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Abstract 24 

During the late Miocene, global cooling occurred alongside the establishment of near-modern 25 

terrestrial and marine ecosystems. Significant (3 to 5 °C) sea surface cooling from 7.5 to 5.5 Ma 26 

is recorded by proxies at mid to high latitudes, yet the magnitude of tropical cooling and the role 27 

of atmospheric carbon dioxide (pCO2) in driving this trend are debated. Here, we present a new 28 

orbital-resolution sea surface temperature (SST) record spanning the late Miocene to earliest 29 

Pliocene (9 to 5 Ma) from the eastern equatorial Indian Ocean (International Ocean Discovery 30 

Program Site U1443) based on Mg/Ca ratios measured in tests of the planktic foraminifer 31 

Trilobatus trilobus. Our SST record reveals a 3.2 °C decrease from 7.4 to 5.8 Ma, significantly 32 

increasing previous estimates of late Miocene tropical cooling. Analysis of orbital-scale 33 

variability shows that before the onset of cooling, SST variations were dominated by precession-34 

band (19-23 kyr) variability, whereas tropical temperature became highly sensitive to obliquity 35 

(41 kyr) after 7.5 Ma, suggesting an increase in high latitude forcing. We compare a revised 36 

global SST database with new paleoclimate model simulations and show that a pCO2 decrease 37 

from 560 ppm to 300 ppm, in the range suggested by pCO2 proxy records, could explain most of 38 

the late Miocene sea surface cooling observed at Site U1443. Estimation of meridional sea 39 

surface temperature gradients using our new Site U1443 record as representative of tropical SST 40 

evolution reveals a much more modest increase over the late Miocene than previously suggested, 41 

in agreement with modelled gradients. 42 

 43 

Plain Language Summary 44 

The late Miocene is an interesting time period for paleoclimatologists because the Earth 45 

underwent important climatic and ecological changes that led to the establishment of our modern 46 

climate. An important cooling of global surface oceans was recorded by tracers used to 47 

reconstruct past temperature, however the amplitude of this cooling in the tropics and the role of 48 

atmospheric carbon dioxide (CO2) in driving it are unclear. We present a new reconstruction of 49 

surface temperatures from the eastern equatorial Indian Ocean based on the temperature-50 

dependent ratio of magnesium to calcium measured in fossil shells of zooplankton 51 

(Foraminifera). Our results reveal a cooling (3.2 °C) higher than previous estimates of tropical 52 

ocean cooling (1 to 2.5 °C). To understand the role of atmospheric CO2 in driving this cooling 53 
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we simulated Miocene climate using a complex model, and find that an atmospheric 54 

CO2 decrease from 560 ppm to 300 ppm could explain most of the reconstructed surface ocean 55 

cooling. We also find that ocean surface temperature gradient between the tropics (using our new 56 

reconstruction) and the northern high latitudes shows a more modest increase over the late 57 

Miocene than suggested by previous studies, in agreement with new and existing climate model 58 

results. 59 

1 Introduction 60 

The late Miocene (11.6 to 5.3 million years ago, Ma) offers the opportunity to assess the 61 

sensitivity of Earth’s climate system to changing internal (ice volume and vegetation induced 62 

albedo changes, greenhouse gas concentrations) and external (orbital forcing) drivers in a 63 

warmer than modern world, yet with a continental configuration similar to modern (Knorr et al., 64 

2011; Herbert et al., 2016; Holbourn et al., 2018; Steinthorsdottir et al., 2021). The late Miocene 65 

lies in a context of long-term global cooling and declining partial pressures of atmospheric CO2 66 

(pCO2) that started at the end of the Early Eocene Climate Optimum (~49 Ma) (e.g. Beerling & 67 

Royer, 2011; Westerhold et al., 2020; Rae et al., 2021). Subsequent cooling and decreasing pCO2 68 

led to the progressive establishment of polar ice sheets, with two major phases of Antarctic ice 69 

sheet expansion preceding the late Miocene: the first initiating at the Eocene/Oligocene 70 

Transition ~34 Ma and the second at 13.9 Ma during the Middle Miocene Climatic Transition 71 

(e.g. Flower & Kenett, 1994; Zachos et al, 1996, 2001; Lear et al., 2000; Westerhold et al., 72 

2020). The establishment of a permanent and large-scale Northern Hemisphere ice sheet 73 

occurred in the late Pliocene to earliest Pleistocene, with an intensification of Northern 74 

Hemisphere glaciation at ~2.7 Ma (e.g. Balco & Rovey 2010; Bailey et al., 2012; Shakun et al., 75 

2016). 76 

 77 

During the late Miocene, major global sea surface cooling is recorded in both hemispheres 78 

despite the absence of a strong trend in deep-ocean foraminiferal δ18O that might imply sustained 79 

global cooling (Herbert et al., 2016; Westerhold et al., 2020). This occurs alongside major 80 

ecological events recorded both on land and in the marine environment. The establishment of 81 

near modern ecosystems, with the expansion of deserts in north Africa and central Asia (Pound 82 

et al., 2012; Zhang et al., 2014) and the rise to dominance of C4 grassland biomes in tropical and 83 
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subtropical regions between 10 and 3.5 Ma, may have been driven by aridification and/or a 84 

decrease in pCO2, although the diachronous nature of the C4 ecosystem expansion implies 85 

additional regional drivers (e.g. fire severity, seasonality, and rainfall amount) (Cerling et al., 86 

1997; Pagani et al., 1999; Herbert et al., 2016; Andrae et al., 2018; Carrapa et al., 2019; Tauxe & 87 

Feakins, 2020). In the oceans, late Miocene changes in calcifying phytoplankton geochemistry 88 

and morphology are interpreted to show adaptation to decreasing CO2 availability (Bolton & 89 

Stoll, 2013; Bolton et al 2016). The late Miocene carbon isotope shift (LMCIS, defined by a ~1 90 

‰ decrease in benthic foraminiferal δ13C from 7.9 to 6.4 Ma), recorded worldwide in benthic 91 

and planktic foraminiferal δ13C, provides further evidence for a major change in global carbon 92 

cycling at this time (Keigwin, 1979; Keigwin & Shackleton, 1980; Holbourn et al., 2018; Bolton 93 

et al. 2021; Drury et al., 2021). Between 7 and 5 Ma, episodic occurrences of ice rafted debris 94 

recorded in North Atlantic (Larsen et al, 1994; John & Krissek, 2002) and North Pacific 95 

(Krissek, 1995) sediments are associated with short positive excursions in benthic foraminiferal 96 

δ18O, suggesting the development of small ephemeral ice sheets in South-east Greenland and 97 

South-east Alaska at this time (Hodell et al., 2001; Holbourn et al., 2018; Jöhnck et al., 2020). 98 

The hypothesis that small, dynamic Northern Hemisphere ice sheets were present in the late 99 

Miocene is supported by the observation that obliquity influence on global climate cycles 100 

(benthic δ18O and CaCO3 content) increased after 13 Ma and became dominant after ~7.7 Ma, 101 

suggesting an amplification of high-latitude forcing (Drury et al., 2017; Drury et al 2021; 102 

Holbourn et al., 2018; Westerhold et al., 2020). Taken together, these studies suggest that 103 

profound changes in climate dynamics occurred in the late Miocene, with important cryosphere 104 

and carbon cycle changes and a parallel reorganization of terrestrial biomes. Yet, the exact role 105 

of pCO2 in the evolution of late Miocene climate and ecosystem change is unclear because 106 

existing pCO2 reconstructions are generally low-resolution, with divergent trends between 107 

proxies. Certain studies (e.g. Kürschner et al 1996; Pagani et al., 1999, 2005; Retallack 2009; 108 

Zhang et al., 2013) show no major pCO2 decrease during the late Miocene, whereas other studies 109 

either directly (Bolton et al., 2016; Mejia et al., 2017; Stoll et al 2019; Tanner et al., 2020; Rae et 110 

al., 2021) or indirectly (Bolton & Stoll, 2013) support the hypothesis that pCO2 gradually 111 

decreased over this interval.  112 

 113 
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A recent study of sea surface temperatures (SSTs) reconstructed using the C37 alkenone 114 

unsaturation index (Uk’37 index) revealed a global cooling from 7.5 to 5.5 Ma (the Late Miocene 115 

Global Cooling, LMCG), with a magnitude comprised between 3 and 5 °C in high and mid-116 

latitudes and a modest cooling of ~1 °C in the tropics (Herbert et al., 2016). While the linear 117 

relation between the Uk’37 index and temperature is well defined for temperatures between 8 and 118 

24 °C, it contains larger uncertainties at warmer temperatures (> 24 °C) due to a decrease in 119 

Uk’37 sensitivity to temperature (e.g. Sonzogni et al 1997; Conte et al., 1998; Grimalt et al., 2001; 120 

Pelejero & Calvo, 2003; Conte et al., 2006; Tierney & Tingley, 2018). Thus, it is likely that 121 

tropical SSTs prior to the LMGC and the long-term amplitude of cooling recorded by the Uk’37 122 

index are underestimated (Herbert et al., 2016). Several low-resolution tropical Pacific 123 

temperature records based on the TEX86 index also span the late Miocene, showing 2 to 4 °C of 124 

cooling (Zhang et al., 2014; Liu et al., EGU abstract 2020). SST estimates based on planktic 125 

foraminiferal Mg/Ca ratios from the South China Sea (Steinke et al., 2010; Holbourn et al., 126 

2018) also suggest 2.5 °C of late Miocene cooling. However, existing late Miocene tropical SST 127 

records are either from upwelling areas (Arabian Sea and Equatorial Pacific; Huang et al., 2007; 128 

Rousselle et al, 2013; Zhang et al., 2014; Herbert et al., 2016), or from regions affected by 129 

complex local oceanography (South China Sea and Andaman Sea; Holbourn et al., 2018; Jöhnck 130 

et al., 2020), precluding the resolution of long-term, global tropical SST trends. Therefore, there 131 

is a clear need to reconstruct tropical SSTs in open-ocean, warm-pool regions, characterized by 132 

the warmest SSTs in the world oceans (>28 °C) (e.g. Lukas & Webster 1989; Vinayachandran & 133 

Shetye, 1991; Yan et al., 1992; Wang & Enfield, 2001), using optimal proxies.  134 

 135 

Here, we present new orbital-resolution SST estimates from sediments deposited at International 136 

Ocean Discovery Program (IODP) Site U1443, in the eastern equatorial Indian Ocean, spanning 137 

the late Miocene (9 to 5 Ma). SSTs are estimated using Mg/Ca ratios measured on the mixed 138 

layer dwelling foraminifer Trilobatus trilobus. Accurate age control is provided by a new 139 

orbitally tuned benthic foraminiferal δ18O record generated on specimens picked from the same 140 

samples (Bolton et al., 2021). To test the idea that a pCO2 decrease drove global sea surface 141 

cooling during the late Miocene, as suggested by recent studies (e.g. Herbert et al., 2016; Tanner 142 

et al., 2020; Rae et al., 2021), we present new climate model simulations using the Earth System 143 

Model IPSL-CM5A2 (Sepulchre et al., 2020). We evaluate the effect of pCO2 on tropical SSTs 144 
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and latitudinal SST gradients using three different pCO2 scenarios within the range suggested by 145 

late Miocene pCO2 proxy data (300, 420 and 560 ppm), and compare modelled SSTs to our new 146 

Site U1443 SST record as well as a revised global SST data compilation.  147 

 148 

2 Site Description and modern oceanography 149 

IODP Site U1443 is located in the southernmost Bay of Bengal (BOB) and was cored during 150 

Expedition 353 on the crest of the Ninetyeast Ridge (5° 23’ 2.94’’ N, 90° 21’ 40.381’’ E, 2924 151 

meters water depth) (Clemens et al., 2016). Site U1443 is a re-drill of ODP Site 758 (Shipboard 152 

Scientific Party, 1989). Due to the northward displacement of the Indian Plate, Site U1443 was 153 

located at a paleolatitude of 2.7°N at 9 Ma and 4°N at 5 Ma (Scotese, 2016).  154 

 155 

In the modern northern Indian Ocean, seasonal South Asian monsoon circulation patterns are the 156 

dominant control on oceanographic conditions (Webster et al., 1998). Seasonal variations of 157 

insolation and pressure gradients between the southern subtropical Indian Ocean and the Asian 158 

continent induce a large-scale shift in surface wind direction and speed with strong 159 

southwesterlies during the summer monsoon (June, July, August) and weaker northeasterlies 160 

during the winter monsoon (December, January, February) over the BOB (Tomczak & Godfrey, 161 

2001). The BOB is also marked by a complete seasonal reversal of surface ocean circulation 162 

(Schott et al., 2009), with saltier, denser water masses from the Arabian Sea entering the BOB 163 

via the Southwest Monsoon Current during summer and less saline water masses from the BOB 164 

flowing into the Arabian Sea via the Northeast Monsoon Current during winter (Jensen, 2001 165 

and 2003) (Figure 1a-b). In addition, the BOB receives a large amount of freshwater from direct 166 

rainfall and riverine inputs. This large input of freshwater and its redistribution by horizontal 167 

advection lead to the formation of strong salinity stratification governed by the seasonal and 168 

spatial variability of the barrier layer thickness (Shetye et al., 1996; Thadathil et al., 2007). The 169 

formation of a barrier layer between the base of the mixed layer and the top of the thermocline 170 

inhibits interactions between shallow and intermediate water masses, allowing BOB surface 171 

waters to maintain warm temperatures (>28 °C) throughout the year (Rao & Sivakumar, 2003; 172 

Thadathil et al., 2007). As a consequence, seasonal SST variability in the BOB is mainly 173 
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controlled by the strength of (monsoonal) wind-driven mixing (e.g. Unger et al., 2003; Vidya et 174 

al., 2013) and by salinity stratification (barrier layer formation). In waters overlying Site U1443, 175 

strong southwesterlies result in maximum annual surface ocean wind stress, deeper wind-driven 176 

mixing and reduced stratification during the summer monsoon (Figure 1c). The intrusion of high 177 

salinity Arabian Sea water during summer also acts to deepen the mixed layer (Thadathil et al., 178 

2007), resulting in average SSTs of 28.7 °C (Figure 1c), very close to mean annual SST (28.8 179 

°C). In autumn and early winter, the progressive southward spreading of fresh water from 180 

riverine inputs in the northern BOB results in the development of salinity stratification and a 181 

barrier layer (Thadathil et al., 2007) and allows relatively warm SSTs (> 28.1 °C; Figure 1c) to 182 

persist above Site U1443. During this time the lowest sea surface salinities occur (33.6 to 33.8 183 

PSU; Zweng et al., 2018), although the annual sea surface salinity range is small (33.6 to 34.35 184 

PSU; Figure 1c) compared to further north in the BOB. SSTs reach a maximum of 29.9 °C in 185 

April, when lowest surface ocean wind stress results in strong stratification and a shoaling of the 186 

mixed layer (Figure 1c). In summary, local ocean-atmosphere processes induce a relatively small 187 

annual SST variability in waters overlying Site U1443 (28.1-29.9 °C; Figure 1c; Locarnini et al., 188 

2018), thus we consider this site suitable for reconstructing “open ocean” tropical SSTs that are 189 

representative of the global picture. 190 

 191 
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 192 

Figure 1. Modern oceanographic conditions at Site U1443 in the southern Bay of Bengal.  193 

Maps show seasonal SST and surface ocean circulation (arrows) during the summer (July, 194 

August, September) (a) and during the winter (January, February, March) (b). On both maps the 195 

modern location of IODP Site U1443 in the Bay of Bengal (black square) and its paleolocation at 196 

9 Ma (latitude ∼2.5°N and longitude ∼89°E; black dot) are shown. Panel (c) shows modern 197 

monthly wind stress and mixed layer depth, with points representing individual months and 198 

diamonds with line representing monthly mean values over entire time series, and sea surface 199 

temperature and sea surface salinity with diamonds with lines corresponding to statistical mean 200 

of monthly mean values over entire time series with standard error bars, above Site U1443. Maps 201 

were created with Ocean Data View software using the SST datasets from the World Ocean 202 

Atlas 2013 (Locarnini et al., 2013). Paleolocation of Site U1443 was calculated from GPlates 203 

software using rotations and plate boundaries from the PALEOMAP PaleoAtlas for Gplates 204 

(Scotese, 2016). Ocean circulation is from Schott et al. (2009). SMC: Southwest Monsoon 205 

Current, NMC: Northeast Monsoon Current, SECC: South Equatorial Counter Current. In panel 206 
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(c) wind stress is from ERDDAP (Wind Stress, Metop-A ASCAT, 0.25°, Global, Near Real 207 

Time, 2009-present), mixed layer depth (1969-2010) is from Keerthi et al. (2013), SST and SSS 208 

are from the World Ocean Atlas 2018 (Locarnini et al., 2018 and Zweng et al., 2018). Datasets 209 

were extracted for a box between 4.5-5.5°N latitude and 89-91°E longitude (depending on grid 210 

resolution) and binned by month. JJA: June, July, August, DJF: December, January, February. 211 

 212 

3 Materials and Methods 213 

3.1 Sampling and Trilobatus trilobus taxonomy and ecology 214 

Site U1443 samples used in this study are from the revised shipboard splice comprised between 215 

122.6 m and 70.06 m CCSF-A (Core Composite depth below Sea Floor), from Core U1443B-216 

7H-5W to Core U1443C-15H-4W, spanning the late Miocene-earliest Pliocene (9 to 5 Ma) 217 

(Bolton et al., 2021). Sediments are dominated by calcareous nannofossil ooze with well-218 

preserved shell of foraminifera (~70-80 % CaCO3 with slightly increasing clay content upcore) 219 

(Clemens et al., 2016). Bulk samples were washed through a 63 µm sieve with tap water, then 220 

the coarse fraction was oven dried at 50 °C. We apply the age model of Bolton et al. (2021), 221 

based on revised biostratigraphy and tuning of benthic foraminiferal δ18O to an eccentricity-tilt 222 

target, which results in sedimentation rates between 0.5 and 1.9 cm/kyr. We selected 735 223 

samples over the 9 to 5 Ma interval for Mg/Ca SST reconstruction, with a mean resolution of 5.5 224 

kyr.  225 

 226 

In each sample 50 to 60 tests of Trilobatus trilobus (Reuss, 1850) were picked from the 212-315 227 

µm size fraction, avoiding individuals with gametogenic calcite that could introduce a cold bias 228 

due to migration during gametogenesis (Bé, 1980; Hemleben et al., 2012). In the modern ocean, 229 

T. trilobus is considered to be one of four morphospecies of the Trilobatus sacculifer plexus 230 

(Spezzaferri et al., 2015; Poole & Wade 2019). It ranges stratigraphically from the lower 231 

Miocene to recent (Spezzaferri 1994) and is very abundant in the tropical to subtropical oceans 232 

(Bé & Tolderlund, 1971; Schiebel & Hemleben, 2017). T. trilobus is a spinose, photosymbiont-233 

bearing species that is therefore constrained to the upper photic zone, calcifying in the mixed 234 

layer, with low seasonality in stratified tropical waters (Schiebel & Hemleben, 2017). T. trilobus 235 
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tests were abundant and well preserved throughout the late Miocene at Site U1443 (see section 236 

4.1). 237 

 238 

3.2 Mg/Ca-SST reconstruction 239 

3.2.1 Mg/Ca Cleaning and Analysis  240 

Trilobatus trilobus tests were weighed, gently crushed between two glass slides to open 241 

chambers, then fragments were homogenized before cleaning. Test fragments were cleaned to 242 

remove clay and organic matter, following the short “Mg cleaning” protocol of Barker et al. 243 

(2003) without a reductive step. A cleaning test was performed on ten samples throughout the 244 

study interval to test the sensitivity of measured Mg/Ca ratios to the inclusion of a reductive 245 

cleaning step (Rosenthal et al., 2004) (Text S1 and Figure S1). Samples were dissolved in 0.075 246 

M HNO3 and centrifuged to remove potentially remaining detrital particles (Greaves et al., 247 

2005), then the solution was diluted with 2 % HNO3. Samples were analyzed using bracketing to 248 

minimize instrumental drift with an ICP-QMS (Agilent 7500ce) at CEREGE. Together with 249 

Mg/Ca and Sr/Ca ratios, Fe, Al and Mn concentrations were analyzed. Long term precision 250 

determined by analysis of independent in-house standards during each run over 2 years is on 251 

average 0.56 % (r.s.d) for Mg/Ca. In nine samples, T. trilobus tests were also picked from the 252 

355-500 µm size fraction and analyzed following identical protocols described above to access 253 

the sensitivity of Mg/Ca to test size (Text S2 and Figure S2). 254 

 255 

3.2.2 Calibration 256 

We compare SSTs reconstructed using three different T. sacculifer exponential calibration 257 

equations: the commonly-applied Anand et al. (2003) sediment trap calibration from the 258 

Sargasso Sea (“Mg cleaning”, test size: 350-500 µm), the Dekens et al. (2002) calibration based 259 

on core top data from the tropical Pacific Ocean, which includes a basin-specific dissolution 260 

correction (“Cd cleaning”, test size: 250-350 µm), and the Hollstein et al. (2017) calibration 261 

based on Western Pacific Warm Pool core-top data (“Cd-cleaning”, test size: 250-355 µm) 262 

(Figure S3). Because we find no systematic bias of Mg/Ca ratio according to cleaning method 263 
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and test size (Texts S1-2 and Figures S1-2), we select the Dekens et al. (2002) calibration 264 

(Equation 1).  265 

 266 

Mg Ca	 = 0.37. exp.../[12..34 5678	98:;<	=> 2?..°A]           (1) 267 

 268 

Core-top T. trilobus Mg/Ca ratios at Site U1443 (Mg/Ca = 3.74 ± 0.19 to 3.79 ± 0.19 mmol/mol, 269 

measured in four Holocene samples from the upper 8 cm of the core; G. Marino, unpublished 270 

data) yield reconstructed SSTs of 28.2 to 29.4 °C with this calibration, consistent with the 271 

modern mean annual SST range above the site (28.1 to 29.9 °C). In contrast, the Anand et al. 272 

(2003) calibration produces much cooler temperatures of 25.8 to 26.5 °C and the Hollstein et al. 273 

(2017) calibration produces slightly cooler temperatures of 27.8 to 29 °C when applied to Site 274 

U1443 core-top Mg/Ca values. The choice of calibration does not affect reconstructed SST 275 

trends (Figure S3).  276 

 277 

3.2.3 Correction for Mg/Casw  278 

The residence time of Ca (~1.1 million years) and Mg (~13 million years) in the ocean (Broecker 279 

& Peng, 1982) suggest that Mg/Ca of seawater (Mg/Casw) in the late Miocene may have been 280 

significantly different to the present-day value of 5.2 mmol/mol (Evans & Muller 2012). Thus, 281 

for reconstructions older than 1.1 Ma, it is necessary to correct Mg/Ca measured in foraminiferal 282 

tests for the effect of secular variations in Mg/Casw (e.g. Evans & Muller, 2012; Tierney et al. 283 

2019). Cenozoic reconstructions of Mg/Casw are based on a variety of proxies including fluid 284 

inclusions in halite (Horita et al., 2001; Lowenstein et al., 2001), calcium carbonate veins 285 

(Coggon et al., 2010), benthic foraminifera (Lear et al., 2000), echinoderms (Dickson et al., 286 

2002) and corals (Gothmann et al., 2015). However, the history of Mg/Casw is still poorly 287 

constrained by proxies, in particular for the late Miocene where data are sparse, and various 288 

modelling scenarios have also been proposed (Figure S4). We compared modelling scenarios and 289 

selected the HS15 scenario (Higgins & Schrag, 2015) based on pore fluid chemistry modelling 290 

for Mg/Casw correction in this study (see Text S3 for rationale). The effect of Mg/Casw variations 291 

on Mg/Catest was corrected following the approach of Tierney et al. (2019) with a linear 292 
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relationship with H=1 instead of a power law relationship (Evans & Muller, 2012). Both of these 293 

Mg/Casw-Mg/Catest relationships are based on the same data derived from the T. sacculifer 294 

culture experiment in Delaney et al., (1985), thus we prefer to use the linear relation as it 295 

provides a simpler approach. 296 

𝑀𝑔 𝐶𝑎GHIGGJG = KL MNOPQRQ		S

KL MNOPQRT		S
×𝐵. 𝑒𝑥𝑝Z[                (2) 297 

In Text S4, we discuss the effect of different H values and the impact of Mg/Casw correction on 298 

reconstructed SSTs.  299 

 300 

3.3 Error propagation and time series analyses 301 

Propagated Mg/Ca-SST ±1σ and 2σ uncertainties linked to analytical and age model errors were 302 

estimated via a bootstrap Monte Carlo procedure using the Paleo-Seawater Uncertainty Solver 303 

(PSU Solver; Thirumalai et al., 2016) in Matlab. The age model uncertainty used is 20 kyr and 304 

the average analytical uncertainty for Mg/Ca data is 0.02 mmol/mol. Uncertainties related to 305 

Mg/Casw are not included in the error propagation, and different scenarios are shown in Figure 306 

S5. 10 000 Monte Carlo iterations were performed.  307 

 308 

Time series analyses were performed using the software package Acycle (Li et al., 2019) and 309 

cross-wavelet analyses were performed in R using the biwavelet package (Grinsted et al., 2004; 310 

Gouhier et al., 2016), on records resampled at constant 2 kyr intervals to preserve maximum 311 

resolution, and filtered to remove periodicities longer than one third of dataset length (>1.3 Ma). 312 

Evolutive and singular spectral analyses were performed with the Fast Fourier transform (LAH) 313 

method (Kodama & Hinnov, 2014) and the Multi Taper Method (Thomson, 1982), respectively. 314 

For evolutive analyses of Mg/Ca from Site U1443 a window of 800 kyr and a step of 100 kyr 315 

were used. Where records overlap (~8 to 5 Ma), our Site U1443 Mg/Ca record was compared to 316 

the South China Sea ODP Site 1146 Mg/Ca record (Holbourn et al., 2018), and LAH was 317 

performed with a window of 600 kyr and a step of 100 kyr. Cross-wavelet analyses were 318 

performed on Mg/Ca and benthic δ18O records from site U1443, both records were resampled 319 

and filtered as described above. 320 
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 321 

3.4 Late Miocene SST modelling and data compilation 322 

To simulate the effect of late Miocene pCO2 decrease on tropical Indian Ocean SSTs we used the 323 

Earth System Model IPSL-CM5A2 (Sepulchre et al., 2020) that simulates the interactions 324 

between ocean, atmosphere, land and ice. The IPSL-CM5A2 coupled model is a combination of 325 

the LMDZ5A atmospheric model (Hourdin et al., 2013), the ORCHIDEE land surface model 326 

(Krinner et al., 2005) and the NEMOv3.6 oceanic model (Madec, 2015) that includes an ocean 327 

dynamic component (OPA; Madec, 2018), a sea-ice thermodynamics model (LIM2; Fichefet & 328 

Maqueda, 1997; Timmermann et al., 2005) and a biogeochemistry model (PISCES-v2; Aumont 329 

et al., 2015). The ocean component has a horizontal resolution of 2° by 2° (refined to 0.5° in the 330 

tropics) and 31 vertical levels, whose thickness increases from 10 m at the surface to 500 m at 331 

the bottom. The atmospheric component has a horizontal resolution of 1.875° in latitude by 3.75° 332 

in longitude with 39 vertical levels. The ocean-atmosphere coupling is ensured by the OASIS3-333 

MCT 2.0 coupler (Valcke, 2013) that interpolates and exchanges variables between the two 334 

components.  335 

 336 

We used the late Miocene paleogeography from Sarr et al. (in review) that is based on PLIOMIP 337 

(Haywood et al., 2020) with additional manual modifications. Those include a more exposed 338 

Sundaland and the Australian continent located further south relative to its modern position, 339 

which result in a wider Indonesian Gateway that connects West Pacific and tropical Indian 340 

Ocean water masses via Indonesian Throughflow (ITF). Other differences include a closed 341 

Bering Strait and the absence of Hudson Bay. A small ice-sheet is present on Greenland and the 342 

size of the Antarctic Ice Sheet is reduced compare to present-day, with the removal of the West 343 

Antarctic ice sheet. Given the range of pCO2 reconstructed by various proxies for the late 344 

Miocene (1 to 3 times preindustrial values of 280 ppm, see section 5.2), we designed three 345 

simulations with atmospheric pCO2 values of 300, 420 and 560 ppm respectively. The solar 346 

constant was set at 1364.3 W.m-2 and orbital parameters were kept at modern values.  347 

 348 
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To enable comparison between existing SST records and our new Indian Ocean record, as well 349 

as a model-data comparison, we compiled all available late Miocene Mg/Ca, Uk’
37, and TEX86 350 

data and recalculated SSTs using consistent calibrations and corrections. Mg/Ca-SSTs (Holbourn 351 

et al., 2018; Jöhnck et al., 2020) were recalculated using the Dekens et al. (2002) calibration and 352 

a Mg/Casw correction as described in Section 3.2. UK’
37-SSTs (Huang et al., 2007; 353 

Rommerskirchen et al., 2011; LaRiviere et al., 2012; Rousselle et al., 2012; Seki et al., 2012; 354 

Zhang et al., 2014; Herbert et al., 2016; Liu et al., 2019) were recalculated using the 355 

BAYSPLINE calibration to account for the attenuation of the Uk’
37 responses to SST at 356 

temperatures >24 °C (Tierney & Tingley, 2018). TEX86-SSTs (Zhang et al., 2014; Super et al., 357 

2020) were recalculated using the BAYSPAR calibration analog mode (Tierney & Tingley, 358 

2015). We then compared our revised global SST compilation, averaged over two one-million-359 

year time windows centred on 8 and 6 Ma, to modelled latitudinal SST gradients. We chose these 360 

time windows to represent SSTs before and after the LMGC while excluding the effect of short 361 

term/orbital-scale variability, and to investigate the potential role of pCO2 in driving this long-362 

term cooling. To calculate the paleopositions at 6 and 8 Ma for each site, we used GPlates 363 

software (http://www.gplates.org), using rotations and plate boundaries from the PALEOMAP 364 

PaleoAtlas for Gplates (Scotese, 2016). 365 

  366 

4 Results 367 

4.1 Validity of Mg/Caforam for SST reconstruction at Site U1443 368 

Indicators of cleaning performance and test dissolution suggest that our Mg/Ca record is suitable 369 

for SST reconstruction (Figure S6). Fe/Ca, Al/Ca and Mn/Ca show no correlation with Mg/Ca 370 

(Figure S6a-c), suggesting that the influence of clay minerals and manganese oxides on 371 

foraminiferal Mg/Ca is negligible. Test dissolution preferentially removes Mg (Brown & 372 

Elderfield, 1996; Lea et al., 1999; Rosenthal et al., 2000; Dekens et al., 2002) and lowers 373 

foraminiferal test weight (Rosenthal & Lohman, 2002; Lea et al., 2006) and the percentage of 374 

coarse fraction (Bassinot et al., 1994). It is also possible that foraminiferal Sr/Ca decreases as 375 

carbonate dissolution advances (Stoll et al., 1999). We find no correlation between Mg/Ca ratio 376 

and Sr/Ca, mean mass of individual tests, or % coarse fraction (Figure S6d-f), which gives us 377 
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confidence that dissolution is unlikely to have influenced temporal variations in Mg/Ca. 378 

Scanning Electron Microscope (SEM) images of T. trilobus tests in selected samples also attest 379 

to their good preservation (Figure S6). Tests are devoid of secondary inorganic calcite crystals 380 

on their surface and inner walls, easily identifiable at the micron scale (Edgar et al., 2015; Sexton 381 

et al., 2006), and the pore structure appears well preserved. Cross-section images of test walls 382 

show a microgranular texture without secondary calcite crystals, suggesting that the initial 383 

biogenic structure of the test is preserved. 384 

 385 

In certain regions, strong seasonality in planktic foraminiferal production and shell flux can bias 386 

Mg/Ca SST records away from mean annual values (e.g. Jonkers et al., 2010, 2013). In the 387 

region of Site U1443, annual SST variability is small (~1.7 °C), and two productivity maxima 388 

occur over the annual cycle. The largest primary productivity peak occurs during late summer 389 

(July, August, September; mean SST 28.5 °C) and a second peak is observed in winter 390 

(December, January, February; mean SST 28.6 °C) (Rixen et al., 2019; Bolton et al., 2021). The 391 

seasonality of planktonic foraminiferal mass fluxes recorded at a southern Bay of Bengal 392 

sediment trap site seems to broadly follow annual primary productivity and are highest during 393 

July, September and January (Ramaswamy & Gaye, 2006). Thus, even if foraminiferal shell 394 

fluxes were biased towards high productivity seasons, temperatures recorded by T. trilobus at 395 

Site U1443 are still representative of mean annual mixed-layer temperatures (28.8 °C), with a 396 

possible small bias towards cooler SSTs (less than −0.3 °C).  397 

 398 

Some studies have demonstrated that planktic foraminiferal Mg/Ca can be highly sensitive to 399 

salinity and pH changes in some species (Mathien-Blard & Bassinot, 2009; Allen et al., 2016; 400 

Gray & Evans 2019). Above Site U1443, modern sea surface salinity is close to the open-ocean 401 

value of ~34 PSU and seasonal variations are small (< 1 PSU). Tierney et al. (2019) suggest that 402 

SST sensitivity to salinity is low between 33 and 38 PSU. Thus, we consider a monsoon-related 403 

salinity influence on Mg/Ca at this site to be unlikely. In cultures of T. sacculifer, no pH effect 404 

on Mg/Ca is detected (Allen et al., 2016; Gray & Evans 2019), thus, calibration equations do not 405 

include a term to correct for the pH effect (Gray & Evans, 2019; Tierney et al. 2019). In 406 

summary, Mg/Ca ratios measured in T. trilobus are interpreted as representative of past mean 407 
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annual temperatures in the upper mixed layer of the ocean above Site U1443, with negligible 408 

influence of salinity or pH. 409 

4.2 Orbital-scale SST variability 410 

Late Miocene SSTs at Site U1443 show significant (up to 3 °C amplitude) orbital-scale 411 

variability, which is unaffected by Mg/Casw correction. During certain Thvera-Gilbert (TG) cold 412 

stages (Shackleton et al., 1995) recorded in benthic oxygen isotopes from the same site (Bolton 413 

et al., 2021), coolings of 0.7 to 2.3 °C are recorded (Figure 2). The Mg/Ca record is characterized 414 

by >99 % significant variability at the orbital periods 41 kyr, 24 kyr and 20 kyr, and at the non-415 

primary orbital periods 49 and 59 kyr (Figure 3). At the onset of the LMGC around 7.7 to 7.5 416 

Ma, 41 kyr and 49 kyr cycles emerge (Figure 3c), and before 7.5 Ma precession-band variability 417 

(24 and 20 kyr) is more pronounced (Figure 3d). Evolutive spectral analysis of the Mg/Ca record 418 

also shows variability at the ~400 kyr (Figure 3b) period, but this period is only >95 % 419 

significant in the interval before 7.5 Ma (Figure 3d).  Pronounced periods at 225 and 231 kyr (> 420 

99 % significant) are also identified in the Mg/Ca spectrum, and two well-defined ~200 kyr 421 

cycles are visible between 9 and 8.6 Ma (Figures 2-5). 422 

 423 

4.3 Long term SST trends at Site U1443 424 

Mg/Ca shows a slightly increasing trend from 9 to 7.4 Ma, with values comprised between 3.90 425 

and 2.67 mmol/mol (mean = 3.24 mmol/mol, n = 345, SD = 0.45 °C; Figure 2a). Mg/Ca ratios 426 

then decrease between 7.4 and 5.8 Ma by 0.55 mmol/mol, reaching a minimum average value of 427 

2.81 mmol/mol between 6.2 and 5.8 Ma (Figure 2a). Values then increase from 5.8 to 5 Ma by 428 

0.2 mmol/mol. Reconstructed SSTs (uncorrected and corrected for Mg/Casw variations) show the 429 

same long-term trends and structure as raw Mg/Ca data, with higher SSTs in the oldest part of 430 

the record, a long-term gradual cooling from 7.4 to 5.8 Ma, an SST minimum at 5.8 Ma followed 431 

by a warming between 5.8 and 5 Ma during the latest Miocene-early Pliocene (Figure 2a). With 432 

no Mg/Casw correction, calculated SSTs over the whole record vary between 23.7 °C and 29.2 °C 433 

with a mean value of 26.7 °C (Figure 2a, blue curve). Application of our preferred correction for 434 

secular changes in Mg/Casw (see Methods, Texts S3-4) increases absolute SST estimates by 2.5 435 

to 4.9 °C relative to uncorrected SSTs, and increases the slope of reconstructed long-term 436 
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cooling by 31 % (Figures 2a and S5). Corrected SSTs vary between 26.7 °C and 34.1 °C with a 437 

mean value of 30.4 °C (n=735, SD= 1.35°C), and are above the modern and core-top range prior 438 

to 6.5 Ma and close to or within the modern range between 6.5 and 5 Ma (Figure 2a, red curve). 439 

The warmer temperatures from 9 to 7.4 Ma fluctuate between 29.6 °C and 34.1 °C with a mean 440 

of 31.6 °C (n=345, SD 0.7 °C). This warm period is followed by a gradual cooling of 3.2 °C 441 

from 7.4 to 5.8 Ma. From 5.8 Ma until the Miocene-Pliocene transition at 5.3 Ma, SST increases 442 

by 1 °C.   443 

 444 

Figure 2. Late Miocene Mg/Ca-SST reconstruction from Site U1443.  445 

(a) SST reconstruction derived from Mg/Ca ratios in T. trilobus, calculated using the Dekens et 446 

al. (2002) T. sacculifer equation for the Pacific. The blue curve shows SST uncorrected for 447 
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Mg/Casw variation, and measured Mg/Ca ratios are also shown on the right axis. The red curve is 448 

SST corrected for Mg/Casw variation following the scenario of HS15 (see section 3.2) with a 449 

linear relation between Mg/Catest and Mg/Casw (H=1). The SST error envelopes correspond to 450 

±1σ and ±2σ uncertainty (including analytical and age model errors) estimated using PSU Solver 451 

(Thirumalai et al., 2016). On the left axis the blue diamond represents mean core top Mg/Ca-SST 452 

with SD (blue error bar) and purple square represents mean annual SST for modern with 453 

max/min seasonal SST (purple error bar) (Holocene; 28.8 ±0.6 °C; G. Marino, unpublished and 454 

modern SST 28.8 °C  +1.1 °C and -0.7 °C; World Ocean Atlas 2018). (b) Site U1443 benthic 455 

δ18O (Bolton et al., 2021) with some Thvera-Gilbert (TG) cold stages indicated.  456 
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Figure 3. Time series analyses of Mg/Ca at Site U1443 458 

All timeseries analyses were performed on resampled and bandpassed records as described in the 459 

methods (a) bandpassed Mg/Ca record (b) evolutive spectral analysis of Mg/Ca, (c) and (d) 460 

singular spectral analyses of Mg/Ca over two intervals: from 5 to 7.5 Ma, and from 7.5 to 9 Ma, 461 

respectively. (e) Cross-wavelet analyses of Site U1443 Mg/Ca and benthic δ18O. Dashed line on 462 

evolutive, spectral and cross-wavelet analyses indicate periods of 404, 124, 95, 41, 24, 22 and 19 463 

kyr resulting from Earth’s orbital periods. Throughout, primary periods are shown in red and 464 

heterodynes in black. 465 

 466 

5 Discussion 467 

5.1 Drivers of tropical Indian Ocean SST variability on orbital timescale 468 

Time series analyses of the Site U1443 late Miocene Mg/Ca record reveal a major increase in 469 

SST sensitivity to obliquity forcing around 7.5 Ma, at the onset of the LMGC (Figures 3b-d, S7). 470 

The appearance of the 49 kyr heterodyne (non-primary orbital period) after 7.5 Ma, alongside an 471 

increase in SST variability at the (near-primary) 40 kyr period, could result from the interference 472 

of obliquity (41 kyr) and precession (22.4 kyr) periods (Thomas et al., 2016). Before that, from 9 473 

to 7.5 Ma, orbital scale SST variability was dominated by precession-band variance (Figure 3d). 474 

The influence of precession on tropical Indian Ocean SSTs can be explained either by its direct 475 

influence on the seasonal distribution of radiation (Clement et al., 2004), or by its influence on 476 

the strength of monsoon winds (e.g., Bosmans et al., 2018), which in turn affect mixed-layer 477 

depth and SST (Figure 1). Recent data indicate that no major long-term change in South Asian 478 

monsoon wind strength over the equatorial Indian Ocean occurred during the late Miocene 479 

(Betzler et al., 2016a, 2018; Bolton et al., 2021), suggesting that an increase in wind-driven 480 

mixing is unlikely to have contributed to the cooling trend or to the change in sensitivity of SST 481 

to orbital forcing that we document at Site U1443.  482 

 483 

Obliquity cycles are also identified in the ODP Site 1146 Mg/Ca-SST record from the South 484 

China Sea, with a similar increase in power after 7.5 Ma (Figure S7; Holbourn et al., 2018). The 485 

direct effect of obliquity on low-latitude insolation is small, and the appearance of strong 486 
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obliquity cycles in tropical SSTs is broadly concurrent with their appearance in benthic δ13C and 487 

δ18O from Site U1443 (Bolton et al., 2021) and in a late Miocene benthic δ18O global stack 488 

(Drury et al., 2021), suggesting an increase in tropical SST sensitivity to obliquity linked to an 489 

increase in high latitude forcing. Cross-wavelet analysis of SST and benthic δ18O from Site 490 

U1443 show high coherency (>95 %) in the obliquity band (Figure 3e), suggesting that SSTs and 491 

deep ocean δ18O (linked to continental ice volume and temperature in deep-water formation 492 

regions) were coupled on orbital timescales during the late Miocene. A number of studies 493 

suggest significant changes in cryosphere dynamics during the late Miocene, with the 494 

development of ephemeral and dynamic Northern Hemisphere ice sheets (Larsen et al, 1994; 495 

Krissek, 1995; Hodell et al., 2001; John & Krissek, 2002; Holbourn et al., 2018; Miller et al. 496 

2020) and Antarctic glacial expansion (Warnke et al., 1992; Ohneiser et al., 2015, Levy et al., 497 

2019). One hypothesis to explain the increased sensitivity to obliquity recorded both in benthic 498 

foraminiferal isotopes and in tropical SSTs is that changes in cryosphere dynamics occurring 499 

during the LMGC rendered the Earth’s climate system more sensitive to obliquity and that 500 

feedbacks associated with glacial-interglacial variability also started to affect tropical SSTs after 501 

~7.5 Ma. For the last 0.8 million years, coherence in cyclicity between tropical SSTs and direct 502 

measurement of glacial-interglacial variations of atmospheric CO2 and other greenhouse gases 503 

captured in ice cores (Petit et al., 1999; Spahni et al., 2005; Lüthi et al., 2008) support the 504 

hypothesis that radiative forcing of atmospheric CO2 play a dominant role in modulating tropical 505 

SST variability on glacial-interglacial timescales (Visser et al. 2003; Lea, 2004; Past Interglacials 506 

Working Group of PAGES, 2016). At present, there are no late Miocene pCO2 reconstructions 507 

with a sufficient resolution to allow direct comparison of SSTs and pCO2 at the glacial-508 

interglacial timescale. In the late Pliocene to early Pleistocene, after the onset of large-scale 509 

Northern Hemisphere glaciation at ~2.7 Ma, tropical SSTs are reported to exhibit strong 510 

variability on glacial-interglacial timescales, coeval with global climate cycles recorded in 511 

benthic δ18O and pCO2. Low-latitude SST records show a dominance of 41-kyr cycles before the 512 

mid-Pleistocene transition (occurring between 1.2 and 0.6 Ma) and the emergence of 100-kyr 513 

cycles during the late Pleistocene (e.g.  Liu & Herbert 2004; Liu et al., 2008; Herbert et al., 2010; 514 

Li et al., 2011; Li et al., 2017), suggesting “top-down” forcing of tropical SSTs via greenhouse 515 

gas forcing. Our late Miocene SST data, considered alongside data from Site 1143 (Holbourn et 516 
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al., 2018), suggest that tropical SSTs became more tightly coupled to glacial-interglacial climate 517 

and pCO2 cycles after ~7.5 Ma.  518 

 519 

In addition to variability in the obliquity and precession bands, our Mg/Ca-based SST record 520 

show variability at the ~400 kyr period (Figure 3b and d; 95 % coherency), which could result 521 

from the influence of long eccentricity cycles or the modulation of precession by eccentricity. A 522 

number of other studies have recorded ~400 kyr cyclicity in Plio-Pleistocene tropical SSTs 523 

(Gupta et al., 1996; Lawrence et al., 2006; Herbert et al, 2010; Li et al, 2011; Li et al., 2017), but 524 

the mechanisms involved remain unclear. In one study from the South China Sea, ~400-kyr 525 

cycles in SST were suggested to be related to the modulation of the East Asian winter monsoon 526 

by El Nino-Southern Oscillation (Li et al., 2017). The presence of ~225 kyr cycles, with two 527 

well-defined cycles visible in the oldest part of the Site U1443 SST record between 9 and 8.6 Ma 528 

(Figures 2-5) could either represent a real cycle in eccentricity (Hilgen et al., 2020) or a 529 

harmonic of the influence of long-eccentricity cycles. 530 

 531 

5.2 Late Miocene tropical sea surface cooling 532 

Our new open-ocean tropical Indian Ocean SST record documents a late Miocene cooling of 3.2 533 

°C starting at 7.4 Ma and culminating in minimum temperatures from 6.2 to 5.8 Ma. Following 534 

this, a warming of ~1 °C occurs into the early Pliocene (Figures 2, 4 and 5). These broad trends 535 

and timings are coherent with stacked Uk'
37 -SSTs, although Herbert et al. (2016) record tropical 536 

cooling not exceeding 1.5 °C (Figure 4a). SSTs in Eastern Equatorial Pacific (EEP) ODP Site 537 

850 and in West Pacific Warm Pool (WPWP) ODP Site 806 reconstructed with the TEX86 index 538 

(Zhang et al., 2014) record ∼2 °C and 1.5 °C of cooling from 7.5 to 5 Ma, respectively, whereas 539 

TEX86-SSTs at ODP Site 1143 in the South China Sea (Zhang et al., 2014) show a <1 °C cooling 540 

over the same period (Figure S8b). The three tropical sites where SSTs were reconstructed using 541 

T. trilobus Mg/Ca ratios (Figure 5a-c) show broadly similar long-term trends, although the 542 

amplitude of SST changes and exact timings are variable. The less pronounced late Miocene 543 

cooling trend in all Uk’
37 and some TEX86 records compared to Mg/Ca-SSTs from Site U1443 544 

may stem from proxy biases (discussed in section 5.2.1), aliasing due to the low resolution of 545 
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many records, and/or errors related to the use of shipboard biostratigraphy and 546 

magnetostratigraphy for age control.  547 

 548 

A driver of documented global sea surface cooling could be a decrease in pCO2. Indeed, while 549 

certain late Miocene pCO2 reconstructions based on carbon isotopic fractionation (δ13C) in 550 

alkenones (Pagani et al., 1999, 2005; Zhang et al., 2013), leaf stomata (Kürschner et al., 1996; 551 

Retallack, 2009; Stults et al 2011), and planktic foraminiferal boron isotopes (δ11B) (Sosdian et 552 

al., 2018) suggested relatively constant pCO2 close to preindustrial values (~250-350 ppm), a 553 

number of recent studies that include higher-resolution sampling and/or new interpretive 554 

frameworks now point towards higher Miocene pCO2 and a significant decrease over the late 555 

Miocene (Brown et al., in review; Bolton et al., 2016; Mejia et al., 2017; Stoll et al 2019; Tanner 556 

et al., 2020; see also the review and revision of published pCO2 data in Rae et al., 2021). For 557 

instance, studies based on marine phytoplankton δ13C suggest a pCO2 decrease from between 558 

800 and 560 ppm at 7.5 Ma to ~350 to 300 ppm at 5 Ma (Mejia et al., 2017, Tanner et al., 2020). 559 

Indirect evidence from the δ13C composition of coccoliths, arising about 7 to 5 Ma ago and 560 

interpreted as a threshold response of cells to decreasing aqueous CO2 concentrations, also 561 

strengthens the hypothesis of declining pCO2 during the late Miocene (Bolton & Stoll, 2013). 562 

 563 

Therefore, considering a pCO2 range in agreement with available proxy reconstructions (Figure 564 

4b), we used late Miocene paleoclimate simulations under three atmospheric pCO2 scenarios to 565 

test if a pCO2 decrease may have driven global sea surface cooling over the late Miocene, and to 566 

estimate how much of the 3.2 °C tropical SST cooling observed at Site U1443 could be 567 

explained by pCO2 forcing. In the following we compare compiled global SSTs at 8 ±0.5 Ma and 568 

at 6 ±0.5 Ma (see section 3.4) with SSTs simulated at 300 ppm (LM-300), 420 ppm (LM-420) 569 

and 560 ppm (LM-560) (Figures 6-7).  570 
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Figure 4. Late Miocene global cooling, pCO2 proxy data, and evolution of latitudinal thermal 572 

gradients. (a) Stacked SST anomalies based on UK’
37 data for the tropics (grey curve), mid-573 

latitudes (green and blue curves) and high northern latitudes (dark blue curve) from Herbert et al. 574 

(2016), with new U1443 Mg/Ca-SST (red curve). All data are shown as SST anomalies relative 575 

to the modern (left axis) and absolute SST values for Site U1443 are also shown (right axis). (b) 576 

Late Miocene pCO2 proxy data compilation obtained from https://paleo-co2.org with data from 577 

Mejia et al., 2017, Tanner et al., 2020 and Rae et al., 2021 added. (c) Evolution of latitudinal 578 

SST gradients between Northern Hemisphere high latitudes and tropics. Red and orange curves 579 

are calculated using U1443 Mg/Ca-SST as representative of the tropical trend minus the 580 

Northern Hemisphere high latitude UK’
37-SST stack (Sites 883/884, 887, 907 and 982) (orange 581 

curve) and the UK’
37-SST stack without North Atlantic Site 982 (red curve). Green and blue 582 

dashed curves are calculated using the UK’
37-SST tropical stack (Sites 722, 846, 850, 1241, 583 

U1338) minus Northern Hemisphere high latitudes UK’
37-SST stack (green dashed curve) and 584 

UK’
37-SST stack without North Atlantic Site 982 (blue dashed curve). Squares represent values of 585 

modelled latitudinal SST gradients at 8 ±0.5 Ma and 6 ±0.5 Ma corresponding to LM-560  and 586 

LM-300 simulations, respectively, using the mean annual SST average over the entire latitude 587 

band between 5°S and 19°N for the tropics and 48°N and 70°N for the high latitudes (see section 588 

5.2.3). 589 

 590 



manuscript submitted to Paleoceanography and Paleoclimatology 

 

 591 

TG12

LMGC

TG2 TG22
TG14

TG20

LMCIS

TG4

e:
Be

nt
hi
c
δ1

8 O
(‰

vs
VP

D
B)

2.6
2.8
3.0
3.2
3.4
3.6
3.8

d:Benthic
δ
13C

(‰
vs

VPD
B)

−0.5

0

0.5

1.0

1.5

c:
M
g/
C
a-
SS

T
14
48

26

28

30

32

34

36

b:M
g/C

a-SST
1146

26

28

30

32

34a:
M
g/
C
a-
SS

T
U
14
43

26

28

30

32

34

Age (Ma)
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

+1°C

-3.2°C

-2.5°C

c
+3.6°C



manuscript submitted to Paleoceanography and Paleoclimatology 

 

Figure 5. Tropical high-resolution SST records for the late Miocene (9 to 5 Ma). 592 

(a) Mg/Ca-SST from equatorial Indian Ocean Site U1443, (b) Mg/Ca-SST from South China Sea 593 

Site 1146 (Holbourn et al., 2018) and (c) Mg/Ca-SST from Andaman Sea Site U1448 (Jöhnck et 594 

al., 2020). All SST records were recalculated using the same calibration and Mg/Casw correction 595 

as in Fig. 2., the thick curves are 10 % Lowess filters. (d) Site U1443 benthic (C. wuellerstorfi) 596 

δ13C (Bolton et al., 2021) and (e) Site U1443 benthic δ18O (Bolton et al., 2021) with Thvera-Gilbert 597 

(TG) cold stages marked. Blue shading represents the Late Miocene Global Cooling (LMGC) 598 

interval and grey shading represent the late Miocene carbon isotope shift (LMCIS). 599 

 600 

5.2.1 Tropical sea surface temperature records and model results 601 

At 6 ±0.5 Ma, SSTs from the LM-300 simulation fit well with all tropical proxy-derived SSTs 602 

(Figure 6a), except two sites that show slightly warmer reconstructed SSTs compared to 603 

modelled ones at the same locations; ODP Sites 1146 (Holbourn et al., 2018) and 806 (Zhang et 604 

al., 2014) (site locations are shown in Figure 7). Site 1146 in the semi-enclosed South China Sea 605 

is under the influence of the East Asian monsoon subsystem, and the stepwise cooling in Mg/Ca-606 

SSTs at 6.8 Ma (Figure 5b) has been attributed to a southward shift of the Intertropical 607 

Convergence Zone linked to cooling of the Northern Hemisphere and a consequent change in 608 

monsoon regime (Holbourn et al., 2018). At Site 806 in the WPWP, TEX86-SSTs are above 28 609 

°C for the entire record (Zhang et al., 2014), coherent with expected SSTs for warm pool regions 610 

(e.g. Vinayachandran & Shetye, 1991; Yan et al., 1992). However, Site 806 is thought to record 611 

the Miocene evolution of the proto-WPWP, forced by tectonic constriction of the Indonesian 612 

Gateway and eustatic fluctuations (Kuhnt et al., 2004; Sosdian & Lear, 2020), potentially 613 

affecting SST trends (e.g. Nathan & Leckie, 2009; Sosdian & Lear, 2020). Therefore, additional 614 

regional influences at these two sites could explain the discrepancies between modelled and 615 

reconstructed SSTs (Figure 6a). The LM-300 simulation also shows good agreement with SST 616 

data at 6 ±0.5 Ma in mid and high latitudes, except in the North Atlantic Ocean and one site in 617 

the South Pacific (Figure 6a). The discrepancy between proxy- and model-derived SSTs in the 618 

North Atlantic is a systematic bias in paleoclimate modelling studies (e.g. Dowset et al., 2013; 619 

Burls et al. 2021) and is present in all our simulations (see section 5.2.3).  620 

 621 
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 622 

We next compared compiled SST data at 8 ±0.5 Ma to SSTs in LM-300, LM-420 and LM-560 623 

simulations (Figure 6b). SSTs from the LM-300 simulations are too low compared to proxy-624 

derived SSTs from all latitudes, with the exception of TEX86-SSTs from the EEP cold tongue 625 

and from the South China Sea (Sites 850 and 1143, respectively, Zhang et al., 2014) . SSTs from 626 

the LM-560 and LM-420 simulations show good agreement with SST data at 8 ±0.5 Ma for mid 627 

and high latitudes (excluding the North Atlantic Ocean) but differ in the tropics. SSTs in LM-560 628 

fit well with tropical Mg/Ca-SSTs from Site U1443 and TEX86-SSTs from Site 806, but are 629 

warmer than tropical Uk'
37-SSTs (Figure 6b). Conversely, SSTs in the LM-420 simulation show 630 

better agreement with tropical Uk'
37-SSTs but are cooler than Site U1443 Mg/Ca-SST and Site 631 

806 WPWP records (Figure 6b). TEX86-SSTs from the EEP (Site 850) and the South China Sea 632 

(Site 1143) are cooler than in the LM-420 and LM-560 simulations. 633 

 634 

 635 

Figure 6. Mean modelled latitudinal SST gradients and proxy-derived SSTs. 636 

The LM-560 simulation (b) and LM-300 simulation (a) correspond to atmospheric CO2 fixed at 637 

560 ppm and 300 ppm, respectively, under late Miocene boundary conditions (see methods). In 638 

panel (b), LM-420 and LM-300 simulations are also shown with black and grey dashed lines, 639 

respectively. LM-560 and LM-300 simulations are compared to our global SST compilation from 640 

proxies (Mg/Ca, UK’
37 and TEX86) in 1 Myr time windows centered on 8 Ma and 6 Ma, 641 

respectively. The grey envelope represents maximum and minimum mean annual SSTs at each 642 

latitude. All proxy-derived SSTs were recalculated in a consistent way (see Methods) and are 643 
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plotted at their paleolatitude at 8 and 6 Ma (PaleoAtlas for Gplates, Scotese, 2016). In brief, Mg/Ca 644 

SSTs were recalculated as in Fig. 2 and 4, UK’
37 SSTs were recalculated using the BAYSPLINE 645 

calibration (Tierney & Tingley, 2018), and TEX86 SST were recalculated using the BAYSPAR 646 

Analog mode calibration (Tierney & Tingley, 2015). 647 

 648 

Figure 7. Model-data comparison of the amplitude of the late Miocene cooling.  649 

The map background color scale shows the SST anomaly from the LM-560 simulation minus the 650 

LM-300 simulation and indicates the amplitude of modelled late Miocene cooling that best fits 651 

with proxies-derived SSTs. Sites with available late Miocene SST records (symbols) are placed on 652 

the map at their average paleolocation between 8 and 6 Ma (paleolocation from PaleoAtlas for 653 

Gplates, Scotese, 2016). The amplitude of SST cooling based on site-specific proxy records 654 

(colour within symbols) is calculated from averaged SSTs at 8 ±0.5 Ma minus 6 ±0.5 Ma. Squares 655 

indicate Mg/Ca-SST records, triangles indicate TEX86-SST records and circles indicate Uk’
37-SST 656 

records. All SSTs were recalculated in a consistent way as described in the caption of Figure 6. 657 

The same color scale is used for the map background and in the symbols. 658 

 659 

A number of studies have demonstrated the limitations of alkenone paleothermometry for 660 

reconstructing SSTs in warm waters. The first concerns the application of a classical linear 661 

calibration (e.g. Prahl et al., 1988; Müller et al., 1998) that results in underestimation of 662 

temperatures >24 °C (e.g. Goni et al., 2001; Richey & Tierney, 2016). For this reason, we 663 
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recalculated all Uk'
37-SSTs with the updated BAYSPLINE calibration (Tierney & Tingley, 2018). 664 

Another limitation concerns the difficulty of measuring very low concentrations of tri-665 

unsaturated C37 alkenones in sediments when the Uk'
37 index approaches its limit of 1, indicative 666 

of temperatures higher than 28 °C (Grimalt et al., 2001; Pelejero & Calvo, 2003; Richey & 667 

Tierney, 2016). Because of this, all published tropical Uk'
37-SST records come from sites located 668 

in upwelling regions. Arabian Sea ODP Site 722 is located in a coastal upwelling region forced 669 

by the southwest winds of the South Asian summer monsoon. Other sites (ODP Sites 846, 850, 670 

U1338 and 1241) are located in the EEP. Sites 846, 850 and U1338 are under the influence of 671 

cold tongue upwelling or equatorial divergence and Site 1241 is out of the upwelling centre 672 

today but was located further south, closer to the equatorial divergence, during the late Miocene 673 

(Mix et al., 2003). However, in all of these sites, in sediments older than 6.5 to 7 Ma, the Uk'
37 674 

index approaches its limit of 1 (Uk'
37 = 0.96 to 0.99). This could provide an explanation for the 675 

lower tropical SSTs derived from the Uk'
37 index before 6.5 Ma, and therefore for the less 676 

pronounced tropical cooling in Uk’
37 records during the LMGC (on the order of 1-2 °C when 677 

recalculated with BAYSPLINE calibration; Figures 7 and S8a) compared to cooling from 678 

Mg/Ca-SST and from modelled SST (Figures 6-7). Moreover, these upwelling systems in the 679 

EEP and Arabian Sea are dynamic and their strength depends both on oceanographic and 680 

paleogeographic constraints, with significant changes suggested for the Miocene (Holbourn et 681 

al., 2014; Tian et al., 2014; Zhang et al., 2014; Gupta et al. 2015; Zhuang et al. 2017; Bialik et 682 

al., 2020; Sarr et al. in review). Thus, it is difficult to decouple the impact of changes in 683 

upwelling strength on SSTs from global SST trends at these sites.  684 

 685 

TEX86-SSTs reconstructed at ODP Site 850 (Zhang et al., 2014) record very variable 686 

temperatures from 9 to 5 Ma comprised between 21 and 32 °C with minimum temperatures 687 

between 5.5 and 5 Ma (21 to 23 °C), whereas Uk'
37-SSTs from the same site are less variable 688 

between 27.5 and 29 °C (Figure S8). In the modern ocean, ODP Site 850 is located in the EEP 689 

cold tongue, characterized by a shallow thermocline and intense upwelling. One plausible 690 

explanation for this discrepancy between TEX86 and Uk'
37 temperatures could be that the TEX86 691 

paleothermometer records a depth-integrated signal rather than a surface one, as many studies 692 

have reported that GDGT producers can inhabit a large vertical range in the water column (e.g. 693 

Lipp & Hinrichs, 2009; Ho & Laepple, 2015, 2016; Richey & Tierney, 2016; Leduc et al., 2017; 694 
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Van der Weijst et al., 2021). Given the potential underestimation of tropical Uk'
37-SST before 695 

~6.5 Ma and the possibility that TEX86 temperatures recorded at Sites 850 represent cooler 696 

subsurface waters, we think that the LM-560 scenario shows the best fit with SST data for 8 ±0.5 697 

Ma.  698 

 699 

5.2.2 pCO2 as a primary driver of late Miocene cooling 700 

In light of our data-model comparison, and considering our new tropical SST record and recent 701 

advances in pCO2 estimates, we consider that the most likely scenario for late Miocene pCO2 702 

evolution is represented by a decrease from 560 ppm around 8 Ma to 300 ppm around 6 Ma at 703 

the end of the LMGC. In the vicinity of Site U1443, simulated SSTs are 32 to 32.5 °C in the LM-704 

560 simulation (interpreted as representative of ~8 Ma) and 29.5 to 30 °C in the LM-300 705 

simulation (representative of ~6 Ma) (Figure S9) implying that 2 to 3 °C of sea surface cooling 706 

can be explained by atmospheric pCO2 decrease and associated atmosphere-ocean feedbacks. 707 

This represent 63 to 94 % of the total late Miocene SST cooling (3.2 °C) estimated at Site 708 

U1443, corroborating the hypothesis that long-term SST evolution at this location is relatively 709 

insulated from local processes and is representative of global low-latitude trends over the late 710 

Miocene. Our new tropical SST record significantly increases previous estimates of tropical 711 

cooling during the late Miocene, with implications for estimates of climate sensitivity (to date 712 

based on tropical Uk’37-SSTs; Brown et al., in review) and the evolution of meridional thermal 713 

gradients (Herbert et al., 2016). Nevertheless, based on the results of our pCO2 simulations, up to 714 

a third of the late Miocene cooling estimated for the equatorial Indian Ocean could be linked to 715 

other (presumably regional) phenomena, discussed below. 716 

 717 

Extension of the Antarctic ice sheet during the late Miocene could have influenced water mass 718 

properties in deep-water formation regions, which in turn could have impacted low-latitude 719 

surface waters via plumbing to upwelling regions (Warnke et al., 1992; Ohneiser et al., 2015, 720 

Levy et al., 2019); however, this mechanism is unlikely to have contributed to SST cooling at 721 

Site U1443. On the other hand, regional tectonic activity (the collision of Australia and eastern 722 

Indonesia since the early Miocene, progressive constriction and shoaling of Indonesian 723 
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Gateway), and glacio-eustatic sea level fluctuations that affected the geometry of the Indonesian 724 

Gateway and ITF (e.g. Kuhnt et al., 2004; Hall et al., 2009; Molnar & Cronin, 2015; Sosdian & 725 

Lear, 2020) could have influenced regional SSTs during the late Miocene. In the modern, warm, 726 

fresh waters flowing from the Pacific into the Indian Ocean via the ITF contribute significantly 727 

to intermediate water masses that occupy the Indian Ocean thermocline (You & Tomczak, 1993; 728 

Gordon & Fine, 1996; Tomczak & Godfrey, 2001; Gordon, 2005). Our late Miocene simulations 729 

do not account for any potential paleogeographic or ITF changes coeval with the LMGC, 730 

because the model resolution is insufficient to allow us to reconstruct the complex geography of 731 

the Indonesian Gateway area. Previous modelling studies however suggest that an ITF restriction 732 

could generate a 2 to 3 °C cooling of surface and subsurface waters in the eastern Indian Ocean 733 

(Cane & Molnar 2001; Krebs et al., 2011). Although the exact timing of the gateway constriction 734 

is still poorly constrained, with estimates ranging from ~17 Ma to 4 to 3 Ma (e.g. Kennett et al., 735 

1985; Hodell & Vayavananda, 1993; Hall et al, 1988, 2002,2012; Kuhnt et al.,2004; Li et al., 736 

2006; Gallagher et al. 2009, Nathan & Leckie, 2009), late Miocene changes related to tectonic 737 

activity and/or sea-level drop linked to Antarctic glaciation remains one plausible mechanisms 738 

for amplification of cooling magnitude in the equatorial Indian Ocean (Site U1443). Additional 739 

late Miocene SST and other proxy records from the Australian Shelf and Timor Sea are needed 740 

to allow precise reconstruction of the timing of late Miocene ITF restriction, and to gain a better 741 

understanding of the effect of these changes on Indian Ocean SSTs. 742 

 743 

5.2.3 Extratropical sea surface temperatures and late Miocene evolution of meridional 744 

gradients 745 

In our data-model comparison, proxy-derived extratropical SSTs at 8 ±0.5 Ma and at 6 ±0.5 Ma 746 

show good agreement with modelled SSTs from our preferred scenario (pCO2 decrease from 560 747 

ppm to 300 ppm) both in term of absolute temperature and amplitude of cooling (Figures 6 and 748 

7) except for the North Atlantic Ocean where proxy-derived SSTs are always warmer than 749 

modelled SSTs (Figure 6). This feature is a systematic bias in paleoclimate modelling studies 750 

that generally fail to reproduce estimated latitudinal temperature gradients (e.g. Dowset et al., 751 

2013; Burls et al., 2021). Temperature biases are often attributed to poor representation of cloud 752 

microphysics and/or to a lack of cloud-aerosol interaction in state-of the art climate models 753 
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(Burls et al., 2021; Zhu et al., 2019), although Otto-Bliesner et al. (2017) also suggest that the 754 

failure to reproduce warm North Atlantic SSTs in Pliocene simulations (Dowsett et al. 2013) 755 

could be attributed to the inexact representation of Arctic gateways that are crucial for the 756 

simulation of Atlantic Meridional Overturning Circulation and North Atlantic climate sensitivity. 757 

In addition, Mejia et al. (2020) recently used clumped isotope temperature data to argue that the 758 

amplitude of late Miocene North Atlantic Uk’
37-SST cooling may have been overestimated due to 759 

seasonal bias in alkenone production. 760 

 761 

Keeping in mind the potential biases in North Atlantic SST estimates and based on the 762 

assumption that SSTs from Site U1443 are representative of global low-latitude trends over the 763 

late Miocene, we estimate the evolution of proxy-derived meridional SST gradients and compare 764 

this to simulated meridional SST gradients. To calculate model-derived gradients, we averaged 765 

mean annual SSTs over the entire latitudinal band between 5 °S and 19 °N for the tropics and 48 766 

°N and 70 °N for the northern high latitudes in the LM-560 and LM-300 simulations to represent 767 

condition at 8 ±0.5 Ma to 6 ±0.5 Ma, respectively. These latitudinal bands correspond to the 768 

regions covered by proxies-derived SST records used to estimate meridional gradients, taking 769 

into account their late Miocene paleolocations (Figure 7). To calculate proxy-derived meridional 770 

SST gradient evolution, we used the difference between tropical Mg/Ca-SST at Site U1443 and 771 

Northern Hemisphere high-latitude stacked Uk'
37-SST including the four sites in Herbert et al. 772 

(2016) (Figure 4c orange curve) and excluding North Atlantic ODP Site 982 where reconstructed 773 

Uk'
37-SSTs are particularly warm (mean value of 21.6 °C between 9 and 5 Ma) (Figure 4c red 774 

curve). From 8 ±0.5 Ma to 6 ±0.5 Ma, the data-based meridional gradient shows a 3.3 °C (2 °C) 775 

increase, depending on the inclusion (exclusion) of Site 982 in the northern high-latitude Uk'
37-776 

SST stack. In comparison, when tropical stacked Uk'
37-SSTs are used in the calculation instead of 777 

U1443 Mg/Ca-SSTs, a much higher increase in meridional gradient of 4.6 °C (3.3 °C) is 778 

suggested, again dependant on the inclusion (exclusion) of Site 982 (Figure 5c dashed curves). 779 

On the other hand, simulated meridional SST gradients do not show a significant increase from 8 780 

to 6 Ma and have a value of ~22 °C. This comparison reveals that estimations of meridional SST 781 

gradient evolution over the late Miocene using Site U1443 Mg/Ca-SST to represent the global 782 

low-latitude trend and stacked Uk'
37-SST (excluding North Atlantic Site 982) to represent the 783 

global Northern Hemisphere high-latitude trend result in a much better data-model agreement 784 
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(Figure 4c). These finding suggest that the choice of sites adapted to register global latitudinal 785 

trends and the choice of proxies adapted to reconstruct mean annual SST are crucial and could 786 

explain in part the discrepancies often observed between proxy- and model-derived SSTs and 787 

resultant estimates of meridional temperature gradients. These new results  suggest a much more 788 

modest increase in meridional SSTs gradients during the LMGC than previously suggested by 789 

Uk'
37-SSTs stacks, with important implication regarding our comprehension of the late Miocene 790 

climate system (for example, estimations of polar amplification and the strength of atmospheric 791 

circulation and Hadley cells). 792 

 793 

6 Conclusions 794 

We present a new orbital-resolution equatorial Indian Ocean Mg/Ca-SST record spanning the 795 

interval from 9 to 5 Ma (late Miocene-earliest Pliocene) together with new late Miocene climate 796 

simulations under three pCO2 scenarios (300 ppm, 420 ppm and 560 ppm, in the range of pCO2 797 

proxy reconstructions). To date, this is the first late Miocene tropical SST record located in an 798 

open-ocean region with sufficient resolution to also resolve orbital scale variability. Our record 799 

shows a tropical SST cooling of 3.2 °C from 7.4 Ma until 5.8 Ma, similar in magnitude and 800 

timing to previously published mid-latitude Uk'
37-SST trends. Our data-model comparison 801 

supports the hypothesis that a pCO2 decrease from around 560 ppm before the LMGC to around 802 

300 ppm at the end of the LMGC may have driven global SST cooling, consistent with recent 803 

revised and new pCO2 reconstructions (Brown et al., in review; Mejia et al., 2017; Rae et al., 804 

2021; Tanner et al., 2020) and with the pCO2 decrease hypothesised in Herbert et al. (2016). 805 

pCO2 forcing of SST can explain over two thirds of the cooling trend at Site U1443. In addition, 806 

time series analyses reveal a major increase in tropical (Sites U1443 and 1146) SST sensitivity to 807 

obliquity forcing at the onset of the LMGC, suggesting that tropical SSTs became more tightly 808 

coupled to glacial-interglacial climate during this time. Together, these results support the 809 

hypothesis that the late Miocene underwent a secular decrease in tropical SST mostly driven by 810 

atmospheric pCO2 decrease, but with a much more modest increase in meridional SST gradients 811 

than previously suggested. 812 
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