwater recharge and 388 

storage provides consistent and physically realistic values for extensive alpine catchments. This 389 

is demonstrated by an uncertainty (Δ =36%) relatively small, considering other remote sensing 390 

methods (Dozier et al., 2016; Karimi et al., 2015). Although limited to a single hydrologic year, 391 

the results allow obtaining a preliminary understanding of the storage dynamics in the Alpine 392 

area. First of all, a positive groundwater storage is limited only to the snowmelt phase. In the rest 393 

of the year, the storage is negative, also during the snow accumulation phase when the 394 

precipitation input is significant but stored in the snowpack. However, the negative values for 395 

2018 may be overestimated due to the high RMSE in the estimation of snow depth in the 2018-396 

2019 winter (Tab. 2). Morover, it is important to note that an underestimation of the balance 397 

could be due to the assumption that some components, such as the 𝑄𝑜𝑛
𝑔𝑤, are neglected. In any 398 
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case, a negative overall annual storage is confirmed by the groundwater levels measured along 399 

the main floodplain of the catchment, where the piezometers show a net annual lowering of 400 

about 0.10 m. 401 

Previous studies have shown similar dynamics in snow-dominated areas. Based on to the Special 402 

Report on Emission Scenarios (SRES), Eckhardt and Ulbrich (2003) and Neukum and Azzam 403 

(2012) found that climate change could increase groundwater recharge in spring and winter, 404 

partially associated to lower river discharge, and decrease recharge during summer and autumn, 405 

with higher river discharge. Likewise, in well‐constrained water balance studies by Hood and 406 

Hayashi (2015) and Cochand et al. (2019) the groundwater storage in alpine catchments shown 407 

an excess volume of water recharge during the melting period, and an excess volume output in 408 

the late season, with an overall negative yearly storage. 409 

The reliability of Sentinel-based estimations of the ET and the SWE-linked components has been 410 

verified with the 𝑄𝑜𝑓𝑓
𝑠𝑤 quantification in the Poschiavo tributary valley, where the groundwater 411 

storage is assumed to be negligible. The observed discrepancies in the discharge volumes are due 412 

to the management of the 7 hydropower plants located in the Poschiavo valley. In fact, part of 413 

the water is stored during the spring season, leading to an overestimation of 𝑄𝑜𝑓𝑓
𝑠𝑤  with respect 414 

to the measured discharge, and released in winter, leading to an underestimation (Fig. 7b). 415 

5.2.Comparison of ET and SWE products 416 

The Sentinel-based values of ET and SWE show a good correlation with ground measurements, 417 

supporting the use of these new remote sensing based methods to compensate for the lack of 418 

ground data. In particular, the high resolution that we were able to achieve with the Sentinel data 419 

enabled us to catch the complexity of the physiographic elements in mountain areas, as 420 

demonstrated, for instance, by the wide variability of ET values calculated along the slopes 421 

(Fig.3). Moreover, for the ET, in agreement with the results previously reported by Guzinski et al 422 

(2019), a good correspondence with the ground-based estimations of evapotranspiration was 423 

observed (Fig.4), considering the uncertainty related to the quality of the LST maps. However, 424 

since the meteorological stations for the ET computation are available only in the floodplain, it 425 

was not possible to investigate the dependence of the elevation and the exposure in the 426 

application of SEN-ET algorithm. Regarding the snow depth, an altitude-dependent discrepancy 427 

with the in-situ gauge station values is detected (Fig. 6d). It is important to remark that the 428 
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meteorological monitoring sites in the mountains, especially at high altitude, lie usually on 429 

nearly flat terrain for logistical reasons. Therefore, they may not fully represent snow 430 

accumulation and melt rates on nearby slopes and in the entire pixel areas in which the stations 431 

are located (Dozier et al 2016). 432 

This research shows that the methodology for ET estimation offers time series that may be useful 433 

for climate change analysis, since they are capable to highlight anomalies and variations. For 434 

instance, it is important to highlight the effect of the air temperature anomaly of April 2018, 435 

associated with a recorded temperature 3-5°C higher than the seasonal average 436 

(https://www.ncdc.noaa.gov/temp-and-precip/global-maps). The anomaly in the whole 437 

catchment area is clearly shown in the Sentinel-based estimation (Fig. 3), in which the values of 438 

ET result twice those expected considering the seasonal trend. The integration of the surface 439 

temperature enables to catch the seasonal fluctuations, in contrast to other methods such as in the 440 

MOD16 algorithm. 441 

5.3.Spatio-temporal resolution 442 

Sentinel-based methods offer maps with the highest spatio-temporal resolution currently 443 

available to estimate ET and SWE for extensive study areas. The temporal resolution is 444 

controlled by satellite overpass and clear-sky/seasonal conditions. In large mountain catchments, 445 

the size of the area reduces the availability of useful satellite images. The full spatial coverage of 446 

the area is not guaranteed at each overpass of the satellite, offering at times incomplete 447 

information for catchment-scale studies. Moreover, at high-altitude, satellite imagery is 448 

frequently affected by cirrus clouds with an occurrence larger than 50% over the mid-latitude 449 

area (Schläpfer et al., 2020). For instance, this limitation causes information gaps during the 450 

rainy months of May and November 2018, when only three maps per month are available for the 451 

ET estimation. In addition, the C-SNOW dataset shows a temporal gap during the snowmelt 452 

phase, as conveyed by Lievens et al. (2019). In fact, due to wet-snow conditions that partially 453 

reflect and absorb the radar signal, the snow-depth retrieved by Sentinel-1 is affected by a higher 454 

uncertainty. Even considering all the above limitations, the Sentinel-based methods provided a 455 

substantial coverage for about 33% of the days of the year.  456 

Regarding the spatial resolution, the methodology allowed us to obtain a resolution of 20 m for 457 

ET and 30 m for SWE. The 20 m resolution of Sentinel-based ET is due to the sharpening of the 458 

https://www.ncdc.noaa.gov/temp-and-precip/global-maps
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original Sentinel-3 imagery. Higher-resolution thermal remote sensing data that are expected to 459 

be available in the future will further improve energy flux models based on satellite data in 460 

complex terrain (Castelli et al 2018). For the SWE, the resolution derives from the SRTM 461 

matched with 1 km snow depth maps. The resolution of C-SNOW SD induces higher uncertainty 462 

in the transition zones. The application of the Sentinel-2 SCA enables to reduce the uncertainty 463 

at the boundaries, close to the snow line. However, the results may further improve by taking 464 

advantage of the Sentinel-1 full resolution (about 10 m), already planned in the next 465 

implementation for the snow depth retrieves (Lievens et al., 2019). 466 

6. Conclusions 467 

We propose a Sentinel-based methodology to quantify the seasonal groundwater storage in a 468 

snow-dominated catchment. It consists of the application of new promising method for the 469 

estimation of ET (Guzinski et al., 2020) and the new database of snow depth (Lievens et al., 470 

2019) in the residual water balance approach. The use of Sentinel data provides estimates of ET 471 

and SWE with a weekly frequency and a remarkable spatial resolution of 20 m for ET and 30 m 472 

for SWE. Applied to an extensive alpine catchment, this spatial and temporal resolution allows 473 

obtaining consistent and physically realistic values for extensive alpine catchments, as 474 

demonstrated by a relatively limited uncertainty (Δ =36%). Through the test of the reliability of 475 

the discharge volumes in a gauged tributary valley with negligible groundwater storage, a 476 

secondary application of the Sentinel-based ET and SWE-linked components was found, 477 

defining the runoff volumes at the outlet point in the three phases of the hydrologic year. The 478 

high temporal and spatial resolution enables to investigate the influence of physiographic 479 

parameters (altitude, slope, and aspect) and the seasonal conditions in the ET and SWE 480 

estimates. The overall negative storage for the 2018-2019 hydrological year shows a reduced 481 

high recharge potential related to high precipitation and low evapotranspiration, highlighting the 482 

possible effects of climate change on the hydrological processes and to manage the water 483 

resources in alpine snow-dominated catchments. 484 

To the authors’ best knowledge, this is the first time the groundwater storage was estimated in an 485 

extensive alpine catchment based on the synergistic use of satellite data.  Moreover, the free-486 

availability of the Sentinel data and of the algorithms for the estimation of the ET and SWE 487 

components ensure a methodology that can be applied to other catchments. The high spatial and 488 

temporal resolution of the obtained groundwater storage estimates allow to significantly 489 
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contribute to the understanding of hydrogeological processes in Alpine areas, opening new 490 

frontiers to improve the elaboration and calibration of a numerical model. 491 
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