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METHODOLOGY
Cenozoic coccoliths of Order Discoasterales (66 
Ma–1.92 Ma) are arguably the most diverse in the 
Cenozoic, representing 7 families, 16 genera and 
>600 (paleontologic) species (7)

This study is based on:
a) Characterization of coccolith shape
b) Analysis of morphostructure (# + position of 

cycles and shape + optical orientation + 
imbrication of elements)
c) Description of texture of elements
d) Reconstructions of coccospheres

RESULTS
2 main superposed MSUs with wedge-shaped elements (Figs. 2, 3). Coccospheres modeled from B. sparsus (figs. 4, 5). 
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Anticipation of the effect(s) of global warming on coccolithophores 
(Haptophyta) requires identification of the role of their coccoliths 
and coccospheres.  Ecologic experiments suggest a multitude of 
possibilities, among which enhancement of photosynthesis, 
photodamage protection and armor protection, in particular from 
grazing (1).  

Long-term diversification of coccolithophores may help elucidate the 
adaptive role of coccoliths and bring a complementary perspective on 
the ecological significance of these abundantly secreted skeletal pieces 
which accumulate to form deep sea oozes and chalk.

Fig. 2:  Fossil coccolith of ancestral taxon 
(Biantholithus sparsus) and interpretation of 
MSUs

Fig. 3:  Modification of MSUs along selected lineages

Fig. 4: Fossil coccosphere of Biantholithus and
graphic representation.

Note:  Discoasterales coccoliths and coccospheres were delicate, stiff, 
light structures— NOT robust and heavily calcified as generally 

thought.
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DISCUSSION
Coevolution of Discoasterales and the d13C of the ocean from a Middle to Late Paleocene (4, 5) evidenced by  

a- Coccoliths increasingly more voluminous but also more cavernous through the Paleocene.
b- Evolution of morphology resulted in increase of Surface/Volume (S/V) ratio (6)

suggesting:
c- Forcing of intensifying Late Paleocene oligotrophy on morphologic diversification
d- Cavernous coccospheres as support for mixotrophic and/or symbiotic activity

Fig. 1a: Lineages of the Order Discoasterales and comparison with the Cenozoic history of 
temperature (d18O) and nutrients (d13C) (2, 3)

Fig. 1b: Sequential radiations towards increasing cavernous coccospheres correlate                                                                                                        with (inferred) increasing oligotrophy .

Fig. 5: Fossil coccolith and graphic  representation of 
corresponding coccosphere.

Fig. 6:  Interpretation of the living cell of a Fasciculithus species (Late Paleocene).
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Honeycombed coccoliths and underlying periplastic scales may 
have formed a structural feutrage that retained sea-water loaded 
with nutrients and metabolic products from the cell, offering 
spaces for symbiotic and/or mixotrophic activity (Fig. 6).
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