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Key Points:

e Presents method for estimation of daily groundwater levels through trans-
fer of head duration curves based on similarity of site characteristics at
monitored sites.

o Nonlinearity of controls on groundwater levels favors use of Machine Learn-
ing (e.g., regression trees) over multiple linear regression for prediction.

o Investigates the dynamic nature of controls on groundwater levels, which
is central for studies of recharge seasonality, droughts and floods.

Abstract

A new method is presented to efficiently estimate daily groundwater level time
series at unmonitored sites by linking groundwater dynamics to local hydroge-
ological system controls. The presented approach is based on the concept of
comparative regional analysis, an approach widely used in surface water hydrol-
ogy, but uncommon in hydrogeology. The method uses regression analysis to
estimate cumulative frequency distributions of groundwater levels (groundwa-
ter head duration curves (HDC)) at unmonitored locations using physiographic
and climatic site descriptors. The HDC is then used to construct a groundwa-
ter hydrograph using time series from distance-weighted neighboring monitored
(donor) locations. For estimating times series at unmonitored sites, in essence,
spatio-temporal interpolation, stepwise multiple linear regression, extreme gra-
dient boosting, and nearest neighbors are compared. The methods were applied
to ten-year daily groundwater level time series at 157 sites in alluvial unconfined
aquifers in Southern Germany. Models of HDCs were physically plausible and
showed that physiographic and climatic controls on groundwater level fluctu-
ations are nonlinear and dynamic, varying in significance from “wet” to “dry”
aquifer conditions. Extreme gradient boosting yielded a significantly higher
predictive skill than nearest neighbor and multiple linear regression. However,
donor site selection is of key importance. The study presents a novel approach
for regionalization and infilling of groundwater level time series that also aids
conceptual understanding of controls on groundwater dynamics, both central
tasks for water resources managers.

1 Introduction

Groundwater head observations are the basis for most investigations in hydroge-
ology. However, boreholes for groundwater observation as well as corresponding



groundwater level time series are often scarce and unevenly distributed in both
space and time. This is a disadvantage for effective management of groundwater
resources at the regional scale (Butler et al., 2021), where water managers as-
sess the current and future status of groundwater resources (Loéaiciga & Leipnik,
2001). In consequence, methods are needed to estimate groundwater head time
series at ungauged sites.

Two main approaches are commonly used by hydrogeologists to predict tempo-
ral changes in groundwater head at a given site, (a) numerical and (b) sta-
tistical models. The typical approach is to implement a process-based, nu-
merical groundwater flow model. However, numerical models typically require
large amounts of data and effort, while investigators commonly are confronted
with a lack of comprehensive description and documentation of the subsurface.
This results in significant uncertainty, both regarding conceptualization and
parametrization (e.g. Enemark et al., 2019). Dealing with this uncertainty
leads to a tedious and time-consuming process to construct, calibrate, and run
these process-based models (Bakker & Schaars, 2019). Additionally, models for
meaningful local projections at large spatial scales are not yet available (Berg
& Sudicky, 2019). An alternative to regional scale modelling with less need for
detailed subsurface description are lumped (rainfall-runoff) hydrological mod-
els with a groundwater component (Barthel & Banzhaf, 2016). However, these
models are problematic as they usually imply oversimplification of the ground-
water component, disregarding the local descriptors of hydrogeological systems
and their 3-dimensional setup (Barthel & Banzhaf, 2016; Butler et al., 2021).
Generally, lumped models may provide adequate descriptions of groundwater
systems only for simple hydrogeological situations such as shallow, unconfined
aquifers, but not for more complex systems, such as deep and confined aquifers.

A different type of approach requiring only measured groundwater level data
for groundwater time series estimation are parametric or data-driven methods.
This approach requires few data on local system descriptors, while often long
and measurement-dense series of input signal and groundwater measurements
are necessary to achieve good calibrations. In contrast to groundwater-gradient
driven methods, data-driven methods either use spatio-temporal geostatistics
(e.g. Ruybal et al., 2019; Varouchakis et al., 2022) or transfer net precipitation
input into groundwater level changes (Z. Chen et al. (2002)). However, avail-
able methods predict groundwater level only at monthly or annual resolution
and consequently do not capture the large intra-annual and intra-monthly vari-
ability of groundwater dynamics (e.g. Heudorfer et al., 2019). An approach
to predict time series at higher temporal scales are transfer functions, that can
be used to yearly, monthly and daily temporal resolutions, such as impulse-
response functions (e.g. Collenteur et al., 2019; Marchant & Bloomfield, 2018;
Von Asmuth, 2012) or artificial neural networks (c.f. Rajaee et al., 2019; Wun-
sch et al., 2022). However, no formal method is known to transfer information
from such models from monitored to unmonitored aquifers, although recently
attempted in streamflow (Kratzert et al., 2019). This means that these methods
can only make predictions when sufficient local time series data are available



(e.g., 10 years weekly data (Wunsch et al., 2021)).

In summary, neither numerical models nor the currently available data-driven
tools provide a straightforward approach to estimate daily groundwater levels at
unmonitored sites to aid regional scale management. Therefore, new and comple-
mentary methodologies are required to overcome scarcity and patchy data distri-
bution. Such approaches should be less data hungry than numerical models, yet
account for local hydrogeological conditions and allow prediction at high tempo-
ral resolution despite limited local data availability. In surface-water-orientated
hydrology, data scarcity has been countered with approaches of classification
and similarity analysis, embraced by the hydrological community particularly
within the PUB initiative (Predictions in Ungauged Basins; (Bloschl et al., 2013;
Hrachowitz et al., 2013; McDonnell & Woods, 2004; Sivakumar & Singh, 2012;
Wagener et al., 2007). These concepts attempt to systematically link the physi-
cal form and structure of catchments to their functioning by comparative anal-
ysis. Such links can then be used to transfer information to similar systems
for prediction, i.e., regionalization or spatio-temporal interpolation. However,
such approaches are rarely considered in groundwater research, which is pointed
out by various authors, e.g., Barthel et al. (2021); de Marsily et al. (2005);
Green et al. (2011); Voss (2005). Recently, a number of studies initiated the
implementation of these approaches in groundwater, quantitatively connecting
groundwater response to physiographic and climatic descriptors (Boutt, 2017;
Giese et al., 2020; Haaf & Barthel, 2018; E. Haaf et al., 2020; Heudorfer et al.,
2019; M. Rinderer et al., 2017; M. Rinderer et al., 2019; M. Rinderer et al., 2014;
Michael Rinderer et al., 2016). These approaches, however, have not yet been
exploited to predict daily groundwater levels at unmonitored sites.

When looking for methodological inspiration in the body of literature within
the surface water community, and more specifically the PUB initiative, a large
majority of approaches use regionalization mainly as a tool to calibrate lumped
rainfall-runoff models at unmonitored sites (He et al., 2011; Hrachowitz et al.,
2013). As mentioned above, such lumped models are often not useful for de-
scribing groundwater dynamics and, when available, are time-consuming to set
up and calibrate (Jackson et al., 2016; Mackay et al., 2014). Simpler statistical
methods for regionalization of streamflow time series, however, have been pro-
posed by e.g. Shu and Ouarda (2012) based on Hughes and Smakhtin (1996).
These methods make use of the characteristic relationship between flow duration
curve (FDC; cumulative frequency of time where a flow is equaled or exceeded)
and physiographic and climatic site descriptors, a relationship that is well in-
vestigated (Yokoo & Sivapalan, 2011). FDCs in surface water hydrology are
commonly used to study the flow regime throughout the range of discharges
and integrate effects of climate, topography, geology, and also anthropogenic
activity (Ridolfi et al., 2020; Sugiyama et al., 2003; Vogel & Fennessey, 1995).
This implies that the shape of a specific FDC is theoretically inferable from
site descriptors. The technique evaluated in this study takes advantage of this
through estimation of duration curves at unmonitored (target) sites based on
similarity to neighboring donor sites. Then, from the estimated duration curve,



time series are reconstructed at the target site into a daily time series (Hughes
& Smakhtin, 1996; Mohamoud, 2010; Shu & Ouarda, 2012; Smakhtin, 1999).

Cumulative frequency or duration curves of groundwater heads are not as
broadly used for studying groundwater resources, except when for example
analyzing the relative state of groundwater storage (e.g. Maxe, 2013). Giese et
al. (2020) estimated aggregates (indices) of head duration curves (HDC) and
linked differences in shapes to local, intermediate, and regional groundwater
flow patterns. Ezra Haaf et al. (2020) found correlation between HDC indices
and map-derivable physiographic and climatic site descriptors. These are indi-
cations that alike streamflow, system controls are integrated in groundwater
level regimes and may be exploited by analysis of duration curves.

Accordingly, regionalization and subsequent estimation of daily time series at
unmonitored sites through duration curves of groundwater head is evaluated in
this paper. Hereby the approach is based on the methodology proposed by Shu
and Ouarda (2012) for streamflow. It is adapted to groundwater, where ground-
water head duration curves as well as groundwater-relevant and map-derivable
site descriptors are used. Within surface-water, this method has only been
tested using stepwise multiple linear regression (MLR). In this study, a compar-
ison is carried out with estimation through averaging of the nearest neighbor
sites (NN), MLR, and extreme gradient boosting (XGB). XGB can represent
nonlinear relationships between groundwater dynamics and site descriptors and
has shown to be powerful in e.g., recharge studies (Naghibi et al., 2020). In
summary, a method is evaluated that may be used when aquifer and time series
data at a site of interest are unmonitored. The regionalization approach is ap-
plied to unconfined, alluvial aquifers in a humid climate in Southern Germany
at unmonitored sites using solely map-derivable site descriptors and data from
neighboring locations.

2 Method and Data
2.1 General strategy

The methodology of estimating groundwater level time series at an unmoni-
tored site , is based on information from donor sites and requires the steps as
explained in Figure 1. In the beginning, donor sites are selected with a time
series period that is of interest for target site estimation. Next, time series are
transformed to HDCs, and at 15 fixed percentile levels, models are constructed
based on multiple regression analysis and gradient boosted regression trees, and
logarithmically inter- and extrapolated (section 2.4.1-2.4.2). Finally, time se-
ries at ungauged sites are then reconstructed with a distance-based weighting
method using the sequence of records from donor sites (section 2.4.3). For per-
formance comparison, time series are also evaluated using only a distance-based
average of time series from donor sites, further called Nearest-Neighbour (NN).
Then, the number of neighbors and the performance of daily groundwater level
estimations at target sites are evaluated using leave-one-out cross-validation
(2.5). The models that are used for estimation of time series are then checked



for plausibility (section 2.6). In section 2.7 the case data set is described, which
is further analyzed using cluster analysis to understand results with regard to
different groundwater regimes and systems. All data analysis was carried out
by using the programming language R (R Development Core Team, 2022).
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Figure 1. Principle steps to estimate groundwater level time series at unmoni-
tored sites using the head duration curve methodology.

2.2 Data Selection and Processing

Groundwater level time series are selected from a data set described by E. Haaf
et al. (2020). The data set contains groundwater level time series from the
Upper Danube catchment in Bavaria, Southern Germany, with available geolog-
ical information and absence of patterns of direct anthropogenic impact (for a
more detailed explanation refer to Heudorfer et al. (2019)). From this data set
observation wells were selected that come (1) with continuous daily time series
and at least 10 year record length, (2) less than 1% missing data, which are (3)
concurrent with a record period 2004-2014. The resulting set of 157 obervation
wells are mostly located in shallow, quaternary sediments in river valleys and
fluvial sand as well as in gravel deposits, with a few boreholes located in deeper
tertiary sediments. All wells are classified as penetrating unconfined aquifers.
Then, at each site, 47 physiographical and meteorological descriptors were de-



rived, described in detail in Ezra Haaf et al. (2020). In addition to Ezra Haaf
et al. (2020), percentage of land cover within a 3 km radius of each site was
derived from the CORINE land cover data set (Bossard et al., 2000). Table 1
shows selected descriptors that are most important for models on this study and
therefore discussed in more detail. Remaining descriptors can be found in the
supporting information SI (Table S1). Descriptors are called predictors when in
context of regression models.

Table 1. Descriptive statistics of physiographic and climatic descriptors, dis-
cussed in the paper. Class of variable in parenthesis: (G) Geology, (M) Mor-
phology, (L) Land cover, (B) Boundaries and (C) Climate.

Variable Description

dist_stream (B) Estimated distance from well to nearest stream (main rivers)
well__elevation (B) Estimated Elevation of well

P_avg (C) Mean annual precipitation

T avg (C) Mean annual temperature

ST (C) Seasonality index of precipitation

A thickness (G) Average thickness of saturated zone

A Depth (G) Bottom of formation

Depth_to GW (G) Average depth to Water table
Broadleaved_ forest (L) % of 3 km buffer occupied by broadleaved forest

Coniferous_ forest (L) % of 3 km buffer occupied by coniferous forest
Urban (L) % of 3 km buffer occupied by urban fabric
slp_sk (M) T Mean slope

twi (M) Mean value of Topographic Wetness index

Range
Minimum
6

310

675

6.4

A1

e e T

0/-0.1
5.8

Unit
Maxim
10958
839
1613
9.3

31

50.1
110
39.8
44.5
93.5
74.9
1.95/2.
8.9

1 skewness was calculated for local and regional scale respecitvely. For these,
the ranges are given seperated by a slash 1/r.

2.3 Transformation to head duration curves (HDCs)

In a first step, groundwater head time series were normalized. Subsequently, du-
ration curves of groundwater levels were calculated at each site. This was done,
by first ranking all n observed, normalized (on a 0-1 scale) groundwater levels
l;, 1 =1,2,...,n in descending order, where i is the rank of an observation. The
head duration curve (HDC) is then constructed following the Weibull plotting
formula (Sugiyama et al., 2003):

pi:P<LZli):n+r1a (1)

where p, is the percentage of time that a given level [; is equaled or exceeded.
Groundwater level or head duration curves are subsequently the plot of percent-
age level p, against the corresponding level I; (as seen in Figure 1).

2.3 Transformation to head duration curves (HDCs)



To be able to estimate the duration curve at an ungauged site, forward stepwise
regression (MLR, see section 2.4.1) and extreme gradient boosting (XGB, see
section 2.4.2) were applied to build models from physiographic and climatic
predictors at selected percentage level (0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%). Models are fit using a nested cross-
validation approach on 80% training data with 20% hold-out data on which
evaluation is performed. Models were trained 30 times by leaving out one group
each time and then evaluating against predictions in the left-out group.

2.4 Regression analysis for percentile models

To be able to estimate the duration curve at an ungauged site, forward stepwise
regression (MLR, see section 2.4.1) and extreme gradient boosting (XGB, see
section 2.4.2) were applied to build models from physiographic and climatic
predictors at selected percentage level (0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%). Models are fit using a nested cross-
validation approach on 80% training data with 20% hold-out data on which
evaluation is performed. Models were trained 30 times by leaving out one group
each time and then evaluating against predictions in the left-out group.

2.4.1 Construction of percentile models with MLR,

Multiple linear regression models at selected percentage levels are built using
a selective inference framework. Selective inference adjusts p-values for the ef-
fect of sequentional selection of variables (Taylor & Tibshirani, 2015). This is
necessary since conventional stepwise regression leads to an overestimation of
the strength of apparent relations. The consequence of conventional models is
therefore selection of non-significant predictors and therefore overfitting (Taylor
& Tibshirani, 2015). Instead of using p-values based on the t-test for forward
selection, the procedure is here stopped based on the false discovery rate (ex-
ceeding 0.1; (G’Sell et al., 2016). The selected variables are then used to build a
regression relationship for the training data set with n observations (from well
locations) and percentage levels, p = 1,2...n, where H, is the percentile of the
normalized head H and z, the selected climatic and physiographic descriptors
with the following form:

Hy, =By + 32250, + €, (2)

J

errors €, being independent and normally distributed and where 8 is a vector
of model parameters that are estimated.

2.4.2 Construction of percentile models with XGB

Alternative models for each percentile were constructed using extreme gradient
boosting, an implementation of boosted regression trees (Friedman, 2001).
Hereby, the zgb.train function from the XGBoost R package (T. Chen &
Guestrin, 2016) was used to predict H, based on the entire set of climatic
and physiographic descriptors. To optimize the model fit but reduce risk of
overfitting, two further steps were carried out, after the 80/20 hold-out split



mentioned above. After this, hyperparameters were determined on the training
data using 5-fold cross validation, using the performance measure root mean
square error (RMSE). Finally, after cross-validation, the risk for overfitting was
reduced by stopping the ensemble at the number of decision trees, where the
difference between training and evaluation error reaches a minimum.

2.4.3 Construction of percentile models with XGB

Once percentile levels are predicted for a given target site using XGB and MLR
models, logarithmic interpolation is used to estimate percentiles of groundwater
levels between the percentage points in order to construct the entire duration
curve. The percentile to be estimated is found by identifying the closest (mod-
elled) fixed percentage levels p; above and p, ; below and their corresponding
groundwater heads H; and H, ;. The groundwater level H can then be found
using the following equation:

In(H) = In (H,) + W00, (3)

In cases where percentiles are estimated that are larger than the highest per-
centage point or lower than the lowest (modelled) percentage point, logarith-
mic extrapolation is used. Hereby, the closest two percentage points are found
(Pp1sPna) and the corresponding groundwater levels (H,,;, H,,5). Extrapolating
to the percentile p is done using the equation below.

In(H) = In(H,,) + 2Bzl (p —p ) (4)

Pn1=Pn2

Reconstruction of the groundwater level time series from interpolated duration
curves can then be carried out following the principle given by Smakhtin (1999)
for streamflow estimation. Groundwater levels H, at the target site are esti-
mated by looking up the donor site’s percentile of the duration curve at the
first date to be estimated. Then the same percentile is found in the target
site’s duration curve and the corresponding groundwater level is chosen as the
estimated level at the particular date. This process is repeated for all dates
available within the record of the donor sites. However, not all donor sites are
given the same weight for estimation at the target site. The estimated series of
groundwater levels at the target site H, are rather put together (equation 5) by
weighting each source site’s contribution based on the Euclidean distance d, to
the target.

Ht = Z;;l ijsj/Z;L:1 wj (5)
The weights are calculated based on a dissimilarity measure:

P 71/dt
Wi T S, (6)

Groundwater levels are also estimated at each target site using a straightfor-
ward nearest neighbor method (NN). Here, NN means that no duration curve
is reconstructed but only the actual time series of each source site Ly; is used,
however, weighted according to eq. 5 and 6.



2.5 Evalutation of Time Series Estimation

The performance of the daily groundwater level prediction was evaluated using
leave-one-out cross validation as performed by Shu and Ouarda (2012). Using
a leave-one-out cross validation procedure means that one (target) site is con-
sidered unmonitored and thus left out from the dataset. With the remaining
data set (n — 1 sites), the groundwater level time series are estimated at the
target site. Here, a maximum of n=20 sites were allowed as donor sites. Then,
the performance at that site is evaluated by calculating the Kling-Gupta Effi-
ciency (KGE), Pearson correlation coefficient (R), and Root-mean-square error
(RMSE) as goodness of fit measures between estimated and observed time series.
These steps are repeated at each of the n sites and the average (cross-validated)
estimate is found by aggregating the goodness of fit-estimates from each sub-
sample.

2.6 Plausibility Analysis of Models

To examine the plausibility of models used to predict percentile points along
the HDC, the impact on model output is analyzed using standardized regres-
sion coefficients (MLR) and Shapley Additive Explanations values (SHAP) for
XGB (Lundberg et al., 2020) using the R package SHA Pforzgboost (Liu & Just,
2021). SHAP values quantify how much individual predictors, across the predic-
tor’s value range, contribute to the output variable (here the percentile point).
More specifically, the SHAP value gives the difference in the model output de-
pending on if the model is fit with or without the predictor. Using scatterplots,
SHAP values can then be interpreted locally which allows understanding of
the dependence structure within each model for each predictor. Further, mean
absolute SHAP of all data points for each model is estimated, yielding global
feature importance across each percentile. This supports understanding of the
dynamic changes of importance of controls across different aquifer states and
allows qualitative comparison to standardized regression coefficients of MLR
models.

2.7 Cluster Analysis

In order to get a better understanding of the dataset, regarding similarities in
dynamics and subsequently site descriptors, hierarchical cluster analysis was
performed. Prior to cluster analysis, the selected groundwater level time series
are transformed to z-scores. As input into the clustering algorithm, Euclidean
pairwise distances between time series were computed. Subsequently, hierarchi-
cal cluster analysis using Ward linkage is performed on the matrix of pairwise
distances. The hierarchical relationship between the series can then be displayed
in a dendrogram. From the dendrograms a scree plot is constructed, by sorting
the heights of the dendrograms branches and plotting these against the number
of nodes. The inflection point of the scree plot is then identified to select the
number of clusters that sufficiently describes the patterns of member time series,
while still generalizing the data set to a managable level.

3 Results and Discussion



3.1 Hydrogeological Description of Clusters

Cluster analysis of the data set based on similarity of groundwater level time
series results in hydrogeologically meaningful groups. The six identified clusters
(see SI, Figure S1-S2) are either made up of wells exclusively located in alluvial
deposits or in alluvial deposits and outwash plains. Further, cluster separation
can be linked to differences in distance to stream, depth to water table, size of
aquifer, local hydrology and geographical location.

Figure 2A and B show that groundwater level time series in clusters C1 and
C6 have similar groundwater regimes. Time series in C1 show a relatively fast
response (flashy) and overprinting of high peaks to varying degree, which is seen
to a slightly lesser degree in C6. Inter- and intra-annual patterns are mostly
absent. Groundwater levels in these two clusters are shallow (75% < 5 m) and
with the wells relatively close to groundwater basin boundaries and streams in
medium size aquifers (Figure 2D). Presumably, these clusters represent wells
tapping mainly local groundwater flow systems (Giese et al., 2020). The pro-
nounced flashiness is linked to interaction with streams (E. Haaf et al., 2020)
and can also be seen in the low percentiles of the duration curves that are sig-
nificantly steeper in the flashier C1 and C6 than other clusters (Figure 2B).
Differences between C1 and C6 can be attributed to the different geographical
areas, with C1 located in more extensive aquifers far downstream of the head-
water catchment in the South and C6 located mainly in smaller alluvial aquifers
in the Salzach and Inn catchments at the foot of the Alps (Figure 2C and SI,
Figure S3).

Flashiness in cluster C2 is like C6, however, exhibiting intra-annual variations
and weak inter-annual seasonality. Like C1 and C6, C2 is characterized as local
flow due to the very shallow wells, however, wells are in intermediate locations in
large aquifers. Therefore, dynamics are not closely coupled to the major rivers,
which are at larger distances, but presumably to (unmapped) smaller creeks and
to vegetation considering the shallow groundwater table.

C3 is less flashy than C2, but shows a similar inter- and intra-annual pattern,
which can also be seen in the similarity of the two cluster’s head duration curves
(Figure 2B). C3 wells are, similar to C2, located in larger aquifers, but are deeper
and closer to streams, likely representing local and intermediate flow systems.

C4 has dominant inter-annual variability, which is linked to the larger distance
to groundwater level and streams (E. Haaf et al., 2020). The larger inter annual
variability in C4 is also seen in the less steep lower percentiles of the dura-
tion curves (Figure 2B) and is linked to mainly intermediate and regional flow
systems.

Groundwater hydrographs in cluster C5 show a very distinct pattern compared
to the remaining clusters. The HDC falls steeply at lower percentiles, follow-
ing the flashier C1 and C6, until stabilizing and resembling more the weakly

intra-annual dominated HDCs of C2 and C3, before crossing back to C1 and C6
at higher percentiles, due to cluster’s weak intra-annual periodicity. The dis-
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tinct pattern and in-group similarity of the 14 wells in C5 is explained by their
locations, concentrated near the Inn, which is regulated by run-of-the-river hy-
droelectric plants with pondage (Figure 2C).
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Figure 2. A. Time series within each cluster. B. Mean of groundwater level
duration curve of color related to cluster in A. C. Location of cluster mem-
bers with convex hull and stream network, ISO 3166-1 alpha-3 country codes.
D. Hydrogeological descriptors of sites within each cluster.

3.2 Hydrogeological Description of Clusters

After regression analysis, models were found for all fifteen fixed percentage
points. Regression models fitted on 30 different sets of hold-out data resulted
in a distribution of results that are robust with regard to central tendency. Me-
dian XGB model performance on hold-out data expressed as R? is around 0.5,
except for the lowest and upper percentiles (0.1%, 80-99%), i.e., wet and dry
states, where goodness-of-fit declines (Figure 3). A lower fit at the extremes
is expected since fewer data points make these values less robust compared to
other percentiles. XGB models perform significantly better than MLR models
that show a similar behavior across percentiles but with lower goodness-of-fit
(median R?: 0.3). Figure 3 also shows that the range of R? is large, which is
very likely related to the size of the data set. The consequence of small data
sets, when using hold-out data is that the evaluation data (here, n=32) may
not be representative of the training data across sets of hold-out data. Further,
when running models on the entire data set (training+evaluation), both XGB
and MLR models show around 100% and 70% performance improvement from
median R2. Performance loss across hold-out data and against the entire data
set indicates that generalization from the training set is moderate and likely to
improve with larger data sets.

When comparing results to studies using an analogous methodology in stream-
flow, model results of R? between 0.72 and 0.99 are reported and analogous
lower values in the extremes (Mohamoud, 2010; Shu & Ouarda, 2012). This
study’s performance is nearly 100% higher, however, neither hold-out data,
cross-validation methods, or p-value adjustment for stepwise MLR is used. This
means that models presented in these studies are likely overfitting and general-
ization outside of the data set could be questioned. The performance achieved
on evaluation+training data by XGB and MLR models in this study would
thus be more comparable and are in fact in parity with performance reported
in streamflow studies.
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Figure 3. Performance of percentile regression models.
3.3 Dynamic Controls on Groundwater Levels

Relative predictor importance across percentage point models stratified by pre-
dictor class for MLR and XGB models respectively is shown in Figure 4. Stan-
dardized regression coefficients in MLR give both relative predictor importance
(higher absolute value) but also the direction of the relationship between pre-
dictor and output variable (percentile level of HDC) through the sign of the
coefficient (Figure 4A). Mean absolute SHAP value on the other hand, shows
only relative predictor importance (Figure 4B). Further, for clarity of presen-
tation, only the most salient variables are shown (MLR: variables are shown
that are selected in at least 30% of hold-out data sets; XGB: only the top two
predictors are shown per predictor class (based on overall mean absolute SHAP
value).

The main result is that the importance of predictors varies across percentiles.
This implies that different site (or system) descriptors to varying extents con-
trol the groundwater dynamics when the aquifer is moving from “wet” to “dry”
states and vice versa. An example is distance to stream that is important
through all aquifer states but dominating in wet states (both MLR, and XGB,
Figure 4A-B). Depth to the groundwater table, on the other hand, becomes more
dominant when the aquifer is in dry states (only XGB, Figure 4B). A pattern
that can be seen across all variables is that predictor strength declines signifi-
cantly (approaches zero) at higher percentiles, which is also connected to lower

14



goodness-of-fit at these percentiles (Figure 3). Consequently, predictability of
percentiles coupled to groundwater drought is low.

Another important finding is that many of the most important predictors are
consistently selected across both MLR and XGB as well as show a similar impor-
tance progression across percentiles (distance to stream, well elevation, average
annual precipitation, broadleaved Forest and regional slope skewness). This
means that many of the important variables have a sufficiently linear relation-
ship with percentiles of groundwater head duration curves so that it can be
picked up by MLR. For instance, MLR models show that percentage points of
the HDC increases with distance to stream (the further away from streams, the
less flashy the groundwater level). This is plausible and expected, since streams
are the aquifer’s given drainage boundary and known through previous regional
scale empirical studies (e.g. Boutt, 2017; Giese et al., 2020; E. Haaf et al., 2020;
Vidon, 2012). However, SHAP values of individual data points related to XGB
prediction allows us to look more closely at linearity of relationships between
HDC and predictor value ranges (Figure 5). The SHAP values reveal a more
complex relationship, where the relationship between distance to stream and
dynamics is constant up to about 500 m distance, turning into a linear rela-
tionship, where groundwater dynamics become less flashy with distance until
reaching a plateau at about 3000 m distance. Here, presumably a decoupling be-
tween groundwater and stream occurs and a constant contribution to the HDC
is reached (Figure 5). This effect is consistent across aquifer states, however
weakens, when the groundwater level drops into dry states. The nonlinearity of
relationships with threshold effects is common, as described below for variables
selected in Figure 5:

e Average annual precipitation has relatively low impact on the HDC, which
is also true for other climate predictors in this study. However, precipi-
tation below approximately 800 mm leads to slightly less flashy dynamics
in wet states. This can be coupled to less infiltration and recharge events.
At higher precipitation rates, no systematic impact on HDC can be seen.

¢ Depth to groundwater table only affects the HDC when very shallow, ap-
proximately 2 m and above. Shallow water tables increase the percentile
level accordingly, meaning that less flashiness may be expected. Sites,
where groundwater levels are very shallow may be coupled to discharge
zones. Here the aquifer is continuously replenished through recharge from
uplands with significant upward hydraulic gradients (Gribovszki et al.,
2010; Winter, 2001). Generally, this effect increases in importance at
higher percentiles, i.e., in a drier aquifer state

o If the percentage of broadleaved forests exceeds approximately 10%,
groundwater levels become flashier in wet states, which can be linked to
higher soil moisture, preferential flow and recharge than other land cover
types, reducing surface runoff (Brinkmann et al., 2019; Dubois et al.,
2021).
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o If regional slopes are right skewed, sites are located in alluvial valley bot-
toms at the fringes of higher hill ranges (Ezra Haaf et al., 2020; Mont-
gomery, 2001). In these locations amplitudes are expected to be higher
due to front slope flow and mountain block recharge, which is also seen
here particularly in wet aquifer states with lower SHAP values at higher
slope skewness. Low slope skewness (<.0.3) on the other hand contributes

to less flashy groundwater dynamics.

Overall, the progression of controls have implications not only for prediction
but also conceptual understanding of groundwater dynamics in this region. The
nonlinear relationships of groundwater dynamics and controls and the alternat-
ing dominance of these controls throughout different aquifer states are likely of
interest, when studying e.g., vulnerability to drought events and climate change.
Certainly, there is a need for a dedicated analysis of the dependence of controls
on aquifer states, which was outside of the scope in this study.
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fied by predictor class for MLR and XGB models (scales not comparable). Data
from all hold-out datasets are plotted and fitted with a local polynomial regres-
sion to emphasize the central behavior of the data. A. Standardized regression
coefficients show both relative predictor importance and direction of relation-
ship between predictor and model output. B. Mean absolute SHAP value shows
relative importance through impact on the output variable.
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Figure 5. Relationship between feature value and impact on prediction for five
selected variables across four percentiles. Each point represents an observation
of the predictor variable and its SHAP value. Data from all hold-out datasets
are plotted and fitted with a local polynomial regression to emphasize the central
behavior of the data.

3.4 Dynamic Controls on Groundwater Levels
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Daily groundwater level time series were estimated at target sites, using rep-
resentative models from each of MLR and XGB models as well as using the
Nearest Neighbor method (NN). The XGB model had a higher KGE than NN
at 120 of 157 (76%) sites, and a higher KGE than MLR at 136 of 157 (87%) sites.
In consequence KGE is also significantly higher for XGB than NN and MLR
(Figure 6A). Interestingly, MLR has a lower median KGE than NN, (slightly
higher performance at the lower quartiles) which means that HDC modelling
in the case of MLR deteriorates estimation on average, compared to the simple
NN approach.

The higher performance of XGB can almost entirely be attributed to smaller
amplitude errors between simulated and observed time series. Amplitude errors
are expressed by the RMSE component of KGE, which is significantly improved
when using XGB compared to NN and MLR (Figure 6B). The correlation com-
ponent of the KGE on the other hand shows no significant differences between
methods, meaning that timing errors between observed and simulated time se-
ries are not significantly improved through XGB or MLR (Figure 6C). As dis-
cussed by Mohamoud (2010), timing errors are coupled to the mismatch of time
sequence in hydrograph events (here, e.g., recharge events) at donor and target
sites. Still, from a water resources management perspective, the HDC estima-
tion approach using XGB implies better estimation of the quantitative status
of groundwater resources through significantly reduced amplitude errors.

Figure 6D shows that an optimal number of donor sites (neighbors) is generally
reached with only 1-3 neighbors, as expressed by the maximum KGE. Sourcing
more neighbors generally results in plateauing or even decrease of estimation
performance across different groundwater regimes, as expressed by clusters C1
— C6. Although the number of optimal donor sites is consistent, C4 and C6
exhibit a sharp decline, when more than three or two source sites respectively
are added. A possible reason for this is that these two clusters contain sites with
significantly deeper groundwater tables (Figure 2D). This means that source
sites with e.g., more shallow water table and therefore deviating groundwater
response will be weighted in and cause a mismatch of time sequence, decreasing
the quality of the predicted groundwater level time series at the target site.

Not only hydrogeological suitability of donor sites is important, but also prox-
imity (Figure 6D). Performance decreases approximately with the natural loga-
rithm of mean distance of neighbors. However, even at large mean distances to
source sites (e.g. > 5 km), estimation performance at many sites may remain
high. This is particularly the case for cluster C2 and C3. These cluster also
show significantly higher performances by both HDC-based estimation tech-
niques MLR and XGB. On the other hand, at sites with sufficient neighbors
nearby (< 5 km), NN is preferred over MLR. Overall, however, XGB yields best
performance independently of mean distance to neighbors.
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Figure 6. A.-C. Performance of estimation of daily groundwater level time
series for the three approaches across all unmonitored sites, measured as KGE
(A), RMSE (B), Pearson’s r (C). D. Mean performance — measured as KGE - of
the three estimation methods plotted against number of included neighboring
sites, stratified by cluster. E. Performance of all sites — measured by KGE -
plotted versus mean distance to neighbors, stratified by estimation method and
cluster.

3.5 Hydrogeological Controls and Plausibility of Models

From a hydrogeological perspective, there are obviously missing descriptors to
describe groundwater levels, such as aquifer properties, transmissivity and stora-
tivity. These are often not consistently available at the scale of this study (re-
gional scale), or only with a low level of certainty at the level of 1-2 orders
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of magnitude (e.g., hydraulic conductivity in this study). However, it can be
argued that the importance of storativity in this study is reduced, since normal-
ization on a 0-1 scale of groundwater level time series reduce the importance of
amplitude. Regarding hydraulic conductivity a relatively homogenous selection
of sites is used (Figure 2D). When assuming order of magnitude similarity of
hydraulic conductivity, the predictor aquifer thickness (A_ thickness) may be
considered a rough proxy. With these simplifications and proxy variables, model
fits are acceptable, but still contain significant uncertainty, resulting in lower
quality of time series prediction. Adding hydraulic properties, i.e., storativity
values and less uncertainty regarding hydraulic conductivity to the set of pre-
dictors would likely improve the fit of regression models. It would further allow
for use of more heterogeneous data sets. Different strategies to extract such
hydraulic properties at wells from groundwater level time series of unconfined
aquifers was recently proposed using transfer function noise models (Peterson
& Fulton, 2019) and spectral analysis (Houben et al., 2022).

Apart from the missing hydraulic properties, other factors likely also play a
role in explaining the moderate goodness-of-fit of the HDC models. Some of
the uncertainty may be due to different hydraulic properties stratified within
the zone of fluctuation. This is the case at only a few sites according to the
borehole logs. Other sources of uncertainty may be found in data (groundwater
level measurements, spatial resolution of DEM and climate data) or method of
estimating physiographic and climatic descriptors.. Other reasons may be found
in the overrepresentation of relatively shallow alluvial aquifers, particularly in
the north-east of the study area. Using mean squared error as a loss function,
regression models tend to better represent the bulk of the sites within the data
set, which are mainly lowland riverine aquifers with shallow groundwater levels
(local groundwater flow) and less so the peri-alpine river valleys in the north-
east. A functional stratification of the data prior to HDC model building by
e.g., the dominating predictor distance to stream, or more conceptually-based,
using the hydrological landscape concept (Winter, 2001) may improve the pre-
dictive performance of the HDC models for sites that are less well represented.
Using these functional pre-classifications should also improve transferability of
methods to other study domains. For such an exercise, however, a data set
would be necessary with sufficient data points that ensures robust models in
each functional stratum.

3.6 Improvement of Donor Selection

The bias of the models towards well-represented hydrogeological settings as
described above, also has consequences on donor-based reconstruction of time
series at unmonitored sites. As discussed in section 3.4, differences in timing
error between the three methods, NN, MLR and XGB, are very small and
related to the similarity of time sequences between target and donor sites. A
mismatch occurs, when inadequate donor sites are selected, which can be seen
for example in cluster C4 and C6 (Figure 6D). Performance in these clusters
declines with each additional donor and is presumably related to donors for
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intermediate/regional flow (C4) target sites being selected from (C6) sites that
are located near rivers. In other words, donor sites have hydrological responses
that differ from the target sites. Similar responses at sites with intermediate and
regional flow systems can however be expected even at larger distances (Giese
et al., 2020; Haaf & Barthel, 2018). In consequence, careful selection of donor
sites is crucial to the performance of the method (also pointed out by authors
applying the approach to streamflow: e.g., Hughes & Smakhtin, 1996; Shu &
Ouarda, 2012; Smakhtin, 1999) and geographical proximity should not always
be the main or sole selection criteria for source sites.

Likely, a cleverer approach than solely proximity for donor site selection, would
surely improve the performance of the presented approach significantly. Such
a strategy could be based on a distance metric that uses physiographic and
climatic site descriptors for quantification of similarity between sites, as pro-
posed for streamflow by Shu et al, 2012. However, after studying the nonlin-
earity of relationships between site descriptors and groundwater dynamics, a
non-continuous approach may be more useful. Often, step changes could be
seen, which indicates that a discrete classification approach may provide a more
optimal pool of donor sites. Such classes of similar responses could be developed
from the SHAP values in Figure 5, for example, that neighbors must be within
the same distance to stream, i.e., within one of three classes (1-500m, 500-1500,
> 1500m). For many of the sites, however, nearby sites still provide the most
adequate timing of events. Therefore, any of the donor selection strategies dis-
cussed above must be combined with an approach that applies weights to donors
within the similar class based on proximity.

4 Conclusions

Using the presented method, groundwater head duration curves can be trans-
ferred based on comparative regional analysis of map-derivable site descriptors
from monitored to unmonitored sites. Neighboring donor sites can then be
used to successfully reconstruct the daily groundwater level time series based
on the transferred duration curve. Apart from time series estimation at unmon-
itored sites - in essence spatio-temporal interpolation - the modelling approach
also gives insight into hydrological processes through identification of significant
controls. Specifically, at the study site, controls on groundwater dynamics were
nonlinear, which favors use of Machine Learning (i.e., gradient boosted regres-
sion trees) over multiple linear regression and therefore makes possible improved
conceptual hydrogeological understanding as well as higher predictive skill. The
method and results were robust as tested through nested cross-validation, how-
ever, require thorough testing with larger data sets for application in other
hydrogeological settings.

The study also showed that only 1-3 neighboring donor sites are generally neces-
sary to optimally reconstruct time series of unmonitored sites. Further, the fewer
nearby donor sites are available, the more benefit can be drawn from using the
proposed comparative regional analysis approach, compared to nearest neighbor
averaging of time series. Importantly, the selection of donor sites was identified
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as a key factor to improve predictive skill and should be expanded on using
a combination of geographical proximity and functional classes of groundwater
sites from which to draw appropriate neighbors. Finally, the study shows ways
forward to investigate the dynamic nature of controls on groundwater levels,
which may provide valuable insight to studies of recharge seasonality, droughts
and floods.
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