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Key Points: 8 

• The National Water Model (NWM), in general, under-estimates snow water equivalent 9 
due to both model errors and inputs errors.  10 

• Using observed precipitation and bias-corrected air temperature improved the general 11 
downward bias in NWM snow water equivalent. 12 

• NWM snow processes were further improved by using a dew-point based rain-snow 13 
separation scheme. 14 
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Abstract  16 

We compared snowfall, and snow water equivalent (SWE) accumulation and ablation 17 
simulations from the WRF-Hydro model with the National Water Model (NWM) configuration 18 
against observations at a set of representative point locations from Snow Telemetry (SNOTEL) 19 
sites across the western U.S. We focused on the model’s partitioning of precipitation between 20 
rain and snow and selected sites that span the variability of the percentage of rain on snow 21 
precipitation events. Our results show that the NWM generally under-estimates SWE and tends 22 
to melt snow earlier than observations in part due to errors in the precipitation and air 23 
temperature inputs. We reduced some of the observed and modeled discrepancies by using 24 
SNOTEL snow-adjusted precipitation and removing air temperature biases, based on 25 
observations. These input changes produced an average 59% improvement in the peak SWE. 26 
Modeled peak SWE was further improved using humidity-dependent rain-snow-separation. Both 27 
dew point and wet-bulb parameterizations were evaluated, with the dew-point parameterization 28 
giving better overall improvement, reducing the bias in SWE by 18% compared to the NWM air 29 
temperature-based scheme. This modification also improved melt timing with the number of site 30 
years having difference between modeled and observed date of half melt from peak SWE six or 31 
more days reduced by 6%. These SWE magnitude and timing improvements varied when 32 
analyzed for each rain-on-snow percentage class, with generally better results at sites where most 33 
precipitation events fall either as snow or as rain, and less improvement when there is a mix of 34 
snow and rain-on-snow events. 35 

Plain Language Summary  36 

In snow dominated regions, modeling the partitioning of input precipitation between rain and 37 
snow is important for flood prediction and water resources management. The National Water 38 
Model (NWM) includes equations to model this partitioning and the resultant snow accumulation 39 
and melt in national scale water forecasts. This paper compared NWM snow partitioning with 40 
observations at Snow Telemetry sites and found that the NWM generally under-estimates snow 41 
water equivalent (SWE) and tends to melt snow earlier than observations. This was due to both 42 
errors in the precipitation and air temperature inputs and inaccuracies in the precipitation 43 
partitioning. We identified that improving inputs of temperature and precipitation has the 44 
potential to produce 59% improvement in the modeling of peak SWE. We also evaluated 45 
alternative precipitation partitioning approaches based on dew point or wet bulb temperature, 46 
rather than simply air temperature, and found that the dew-point based approach that we 47 
evaluated reduced the bias in SWE by 18%. There were also improvements in the predicted melt 48 
timing that accrued from SWE magnitude being better modeled. The findings thus document the 49 
benefits for improved model inputs and better physically-based process representations and 50 
suggest these as opportunities for the operational forecasts to be improved. 51 

1 Introduction 52 

Snow models are a central component of hydrologic forecasting systems when snow and 53 
snowmelt are the dominant influence on the regional streamflow. Decades of model 54 
development, combined with advances in technology and software engineering, have gradually 55 
enabled snowmelt runoff models to evolve into large-scale, high-resolution, and physically-based 56 
distributed models such as the National Oceanic and Atmospheric Administration (NOAA) 57 
National Water Model (NWM) in the U.S. (https://water.noaa.gov/about/nwm). This evolution 58 
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was driven in part by the need to shorten the time interval for streamflow forecasts; to 59 
accommodate the shift from simple temperature-index based to energy balance methods; and to 60 
enable predicting the effects of anthropogenic and environmental changes such as those caused 61 
by land-use change or climate change on large heterogeneous basins (DeWalle & Rango, 2008). 62 
The NWM is now part of NOAA’s water resources information system that provides timely 63 
hydrologic forecasts and data to support and inform emergency services and water resources 64 
decisions (https://water.noaa.gov). 65 

To provide accurate predictions of seasonal water supplies over the continental U.S. 66 
under future changing conditions, the NWM, operated by the National Water Center, uses an 67 
energy balance model (Noah-MP) to solve the surface energy and water balances based on first 68 
principles of conservation of energy and mass to calculate snowmelt (Gochis, Barlage, Cabell, 69 
Dugger, et al., 2020; Niu et al., 2011). In our previous work, we compared the Noah-MP models 70 
as implemented in the NWM version 2.0 retrospective simulations with snow observations at 71 
Snow Telemetry (SNOTEL) sites over the western U.S. and showed that the NWM generally 72 
underestimated snow water equivalent (SWE) early in the season and became progressively more 73 
biased later in the season compared to observations at SNOTEL sites, in part due to errors in 74 
inputs, notably precipitation and air temperature (Garousi-Nejad & Tarboton, 2022a). However, 75 
the discrepancies in model inputs were not the only sources of SWE differences. The SWE bias 76 
was persistent when the model precipitation input was relatively (statistically) close to the 77 
observed precipitation, suggesting that there were challenges in the current snow 78 
parameterization within the specific configuration of Noah-MP as implemented in the NWM 79 
version 2.0 retrospective configuration. We identified the current air temperature-dependent rain-80 
snow-separation (RSS) parameterization within Noah-MP as a potential source of model error in 81 
SWE modeling, because this has been reported by other studies as a limitation of Noah-MP as 82 
used in the NWM (Chen et al., 2014; Liu et al., 2017; Wang et al., 2019). More generally, the 83 
accurate representation of RSS in hydrological models is important as the proportion of rainfall 84 
versus snowfall across mountainous regions changes, altering snowpack dynamics, streamflow 85 
timing and amount, and frequency of rain-on-snow events (Bales et al., 2006; Barnett et al., 86 
2005; Gillies et al., 2012; Harpold et al., 2017; Knowles et al., 2006). Thus, research that 87 
evaluates the NWM performance and enhances model output accuracy through more realistic 88 
inputs and physics representations is essential. This motivated our focus on the NWM’s 89 
partitioning of precipitation between rain and snow at sites selected to span the variability of 90 
precipitation events that were rain on snow present in the western U.S. 91 

We addressed the following questions in this study: 92 
• Question 1. To what degree are discrepancies in NWM SWE and RSS predictions 93 

due to input errors and how much could they potentially be improved if inputs were 94 
better? 95 

• Question 2. How well does the NWM RSS (rainfall and snowfall separation) 96 
parameterization work in comparison to SNOTEL observations? 97 

• Question 3. Do any other RSS parameterization methods yield more accurate 98 
snowfall compared to SNOTEL observations? 99 

• Question 4. Does incorporating a statistically better RSS scheme into the NWM 100 
translate into appreciable improvements in modeling of SWE?  101 

• Question 5. How do improvements in modeled SWE vary over sites grouped 102 
according to the percentage of precipitation events that are rain-on-snow? 103 
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In what follows, we first review prior literature used in this work (Section 2). We then 104 
describe the data and model we used (Section 3) followed by the method and numerical 105 
experiment design developed to answer our research questions (Section 4). We then compare 106 
gridded model results from each scenario simulated with point-scale measurements across the 107 
western U.S. (Section 5). Following that, we discuss limitations and uncertainties associated with 108 
the data and model providing perspective on the results presented and identifying areas for input 109 
data improvement and model enhancements (Section 6). Finally, we summarize our conclusions 110 
(Section 7) and provide links to data we used and codes we developed. 111 

2 Background 112 

Seasonal mountain snowpack has key implications for mid-to high-latitude regions such 113 
as the western U.S., storing water in the winter when snow falls and then releasing it as runoff in 114 
spring and summer when the snow melts and contributes (up to about 70%) to the total runoff in 115 
these regions (Li et al., 2017). The recently published Intergovernmental Panel on Climate 116 
Change (IPCC) report indicates a 0.29 million km2 per decade decline in April snow cover 117 
extent—commonly used as an indicator of water supply forecast for the following spring and 118 
summer season—in the Northern Hemisphere (Gulev et al., 2021). It is projected that seasonal 119 
snowpack decline will decrease water supplies for about 2 billion people this century (Mankin et 120 
al., 2015). In the western U.S., an average 30% decrease in areal extent of winter wet-day 121 
temperatures conducive to snowfall is projected (Klos et al., 2014). Given snowpack decline due 122 
to climate warming and its impact on water resources, accurate prediction of spring snowmelt 123 
will become increasingly important as the growing population demands more water and as 124 
operational agencies have to manage water under hydroclimate conditions outside of the 125 
historical record (Bhatti et al., 2016; Gergel et al., 2017; Mote, 2003; Mote et al., 2005).  126 

Continued changes in the precipitation phase (rainfall, snowfall, or a mixture of both) are 127 
expected to alter snowpack dynamics, streamflow timing and amount, and frequency of rain-on-128 
snow events; and thus present a new set of challenges for hydrologic modeling (Harpold et al., 129 
2017; Musselman et al., 2018). RSS is one of the most sensitive parameterizations in simulating 130 
cold-region hydrological processes (Loth et al., 1993) and has a notable influence on the success 131 
of snowmelt models (Rutter et al., 2009). Despite advances in snowmelt modeling, most models 132 
rely on empirical algorithms based on air temperature to separate precipitation into rain and 133 
snow. For example, see the model comparison by Wen et al. (2013). These methods are 134 
empirical and ignore some of the physical processes involved in atmospheric formation of rain or 135 
snow where humidity and latent heat exchanges between a hydrometeor and the surrounding air 136 
play a role (Feiccabrino et al., 2015; Jennings et al., 2018). Such physical process representations 137 
warrant consideration if models are to improve their predictability by reducing their dependence 138 
on empirical parameterizations. 139 

Inaccurate RSS may result in errors in SWE, snow depth, and snow cover duration at 140 
both point and basin scale (Harder & Pomeroy, 2014; Wang et al., 2019) because snow can be 141 
produced in air temperatures slightly above freezing if the wet-bulb temperature (the temperature 142 
to which air is cooled by evaporating water into the air at constant pressure until it is saturated) is 143 
below about -2 oC (Stull, 2011). Ultimately, these errors propagate into the hydrological response 144 
(runoff and streamflow) of the watershed and land-atmosphere energy exchanges (Jennings et al., 145 
2018; Mizukami et al., 2013). Some studies suggest that using dew point temperature, wet-bulb 146 
temperature, or psychrometric energy balance based RSS schemes, which consider the impact of 147 
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atmospheric humidity in the energy budget of falling hydrometeors, improves the modeling of 148 
precipitation phase and the accuracy of partitioning between rain and snow (Behrangi et al., 149 
2018; Harder & Pomeroy, 2013; Marks et al., 2013). 150 

While there has been significant prior work on RSS, our goal was to evaluate the NWM 151 
snow model performance across a set of SNOTEL sites that are representative of various 152 
precipitation regimes (dominantly rainfall or snowfall, or rain-on-snow) across the western U.S., 153 
and to identify where model biases can be removed by using a more physically accurate RSS 154 
method. The RSS methods that we used here include the air temperature-based method from 155 
Jordan (1991) currently used in the NWM, the air temperature-based method developed by the 156 
U.S. Army Corps of Engineers (1956) as used in the Utah Energy Balance (UEB) model 157 
(Tarboton & Luce, 1996), the dew point temperature-based method used in the SNOBAL model 158 
(Marks et al., 1999), and the wet-bulb temperature-based approach evaluated for the Variable 159 
Infiltration Capacity (Behrangi et al., 2018) and Noah-MP (Wang et al., 2019) models. 160 

3 Data and Model 161 

We used SNOTEL data, NWM input data, and an offline version of the WRF-Hydro 162 
model that serves as the basis for the NWM to evaluate different RSS parameterizations and their 163 
corresponding impact on the modeled SWE as detailed in the three subsections that follow. 164 

3.1 SNOTEL Data 165 

For more than 60 years, the automated SNOTEL network, currently consisting of 808 166 
sites across the western U.S., has measured SWE using a pressure sensing snow pillow, 167 
precipitation (P) using a storage-type gage or tipping bucket, and air temperature (Ta) using a 168 
shielded thermistor sensor to monitor winter snow and inform spring and summer water supply 169 
forecasts. Our study used the daily snow-adjusted precipitation (start of the day) that accounts for 170 
uncertainty associated with snowfall measurements being subject to under-catch (Mote, 2003; 171 
Sun et al., 2019). We also used daily average air temperature and daily SWE (start of the day) at 172 
SNOTEL sites as a reference dataset to evaluate: (1) the snowfall fraction estimated from four 173 
different RSS parameterization methods, and (2) the accuracy of the NWM inputs (precipitation 174 
and air temperature) and outputs (SWE).  175 

We recognize there are uncertainties associated with SNOTEL measurements that need to 176 
be considered in our analysis. However, SNOTEL provides the most comprehensive dataset we 177 
could obtain to explore our research questions because of its long, historically continuous records 178 
of P, Ta, and SWE across the western U.S. For our analysis, we focused on SNOTEL sites where 179 
complete daily data were available for water years 2008-2020. This led to a set of 683 SNOTEL 180 
sites. Even though it would have been technically possible to set up simulations and run WRF-181 
Hydro for all 683 sites, it would have been computationally prohibitive, and we decided to focus 182 
on a representative set of them for this research. To select a representative subset of SNOTEL 183 
sites, we used a random sampling within rain-on-snow classes that led to a group of 33 sites that 184 
spanned site rain-on-snow variability, described later, and for which we set up simulations and 185 
ran WRF-Hydro. 186 

3.2 National Water Model Input Data 187 

The NWM surface physiographic and atmospheric meteorological inputs (1 km spatial 188 
resolution and hourly temporal resolution) were made available to us by the NCAR team (D. 189 
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Gochis and A. RafieeiNasab, personal communication, March 16, 2021) as a read only directory 190 
in the NCAR Cheyenne high-performance computer. The surface physiographic inputs included 191 
the model domain; initial conditions such as soil moisture, soil temperature, and snow states; 192 
geospatial inputs (such as topography, soil properties, land cover type, etc.) and parameter files 193 
(such as calibrated snowmelt factor used in calculation of the snow-covered area fraction). The 194 
meteorological inputs included the Analysis of Record for Calibration reanalysis dataset 195 
developed by NOAA National Weather Service (Kitzmiller et al., 2018; National Weather 196 
Service, Office of Water Prediction, 2021), hereafter referred to as AORC. AORC forcing data 197 
included incoming short- and longwave radiation, specific humidity, wind, air pressure, air 198 
temperature, and precipitation rate. 199 

For each of the selected 33 SNOTEL sites we retrieved all required inputs for a four grid 200 
cell 2 km by 2 km area containing the SNOTEL site (Garousi-Nejad & Tarboton, 2022b). Then, 201 
we transferred data from Cheyenne to Expanse, an eXtreme Science and Engineering Discovery 202 
Environment (XSEDE) supercomputer (Towns et al., 2014) where we ran WRF-Hydro. The first 203 
water year (2008) was used for model spin up and, while the SNOTEL data extended to 2020, 204 
NWM forcing data was not available for 2020 at the time this work was done. Therefore, we 205 
used the period 2009-2019 for model comparisons.  206 

3.3 WRF-Hydro National Water Model Configuration Code 207 

The NWM is a physically-based, distributed model based on the WRF-Hydro modeling 208 
framework (Gochis, Barlage, Cabell, Dugger, et al., 2020) that provides operational hydrological 209 
forecasts at 1 km spatial and hourly temporal resolution for snow across the entire continental 210 
U.S. The NWM has evolved beginning from version 1.0 (August 2016) to the current version 2.1 211 
(October 2021) with improved soil/snow physics, calibration, and data assimilation. The core of 212 
the NWM system is WRF-Hydro, developed by the National Center for Atmospheric Research 213 
(NCAR), which consists of different modules with different geospatial representation (e.g., grids 214 
in the land surface and terrain routing modules connected to stream reaches in the channel 215 
routing module) and resolution (e.g., 1 km in the land surface module versus 250 m in the terrain 216 
routing module) to simulate land and atmosphere energy/water fluxes and storages. Details about 217 
the NWM and WRF-Hydro are available in Gochis, Barlage, Cabell, Casali, et al. (2020). We 218 
obtained the Fortran source code from the WRF-Hydro GitHub webpage (https://github.com/219 
NCAR/wrf_hydro_nwm_public/releases/tag/v5.1.1, version 5.1.1 corresponding to the NWM 220 
version 2.0 available at the time this work started (Gochis, Barlage, Cabell, Dugger, et al., 2020). 221 
Releases beyond this to date include WRF-Hydro version 5.1.2 and version 5.2.0, both available 222 
in GitHub(https://github.com/NCAR/wrf_hydro_nwm_public/releases), but to our understanding 223 
the rain and snow separation parameterization that we evaluated has not been changed in these 224 
releases. 225 

In this study, we focused on the land surface module of the NWM, which is a particular 226 
configuration of the Noah-MP model (Niu et al., 2011), where all snow processes are simulated 227 
within a 1-dimensional vertical column over 1 km spatial resolution grid cells. The Noah-MP 228 
module uses up to three snow layers to solve the energy balance (Equation 1) and water balance 229 
(Equation 2) between the snowpack, atmosphere, and the ground surface. The snow state 230 
variables for each snow layer are the mass of liquid water, the mass of ice, layer thickness, and 231 
layer temperature. 232 



Confidential manuscript submitted to Water Resources Research 

7 
 

dUdt = Qୱ୵ + Q୪୵ + Q୪୲ + Qୱ୬ + Q୥ + Q୮ + Q୫ (1)dSWEdt = Pୱ୬୭୵ − M − E 
(2)

where U is the snowpack internal sensible and latent heat storage, t is time, Qsw is net shortwave 233 
radiation flux, Qlw is net longwave radiation flux, Qlt is convective latent heat of 234 
vaporization/sublimation flux, Qsn is convective sensible heat flux, Qg is conductive ground heat 235 
flux, Qm is heat of fusion energy flux due to meltwater leaving the snowpack (which is solved for 236 
as a residual in Equation 1), Psnow is the snowfall (in terms of water depth) that reaches the 237 
ground after adjusting for canopy interception, M is the meltwater, and E is snow 238 
sublimation/frost (Shuttleworth, 2012). 239 

4 Methods and Numerical Experiment Design  240 

4.1 Input Data Evaluation 241 

The first step in our work was to compare the NWM inputs (elevation, P, and Ta for water 242 
years 2009-2019) with observations at representative SNOTEL sites. Results showed biases in 243 
model inputs that needed to be considered in the analysis. There were discrepancies of up to 244 
approximately 250 m between model elevation and the elevation of SNOTEL sites (Figure 1a). 245 
This may be a contributor to differences observed in the daily mean air temperature comparison 246 
due to the lapse rate (Figure 1b).  247 

 248 

Figure 1. (a) NWM elevation inputs compared to SNOTEL site elevations (each point is a 249 
SNOTEL site), (b) AORC mean daily temperature compared to mean measurements at SNOTEL 250 
sites (each point is a day for a SNOTEL site during the 2009-2019 water years) excluding 251 
incorrect AORC air temperatures (see Figure 2), and (c) AORC annual precipitation compared to 252 
observations at SNOTEL sites (each point represents total precipitation during a water year at a 253 
SNOTEL site). Statistical metrics on graphs are coefficient of determination (r2), Spearman’s 254 
rank correlation (Spearmanr), root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), 255 
and bias (Bias) for which equations are provided in Table 1. 256 

For some years, we found artifacts in the air temperature inputs at three SNOTEL sites 257 
(Figure 2). After excluding these periods, we observed a negative bias (-0.53 oC) in AORC air 258 
temperatures compared to SNOTEL measurements (Figure 1b), meaning that Ta input to the 259 
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NWM is generally colder than observations. There were no artifacts in AORC precipitation for 260 
the period of our study; however, we observed a downward bias of about -55 mm (Figure 1c) 261 
when comparing the annual precipitation (accumulated from October 1 through September 30 for 262 
each water year at each representative SNOTEL site). These observations were the basis for 263 
designing our initial numerical experiments (scenarios), where we attempted to reduce biases in 264 
model inputs (details are provided in Scenario 2 and Scenario 3 in Section 4.5). 265 

 266 

Figure 2. AORC and SNOTEL daily mean air temperature during 2009-2019 water years at (a) 267 
Blind Bull Sum SNOTEL site in Wyoming, (b) Clear Creek #1 SNOTEL site in Utah, and (c) 268 
Seine Creek SNOTEL site in Oregon with gray regions showing periods that AORC air 269 
temperature appear to be obviously incorrect. We considered these as artifacts and excluded 270 
these periods from our analysis. 271 

4.2 Snow Rain Ratio 272 

Evaluating simulated snowfall amounts from different RSS schemes is challenging due to 273 
the lack of reliable ground truth observations of the precipitation phase (Harpold et al., 2017). 274 
The Natural Resources Conservation Service (NRCS) reports a snow rain ratio (SNRR) for 275 
SNOTEL sites that estimates the fraction of precipitation that falls as snowfall calculated as the 276 
ratio of daily SWE increases to daily P for the same period. In theory, the SNRR should range 277 
from 0 to 1, with 1 indicating all precipitation falls as snowfall. We obtained daily SNRR values 278 
from NRCS Report Generator version 2 for 683 SNOTEL sites for water years 2008-2020 using 279 
a Jupyter Notebook script we developed (Garousi-Nejad & Tarboton, 2022b). We realized that 280 
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this ratio was sometimes above 1 (100%) because it was calculated based on the daily P 281 
measurements which may be less than accumulated daily SWE. This may occur due to either 282 
precipitation measurement under-catch or processes that result in additional SWE being 283 
measured, such as snow drifting. The NRCS provides a snow-adjusted daily P estimate to 284 
account for this. We obtained this adjusted P and recalculated SNRR to get values within the 285 
range 0-1 (Algorithm 1). We used the computed SNRR values as a validation dataset to compare 286 
different rain/snow separation parameterizations. We acknowledge that there are uncertainties 287 
associated with this SNRR approach that may impact our analysis. However, this indicator was 288 
the best option available to us for evaluating RSS methods given the western-U.S.-wide dataset 289 
that we use in this study. 290 

Algorithm 1. Snow rain ratio (SNRR) Calculation. P is 
the total precipitation and SWE is the snow water 
equivalent at the start of day. The index t and t+1 indicate 
the start and the end of the period (day).  

If Pt > 0: 
 
        // If there is an increase in SWE during the period, 
        // compute SNRR 
        If SWEt+1 - SWEt > 0: 
            SNRRt = (SWEt+1 - SWEt) / Pt 
        else: 
        // If there is a decrease in SWE during the period,  
        // SNRR should be 0 due to the rain melting the snow 
            SNRRt = 0 
else: 
       // SNRR cannot be computed because there  
       // is no precipitation to separate into rain and snow 
        SNRRt = nan 

4.3 Representative SNOTEL Site Selection  291 

We used the computed SNRR values to identify precipitation events that were rain-on-292 
snow and classified sites based the percentage of rain-on-snow events they received to obtain a 293 
set to work with that spanned and is thus representative of the variability of rain-on-snow event 294 
percentages present across the western U.S. We designated precipitation events with SNRR >= 295 
0.95 as snowfall and events with SNRR < 0.95 as rain-on-snow. We, thus, took rainfall or mixed 296 
rainfall and snowfall events for which SNRR < 0.95 as having a quantity of rain sufficient to be 297 
called rain-on-snow. We calculated the percentage of precipitation events that were rain-on-snow 298 
(ROS%) for each SNOTEL site over water years 2008-2020 using a script we developed 299 
(Garousi-Nejad & Tarboton, 2022b). For the 683 SNOTEL sites, ROS% values ranged between 300 
30-100% (Figure 3a). We classified sites according to ROS% into seven groups each spanning a 301 
10% class range. The largest number of sites fell in the 50-60% class, and the least frequent 302 
group (three sites) had ROS% between 90-100%. 303 
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 304 

Figure 3. (a) Histogram of the percentage of historical Rain-on-Snow (ROS%) events inferred 305 
from the computed SNRR over SNOTEL sites (total of 683 sites) with data for 2008-2020 water 306 
years across the western U.S. (b) Location of representative SNOTEL sites selected based on the 307 
ROS%. 308 

To select the representative set of SNOTEL sites to work with, we randomly selected five 309 
sites from each class with ROS% between 30-90% and selected all members within the 90-100% 310 
class because it contained only three SNOTEL sites using a script we developed (Garousi-Nejad 311 
& Tarboton, 2022b). This yielded a subset of 33 SNOTEL sites with different ROS% values 312 
spread across the western U.S. (Figure 3b). We obtained observed P, Ta, and SWE for these 313 
selected SNOTEL sites from NRCS Report Generator version 2 using Jupyter Notebook data 314 
retrieval scripts we developed (Garousi-Nejad & Tarboton, 2022b). 315 

4.4 Evaluation of Rain-Snow-Separation (RSS) Parameterizations 316 

We evaluated four different RSS schemes, including two air temperature-dependent and 317 
two humidity-dependent approaches, commonly used in hydrological models. The air 318 
temperature-based RSS schemes were from the U.S. Army Corps of Engineers, (U.S. Army 319 
Corps of Engineers, 1956; hereafter USCAE (1956)) as used in the UEB snow model (Tarboton 320 
& Luce, 1996), and Jordan (1991) as used in the current version of the NWM Noah-MP. The 321 
USACE (1956) Ta based method separates precipitation into rain and snow based on two 322 
temperature thresholds. All precipitation is rainfall if the air temperature is greater than or equal 323 
to 3 oC, snowfall if the air temperature is less than or equal to -1 oC, and varies linearly for air 324 
temperature between -1 and 3 (Algorithm 2). The Jordan (1991) Ta based method uses multiple 325 
thresholds (0.5, 2, and 2.5 oC) to separate precipitation into rain and snow (Algorithm 3). Both 326 
these methods only consider air temperature (Figure 4a, 4b). 327 

  328 
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Algorithm 2. Rain snow separation (RSS) scheme based 
on USACE (1956). Ta is air temperature in degree C and 
fs is the fraction of snowfall.  

If Ta >= 3: 
        fs = 0 
else if Ta <= -1: 
        fs = 1 
else: 
        fs = 1 - (Ta - (-1)) / (3 - (-1)) 

 329 

Algorithm 3. Rain snow separation (RSS) scheme based 
on Jordan (1991). Ta is air temperature in degree K, Tf is 
the freezing point in degree K, and fs is the fraction of 
snowfall.  

// Physical constants and parameters required 
Tf = 273.16 
 
If Ta >= Tf + 2.5: 
        fs = 0 
else: 
        fs = 1 
        if Ta <= Tf + 0.5: 
            fs = 1 
        else if Ta <= Tf + 2: 
            fs = 1 - (-54.632 + 0.2 Ta) 
        else: 
            fs = 0.6 

 330 



Confidential manuscript submitted to Water Resources Research 

12 
 

 331 

Figure 4. Snowfall fraction computed for the 33 SNOTEL sites using the observed precipitation 332 
and the NWM inputs (including air pressure, specific humidity, and bias-corrected air 333 
temperature) based on (a) USACE (1956), (b) Jordan (1991), (c) Marks et al. (1999): discrete 334 
version, (d) Marks et al. (1999): continuous version and (e) Wang et al. (2019) RSS methods. 335 
The plots on the top row show the relationship between snowfall fraction as a function of air 336 
temperature (Ta), dew point (Td), or wet-bulb (Tw) temperature depending on the method. The 337 
plots on the bottom row illustrate the relationship between snowfall fraction and air temperature 338 
for all methods. The colors represent data with different relative humidity values. 339 

The humidity-based RSS approaches were from the dew point temperature method 340 
(Marks et al., 1999) as used in the SNOBAL model and the wet-bulb temperature based method 341 
evaluated for Noah-MP (Wang et al., 2019). Dew point temperature (Td), a measure of the vapor 342 
pressure of the air (Equation 3), is defined as the temperature to which air must cool at constant 343 
pressure for it to saturate, without any moisture addition/removal (Marks et al., 2013; 344 
Shuttleworth, 2012): 345 Tୢ =  ln(𝑒) + 0.492990.0707 − 0.00421 ln(𝑒) (3)

where e is the vapor pressure of the air in kPa and Td is the dew point temperature in oC. 346 

Marks et al. (1999) described a dew point based approach that uses discrete steps to 347 
partition precipitation into rain and snow (Figure 4c, Algorithm 4). The discrete stepped nature 348 
of the approach seemed limiting as there do not appear to be physical reasons for such step 349 
changes. We thus developed a continuous version of Marks et al.’s (1999) method to provide a 350 
smoother function of Td (Figure 4d).  351 

  352 
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Algorithm 4. Rain snow separation (RSS) scheme based 
on Marks et al. (1991). e is the vapor pressure of the air 
in kPa, Pair is the air pressure in kPa, q is specific 
humidity kg/kg, Td is dew point temperature in degree C, 
and fs is the fraction of snowfall.  

// Compute the vapor pressure of the air from 
// Shuttleworth (2012) Equation 2.8 
e = (Pair q) / (0.622 + 0.378 q) 
 
// Compute Td from Shuttleworth (2012) Equation 2.21 
Td = (ln(e) + 0.49299) / (0.0707 - 0.00421 ln(e)) 
 
// Discrete version: compute snowfall fraction based on  
// Td from Marks et al. (1999) Table 1.  
If Td < -0.5: 
        fs = 1 
else if -0.5 <= Td < 0: 
        fs = 0.75 
else if 0 <= Td < 0.5: 
        fs = 0.25 
else: 
        fs = 0 
 
// Continuous version: compute snowfall fraction using a 
// continuous version of Marks et al. (1999) Table 1  
If Td < -0.5: 
        fs = 1 
else if -0.5 <= Td < 0.5: 
        fs = 0.5 - Td 
else: 
        fs = 0 

Wet-bulb temperature (Tw) is defined as the temperature to which air is cooled by 353 
evaporating water into the air at constant pressure until it is saturated (Ta≈ Td ≈Tw). According 354 
to thermodynamic laws, the air is thermally isolated in saturated environments. In other words, 355 
as the air cools to get to the saturation point, the heat (internal energy) removed from the air due 356 
to the cooling process must equal the latent heat required to evaporate water (from the 357 
hydrometeor surface in a precipitation event) to raise the specific humidity of the air to saturation 358 
(Shuttleworth, 2012). This can be mathematically represented as Equation (4) which can be 359 
reformulated as the wet-bulb equation (Equation 5): 360 ρୟV(Tୟ − T୵)c୮ =  ρୟ ሾqୱୟ୲(T୵) − qሿ V λ (4)

es୵(T୵) − e =  c୮ P௔௜௥ 0.622  λ (Tୟ − T୵) 
(5)
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where ρୟ is air density (kg/m3), V is volume of air (m3), Tୟ is (dry-bulb) air temperature (K), T୵ 361 
is wet-bulb temperature (K), c୮ is specific heat at constant pressure for air (1.04 kJ/kg K), 362 qୱୟ୲(T୵) is saturated specific humidity of air at T୵ (kg/kg), q is specific humidity of air (kg/kg), 363 λ is latent heat of vaporization (2.5 MJ/kg), es୵(T୵) is the saturated vapor pressure of air at T୵ 364 
(kPa), and Pair is air pressure (kPa). Equation (5) does not have an analytical inverse solution to 365 
calculate the wet-bulb temperature from air temperature and humidity (Stull, 2011), so was 366 
solved numerically using a Newton-Raphson scheme. We then used the sigmoid function of 367 
Wang et al. (2019) to calculate RSS (Algorithm 5). 368 

  369 
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Algorithm 5. Rain snow separation (RSS) scheme based on Wang et al. (2019). Tf is 
freezing point in degree K, cp is heat capacity of vaporization in j/kg, Lv is latent heat of 
vaporization in j/kg, NITER is number of iterations to iteratively solve the Tw equation, 
Ta is air temperature in degree K, Pair is air pressure in Pa, q is specific humidity in kg/kg, 
gamma is the psychrometric constant in Pa, e is the vapor pressure of the air in Pa, esa is 
the saturated vapor pressure at Ta in Pa, RH is relative humidity, Tw is wet-bulb 
temperature in degree C, esw is the saturated vapor pressure at Tw in Pa, and fs is the 
fraction of snowfall. Note that constant values are the same as used in the NWM Noah-
MP code. 

// Physical constants and parameters required 
Tf = 273.16 
cp = 1004.64 
Lv = 2.5104E06 
NITER = 20 
 
Tc = Ta - Tf   // Kelvin to Celsius  
gamma = (cp Pair) / (0.622 Lv) 
e = (Pair q) / (0.622 + 0.378 q) 
esa = 610.8 exp ((17.27 Tc) / (237.3 + Tc)) 
RH = e/es 
 
if RH > 100: 
        Tw = Tc 
        esw = 610.8 exp ((17.27 Tw) / (237.3 + Tw)) 
else: 
        Tw = Tc - 5                                // First guess for Tw to start the iterative method 
        for i in range (1, NITER):         // Use Newton-Raphson method: 
            esw = 610.8 exp ((17.27 Tw) / (237.3 + Tw)) 
            F = Tw - Tc + (1 / gamma) (esw – e) 
            Fprim = 1 + (1 / gamma) (esw) [17.27 / (237.3 + Tw) - (17.27 Tw) / (237.3 + Tw) 

**2] 
            Tw = Tw - F / Fprim                // Update Tw 
 
            // Check the stopping criteria 
            if ABS (F / Fprim) <= 0.01: 
                break 
        Tw = max ( -50, Tw)  
 
// Compute fs using Wang et al. (2019) approach 
A = 6.99*10**(-5)  
B = 2 
C = 3.97 
fs = 1 / (1 +A exp (B (Tw + C)))  
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4.5 RSS Modeling Experimental Design 370 

We developed a set of modeling scenarios to answer the research questions given earlier. 371 
For each of the 33 representative SNOTEL sites selected, we used the WRF-Hydro version 5.1.1 372 
NWM configuration in the following scenarios: 373 

1. Base scenario with AORC inputs. The hourly AORC forcing data was used to 374 
simulate snow processes from January 2008 to September 2019 (with the first 375 
nine months being set aside as model spin up) over 33 grid cells containing the 376 
representative SNOTEL sites. We call this scenario the base scenario as we kept 377 
all inputs and model settings the same as those used in the operational NWM 378 
version 2.0. The outputs that we evaluated are hourly snowfall (from the Jordan 379 
(1991) RSS scheme) and SWE values. 380 

2. Replacing AORC precipitation with observations from SNOTEL (Observed 381 
precipitation scenario). Scenario 2 was the same as the base scenario except for 382 
the input precipitation. In our preparation step (Section 3.3), we showed a 383 
downward bias for AORC precipitation compared to observations at SNOTEL 384 
sites. To isolate the effects of AORC precipitation biases on modeled snowfall 385 
and SWE, we used the SNOTEL observed precipitation as supplemental 386 
precipitation to run the model. This means that the model used all other AORC 387 
inputs, but the precipitation data were read from the additional forcing inputs. To 388 
generate supplemental precipitation input files, we followed the steps described in 389 
Gochis et al. (2020). We resampled observed daily precipitation into hourly 390 
precipitation by dividing the total daily precipitation from SNOTEL sites equally 391 
into 24 hours using scripts we developed (Garousi-Nejad & Tarboton, 2022b). 392 

3. Replacing AORC air temperature with bias corrected air temperature based 393 
on SNOTEL on top of the precipitation adjustments of Scenario 2 (Bias-394 
corrected temperature scenario). Since we observed a negative bias in AORC 395 
air temperature compared to SNOTEL observations, we designed Scenario 3 to 396 
diminish the impact of errors in air temperature on the modeled snowfall and 397 
SWE. For each SNOTEL site we computed the average difference in daily 398 
temperature for the common data period (12 years) and used this difference to 399 
adjust the AORC hourly temperature inputs. This one difference value thus served 400 
as a bias correction offset for each representative SNOTEL site. The model 401 
physics settings were the same as in Scenarios 1 and 2, and precipitation was from 402 
SNOTEL observations (as prepared in Scenario 2). 403 

4. Inputs prepared for Scenario 3 but with USACE (1956) air temperature RSS 404 
modifications to the code. In this scenario, we used inputs prepared for Scenario 405 
3 to run the WRF-Hydro model modified to use the USACE (1956) air 406 
temperature-based RSS scheme (Algorithm 2). This was achieved by editing the 407 
rain snow separation code in the module_noahmplsm.F source code file and 408 
recompiling the model.  409 

5. Inputs prepared for Scenario 3 but with continuous dew point based RSS 410 
based on Marks et al. (1999). In this scenario, we used inputs prepared for 411 
Scenario 3 to run the WRF-Hydro model modified to implement the continuous 412 
version of the Marks et al. (1999) dew point based RSS method (Algorithm 4). 413 
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This was also achieved by editing the rain snow separation code in the 414 
module_noahmplsm.F source code file and recompiling the model.  415 

6. Inputs prepared for Scenario 3 but with Wang et al. (2019) wet-bulb based 416 
RSS. In this scenario, we used inputs prepared for Scenario 3 and implemented 417 
the Wang et al. (2019) wet-bulb based RSS parametrization (Algorithm 5) in the 418 
NWM code as for scenarios 4 and 5. 419 

4.6 Comparing Snow Accumulation and Melt 420 

To assess the performance of the model, we first compared the computed snowfall 421 
amount from each RSS method and quantified the performance of each approach against 422 
observed RSS that was inferred from SNRR at SNOTEL sites through a set of statistical metrics, 423 
including Coefficient of Determination (r2), Spearman’s Rank Correlation (Spearmanr), Root 424 
Mean Square Error (RMSE), Nash Sutcliffe Efficiency (NSE), and Bias (Table 1). In addition to 425 
these statistical metrics, we used (1) SWE on observed peak date, (2) observed and modeled 426 
peak SWE, and (3) date of half melt from peak SWE metrics to compare the simulated SWE to 427 
observed SWE at SNOTEL sites (Garousi-Nejad & Tarboton, 2022b). First, we used the date on 428 
which peak SWE was observed to compare modeled SWE against observations. We refer to this 429 
comparison metric as a same-day comparison. Note that if there is a discrepancy in timing, 430 
model and observed peak SWE may be similar, while the model SWE on the observed peak date 431 
is different. To account for this the second metric compared observed and modeled peak SWE 432 
regardless of the dates when they occur. This is referred to as a different-day comparison in this 433 
study. This comparison may have limitations due to cumulative precipitation inputs being 434 
different up to the different dates. We did not report comparison of the Peak SWE timing 435 
because of variability associated with peak SWE time related to long periods where the SWE 436 
time series was flat near the peak. Instead, we chose the date of half melt from peak SWE as a 437 
metric to quantify the model’s performance in terms of simulating the melt timing (Clow, 2010). 438 
This is the date (either modeled or observed) when half of the peak SWE has melted. To 439 
quantitively assess the difference between the modeled and observed half melt dates, we 440 
categorized the date differences into four groups—close, model early, model late, and far apart 441 
(Garousi-Nejad & Tarboton, 2022b). Close indicates that modeled and observed half melt dates 442 
are within 5 days of each other. Model early refers to the situation where modeled half melt dates 443 
are 6 to 19 days before observed, while model late means that modeled half melt dates are 6 to 444 
19 days after observed. Lastly, far apart means that modeled an observed half melt dates are 445 
more than 20 days apart. 446 
  447 
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Table 1. Common statistical metrics used in this study to compare model inputs and outputs 448 
versus observations†.  449 

Name Equation Range Description 
Coefficient of 
determination 
(r2) 

rଶ =  ቆ ∑ (O୲ − O୲തതത)(M୲ − M୲തതതത)୒୲ୀଵඥ∑ (O୲ − O୲തതത)ଶ୒୲ୀଵ ∑ (M୲ − M୲തതതത)ଶ୒୲ୀଵ ቇଶ
 

-1 to 1 with 
1 indicating 
a perfect 
positive 
linear 
relationship 

Measures the 
linear 
relationship. 
Insensitive to 
proportional 
differences 
between 
modeled and 
observed data. 

Spearman’s 
rank 
correlation 
(Spearmanr) 

Spearmanr =  1 − 6 ∑ d୲ଶ୒୲ୀଵN(Nଶ − 1) -1 to 1 with 
1 indicating 
a perfect 
positive 
correlation 

Measures the 
strength of 
association 
between 
modeled and 
observed 
values. 

Root mean 
squared error 
(RMSE) 

RMSE =  ඨ∑ (O୲ − M୲)ଶ୒୲ୀଵ N  
Depends on 
the variable 
with the best 
value of 0. 

Measures how 
concentrated 
the data are 
around the line 
of best fit. 

Nash 
Sutcliffe 
efficiency 
(NSE) 

NSE = 1 − ∑ (O୲ − M୲)ଶ୒୲ୀଵ∑ (O୲ − O୲തതത)ଶ୒୲ୀଵ  -infinity to 1 
with 1 
indicating 
observed 
and modeled 
data fits the 
1:1 line 

Determines 
the relative 
magnitude of 
the residual 
variance 
compared to 
observed 
values. 

Bias  Bias =   ∑ (M୲ − O୲)୒୲ୀଵ N  Depends on 
the variable 
with the best 
value of 0. 

Quantifies the 
average of the 
differences 
between 
modeled and 
observed 
values. 

†Mt is model simulation, Ot is observation, t is time, N is the total number of simulations or 450 
observations, dt is difference between observed and modeled rank, and the overbar indicates 451 
average. 452 
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5 Results 453 

5.1 Changes in Snowfall 454 

We compared the estimated annual snowfall magnitude from five different RSS methods 455 
with the observations inferred from SNRR from SNOTEL and found a persistent upward bias in 456 
snowfall from all methods (Figure 5). This is an average bias across all 33 sites and all years. 457 
USACE (1956) Ta based showed the smallest bias (about 6 mm) and Marks et al. (1999) Td based 458 
(continuous version) had the most significant bias (about 45 mm). Results for Jordan (1991) Ta 459 
based (the current RSS scheme in the NWM Noah-MP) were slightly better than the dew point 460 
temperature-based (both discrete and continuous) methods (Figure 5b, 5c, and 5d). Among the 461 
two humidity-based methods, Wang et al. (2019) Tw based showed a smaller bias (more than 10 462 
mm smaller), but its bias was still six times larger than USACE (1956) Ta based (Figure 5d and 463 
5a). 464 

The seasonal variations (11-year daily averages across selected SNOTEL sites) of 465 
accumulated snowfall from all methods indicated that more than 70% of the annual precipitation 466 
during February through May, independent of the RSS method, fell as snowfall averaged across 467 
the SNOTEL sites and water years (Figure 5f). Observations and USACE (1956) Ta based 468 
average accumulation matched well over the entire year. The other RSS methods tracked above 469 
observations and were all close together during the accumulation phase (October through May). 470 
Following May, Marks et al. (1999) Td based (continuous version) diverged and produced more 471 
snowfall than other RSS methods and observations (50% more than observed in May). Also, 472 
Marks et al. (1999) Td based was the only RSS method that showed 19% and 17% of 473 
precipitation falling as snowfall during July and September, respectively. This sets the Marks et 474 
al. (1999) Td based method apart from other methods as the only one that estimated snowfall 475 
during warmer months (Figure 5f). Average air, wet-bulb, and dew point temperatures for each 476 
day across all site years indicated the general differences between these quantities that were 477 
inputs to the RSS methods (Figure 5g). 478 
  479 
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 480 

Figure 5. Analysis of annual snowfall estimated from different RSS schemes versus 481 
observations inferred from SNRR at SNOTEL sites for a period of 11 years (water years 2009-482 
2019). (a) USACE (1956) air temperature-based RSS method versus SNRR, (b) Jordan (1991) 483 
air temperature-based RSS method (the current approach in the NWM version 2.0) versus 484 
SNRR, (c) Marks et al. (1999) dew point based (discrete version) RSS method versus SNRR, (d) 485 
Marks et al. (1999) dew point based (continuous version) RSS method versus SNRR, and (e) 486 
Wang et al. (2019) wet-bulb based RSS method versus SNRR. Each point in panels (a)-(e) 487 
represents a water year and a SNOTEL site. (f) The seasonal pattern of the long-term annual 488 
observed precipitation, observed snowfall inferred from SNRR, and modeled snowfall from all 489 
RSS schemes averaged across all sites and years. (g) Seasonal pattern of the long-term daily 490 
bias-corrected AORC air temperature (Ta) and computed wet-bulb (Tw) and dew point (Td) 491 
temperatures using AORC data averaged across all sites and years. 492 

5.2 Snow Water Equivalent on Observed Peak Date (Same-day Comparison)  493 

The comparison between modeled and observed SWE on the date of observed peak SWE 494 
revealed a general downward bias in modeled SWE (Figure 6), suggesting that the NWM 495 
generally underestimated SWE on the date of observed peak SWE, independent of the model 496 
input errors (shown before in Figure 1) and model physics (specifically in terms of the different 497 
RSS methods as shown before in Figure 5). However, biases in modeled SWE were reduced 498 
when using observed precipitation instead of AORC precipitation, from -228 mm in the base 499 
scenario to -92 mm in the observed precipitation scenario (Figure 6b). This emphasizes the 500 
importance of using high-quality input forcing in the NWM. Even though we further reduced 501 
model input errors/biases by correcting the AORC air temperature biases, this did not improve 502 
SWE estimates (Figure 6c). Contrarily, it increased the downward bias in SWE. This should not 503 
be considered as a negative point as it is essential to have correct/accurate inputs, even though 504 
that may not necessarily translate into improvements in model outputs. 505 

Even though our comparison of annual snowfall magnitude from different RSS methods 506 
(Figure 5) showed that USACE (1956) Ta based had the best agreement with observations, this 507 
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agreement did not translate to the best same-day SWE comparison. Among the four RSS 508 
comparisons, when the best input estimates were used (Scenarios 3 to 6), USACE (1956) Ta 509 
based showed the largest negative bias (about -168 mm) and Marks et al. (1999) Td based 510 
showed the least bias (about -111 mm) and best NSE and RMSE (Figure 6c, 6d, 6e, and 6f). 511 
Similar to the snowfall comparison, the modeled SWE from the current NWM RSS scheme 512 
(Jordan (1991) Ta based) and Wang et al. (2019) Tw based had almost statistically identical 513 
behavior when compared to SWE observations (Figure 6c versus 6f). 514 

 515 

Figure 6. SWE Comparison on date of observed peak SWE. (a) NWM base scenario (Scenario 516 
1) versus SNOTEL SWE, (b) NWM observed precipitation scenario (Scenario 2) versus 517 
SNOTEL SWE, (c) NWM bias-corrected temperature scenario (Scenario 3) versus SNOTEL 518 
SWE, (d) NWM using USACE (1956) air temperature (Ta) based RSS method (Scenario 4) 519 
versus SNOTEL SWE, (e) NWM using Marks et al. (1999) dew point (Td) based (continuous 520 
version) RSS method (Scenario 5) versus SNOTEL SWE, (f) NWM using Wang et al. (2019) 521 
wet-bulb (Tw) based RSS method (Scenario 6) versus SNOTEL SWE. Each point on the graph 522 
represents a SNOTEL site and a water year. 523 

5.3 Observed and Modeled Peak Snow Water Equivalent (Different-day Comparison)  524 

Under-modeling of SWE was also evident in our comparison of observed and modeled 525 
peak SWE noting that the observed and modeled peak SWE do not necessarily occur on the 526 
exact same date (Figure 7). Among the four RSS schemes modeled (Scenarios 3 to 6) the dew 527 
point temperature-based scheme (Scenario 5) provided less biased modeled SWE similar to the 528 
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same-day comparison. In general, these different day peak SWE comparisons had smaller error 529 
metrics than the comparisons presented above for the day of observed peak SWE. 530 

 531 

Figure 7. Observed and modeled peak SWE comparison (on the generally different dates they 532 
occur). (a) NWM base scenario (Scenario 1) versus SNOTEL SWE, (b) NWM observed 533 
precipitation scenario (Scenario 2) versus SNOTEL SWE, (c) NWM bias-corrected temperature 534 
scenario (Scenario 3) versus SNOTEL SWE, (d) NWM using USACE (1956) air temperature 535 
(Ta) based RSS method (Scenario 4) versus SNOTEL SWE, (e) NWM using Marks et al. (1999) 536 
dew point (Td) based (continuous version) RSS method (Scenario 5) versus SNOTEL SWE, and 537 
(f) NWM using Wang et al. (2019) wet-bulb (Tw) based RSS method (Scenario 6) versus 538 
SNOTEL SWE. Each point on the graphs represents a SNOTEL site and a water year. 539 

5.4 Seasonal Snow Water Equivalent  540 

The seasonal pattern of SWE averaged across the representative SNOTEL sites indicated 541 
the general under-modeling of SWE relative to observations at SNOTEL sites in all scenarios, 542 
with USACE (1956) Ta based scheme (Scenario 3) being further apart from and Marks et al. 543 
(1999) Td based scheme (Scenario 5) being the closest to the observations (Figure 8a). For the 544 
purpose of evaluating RSS options, we did not include results from scenarios that had inferior 545 
inputs (Scenarios 1 and 2) in this comparison. Furthermore, our results showed that discrepancies 546 
between seasonal patterns of SWE vary when analyzed for each ROS percentage class (Figure 547 
8b-g). For SNOTEL sites with the smallest ROS% (30-40%, meaning that most precipitation 548 
events fall on average as snow), all RSS methods simulated almost identical SWE (Figure 8b). 549 
However, as ROS% increased, the impact of different RSS methods in modeling SWE became 550 
more evident in such a way that the Td based RSS SWE simulations almost always stayed above 551 
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the SWE from other RSS methods, meaning that it produced more SWE compared to other RSS 552 
methods. For the sites with ROS% between 80-100 (where rain-on-snow events are dominant), 553 
the Td based RSS scheme simulated SWE was almost identical to observations during the 554 
accumulation period, October-March, while the other RSS methods underestimated SWE (Figure 555 
8g). During the melt period all methods tended to melt the snow a bit slowly compared to 556 
observations, a difference likely due to model considerations other than RSS. 557 

 558 

Figure 8. Observed and modeled SWE at the beginning of each date averaged across all years 559 
and (a) all selected SNOTEL sites, (b) sites with ROS% between 30-40%, (c) sites with ROS% 560 
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within 40-50%, (d) sites with ROS% within 50-60%, (e) sites with ROS% within 60-70%, (f) 561 
sites with ROS% within 70-80%, and (g) sites with ROS% within 80-100%. 562 

5.5 Melt Timing Comparison (Half Melt from Peak Snow Water Equivalent Date)  563 

Our comparison of the modeled half melt date (from scenarios that had valid inputs) with 564 
observations showed that the modeled half melt date was generally earlier than observations for 565 
more than 60% of the site-years (Table 2). When further classified depending on whether the 566 
differences between observed and modeled half melt dates from peak SWE were close, ahead, 567 
behind or far apart from observed melt dates, we observed that the NWM half melt date was off 568 
by 6 days or more for about 75% of site years (Figure 9a). This became even more noticeable 569 
when using the USACE (1956) Ta based RSS method (Figure 9b showing that about 79% of site-570 
years deviated by 6 days or more from observations). Our results show that using humidity-based 571 
RSS methods improved the early melt issue in the NWM to some extent (Figure 9c and 9d), with 572 
the Td based RSS method showing the most considerable degree of improvement compared to 573 
other RSS methods. 574 

Table 2. Observed and modeled half melt dates comparison. Model half melt date is considered 575 
as early if it occurs one or more days before observations.  576 

Scenarios that had 
observed 
precipitation and 
bias-corrected air 
temperature) 

RSS scheme Percentage of days 
with modeled half 
melt date earlier than 
observation across all 
sites and years 

Scenario 3 Jordan (1991) Ta
† based 67 

Scenario 4 USACE (1956) Ta
† based 72 

Scenario 5 Marks et al. (1999) Td
+ based 62 

Scenario 6 Wang et al. (2019) Tw* based 65 
†Air temperature 577 
+Dew point temperature 578 
*Wet-bulb temperature 579 

 580 



Confidential manuscript submitted to Water Resources Research 

25 
 

 581 

Figure 9. Analysis of melt timing based on classification of differences between observed and 582 
modeled dates of half melt from peak SWE. (a) NWM bias-corrected temperature scenario 583 
versus SNOTEL half melt dates, (b) NWM using USACE (1956) Ta based RSS method versus 584 
SNOTEL half melt dates, (c) NWM using Marks et al. (1999) Td based RSS method versus 585 
SNOTEL half melt dates, and (d) NWM using Wang et al. (2019) Tw based RSS method versus 586 
SNOTEL half melt dates. In this figure, FAR APART: modeled and observed half melt dates are 587 
more than 20 days apart; CLOSE: modeled and observed half melt dates are within 5 days of 588 
each other; BEHIND: modeled half melt dates are 6 to 19 days after observed; and AHEAD: 589 
modeled half melt dates are 6 to 19 days before observed. 590 

The NWM early melt issue inferred from the half melt date comparison between modeled 591 
results (Scenario 4 with Marks et al. (1999) Td based method) and observations at selected 592 
SNOTEL sites during 11 years (the water year 2009-2019) was persistent across all sites but 593 
varied differently across ROS% classes (Figure 10). In this figure, the ROS% classes in the 594 
middle of the range, which represent sites with rain and snow mixes, as opposed to dominantly 595 
snow or dominantly rain, tended to have smaller percentages with close melt timing. For the sites 596 
where ROS% events were significantly high (>80%) or low (<40%), the modeled half melt date 597 
was close (off 6 days or less) more frequently (Figure 10a and 10f). 598 
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 599 

Figure 10. Analysis of melt timing from NWM using Td based RSS scheme (the approach with 600 
the least bias and best NSE and RMSE in SWE comparisons) across different ROS% classes. (a) 601 
ROS% between 30 to 40%, (b) ROS% between 40 to 50%, (c) ROS% between 50 to 60%, (d) 602 
ROS% between 60 to 70%, (e) ROS% between 70 to 80%, and (f) ROS% between 80 to 100%. 603 

6 Discussion, Perspective, and Future Work  604 

In this study, our goal was to evaluate input data and three alternative RSS 605 
parameterizations to the NWM version 2.0 to find whether these improve SWE simulations. This 606 
section discusses findings for each of the research questions given in the introduction.  607 

To what degree are discrepancies in NWM SWE and RSS predictions due to input 608 
errors and how much could they potentially be improved if inputs were better? 609 

In this experiment, the most noticeable improvements in modeling SWE compared to the 610 
base scenario were achieved when we used observed precipitation from SNOTEL sites instead of 611 
the NWM AORC precipitation data (about 60% and 77% improvements in bias for same-day and 612 
different-day comparisons of peak SWE, respectively). Using better meteorological inputs to 613 
improve NWM performance has been reported by other studies (Lahmers et al., 2019; Viterbo et 614 
al., 2020). While stating that better inputs lead to better model performance is not new, this 615 
emphasizes the sensitivity to hydrometeorological input error, specifically precipitation and near-616 
surface air temperature, in hydrological modeling predictions (Förster et al., 2014; Raleigh et al., 617 
2015; Zehe et al., 2005). 618 

Our model evaluation that quantifies how much the NWM performance in modeling 619 
SWE could improve by using more accurate meteorological inputs is important in considering 620 
where to invest time and effort in enhancing the NWM overall. We understand that model input 621 
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improvements do not per se improve hydrologic process understanding; however, the ability to 622 
produce accurate hydrological forecasts is essential, and beyond forecast quality, the NWM does 623 
provide several outputs of hydrologic quantities, either not observed, or only observed in 624 
specialized field studies, and certainly not comprehensively across a continent. Examination of 625 
these outputs and their patterns across a continent does enhance process understanding. In 626 
addition, developing more accurate gridded precipitation products may reduce the need to make 627 
existing physical parameterizations more complex and add more uncertainties to the model due 628 
to new parameters (e.g., best fit coefficients in the Wang et al. (2019) Tw based approach). 629 

How well does the NWM RSS (rainfall and snowfall separation) parameterization work 630 
in comparison to SNOTEL observations? 631 

Our results showed that the NWM RSS (Jordan (1991) Ta based) performed statistically 632 
poorly (bias 41 mm, RMSE 74 mm) in separating precipitation into rain and snow compared to 633 
observed snowfall inferred from SNRR at 33 representative SNOTEL sites across the western 634 
U.S. Several challenges exist in this comparison, and each can be considered as a contributor to 635 
discrepancies observed. First, the spatial scale differences between SNOTEL and NWM datasets 636 
are a source of uncertainty in this analysis. As with all numerical models, the representation of 637 
sub-grid variability of snow processes may not be well parameterized when working with models 638 
such as the NWM that simulate snow processes across 1 km spatial resolution. Second, even 639 
though we used snow-adjusted precipitation from SNOTEL sites, there may still be systematic 640 
bias for SNOTEL precipitation due to under-catch (Mote, 2003; Sun et al., 2019). Third, even 641 
though we used observed precipitation from SNOTEL sites (instead of AORC precipitation that 642 
had downward bias) along with bias-corrected AORC air temperatures (corrected based on 643 
SNOTEL observations), there may still be uncertainties associated with other NWM AORC 644 
inputs, including specific humidity, in RSS calculations. Fourth, the method for inferring SNRR 645 
from SNOTEL measurements of precipitation and SWE has limitations. For example, rain that 646 
falls on a cold snowpack, freezes and adds to SWE mass will increase SWE and be interpreted to 647 
be snowfall. Other processes such as wind drifting or scouring of SWE at the SNOTEL site also 648 
introduce uncertainty. Lastly, while when SWE increases were more that P measurements they 649 
were used to infer and adjust for P under-catch, this does not adjust for under-catch of rainfall 650 
that may be present, even though it is commonly not thought to be as problematic as under-catch 651 
of snowfall (e.g., Meyer et al., 2012).  652 

Do any other RSS parameterization methods yield more accurate snowfall compared to 653 
SNOTEL observations? 654 

When considering other RSS alternatives from the literature, we observed that the dual-655 
threshold air temperature-based method (USACE (1956) Ta based) yields noticeably better 656 
agreement between modeled and observed snowfall (bias 6 mm, RMSE 54 mm) compared to the 657 
other two humidity-based approaches (Td based and Tw based). This may be interpreted as good, 658 
because it would be easier to apply a dual-threshold method with a linear decrease in between 659 
that takes only air temperature as the input to separate precipitation into rain and snow than Td 660 
based or Tw based methods that determine the snowfall fraction using humidity information 661 
which potentially could add more errors if input data are not accurate. This finding is in line with 662 
the work of Feiccabrino et al. (2013) that reported on the superiority of the air temperature-based 663 
method over the dew point temperature approach based on data from 19 Swedish meteorological 664 
stations.  665 
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However, we should consider that this finding may be based on some assumptions that 666 
hinder us from concluding that USACE (1956) Ta based is the best among other methods tested 667 
in this study. Firstly, there are uncertainties associated with the NWM AORC data (even with 668 
our bias removal from precipitation and air temperature) we used as inputs to RSS methods and 669 
the reference data (SNRR) that we used to evaluate the performance of each RSS scheme. 670 
Secondly, even though air temperature-based RSS schemes are easy to use, they are empirically-671 
based methods that have been developed based on historical data. Physically based methods are 672 
theoretically preferable for the simulation of processes under conditions that may differ from the 673 
historical conditions where empirical methods have been calibrated or optimized. We note that 674 
other studies report on the superiority of humidity-based approaches over air temperature-based 675 
ones in modeling both snowfall and SWE over mountainous regions (Ding et al., 2014; Marks et 676 
al., 2013; Wang et al., 2019). Further, as noted above, there are limitations associated with the 677 
SNOTEL inferred SNRR that may merit giving higher consideration to overall SWE simulation 678 
comparisons than snowfall ratio comparisons in assessing a RSS model. This is discussed below. 679 

In this study, our results showed that snowfall estimates from Wang et al. (2019) Tw 680 
based scheme better agreed with observations inferred from SNRR at SNOTEL sites (Figure 5e: 681 
bias 34 mm, RMSE 63 mm) than those from Marks et al. (1999) Td based scheme (Figure 5d: 682 
continuous version with bias 45 mm and RMSE 76 mm). This difference could be because Tw is 683 
more physically related to the precipitation phase as it considers the sensible and latent heat 684 
fluxes that determine the internal energy and temperature of a hydrometeor, and thus it is closer 685 
to the surface temperature of a falling hydrometeor than the air temperature (Wang et al., 2019). 686 
However, Td only describes the cooling necessary for an unsaturated parcel of air to reach 687 
saturation over constant pressure, and it does not consider sensible and latent heat fluxes to the 688 
hydrometeor (Harder & Pomeroy, 2013). There may also be uncertainty related to best fit 689 
coefficients in the Wang et al. (2019) snowfall fraction equation that has been optimized to fit 690 
the observation-based relationship between snowfall probability and the Tw from Behrangi et al. 691 
(2018). 692 

Does incorporating a statistically better RSS scheme into NWM translate into 693 
appreciable improvements in modeling of SWE? 694 

Not only did incorporating a statistically better RSS scheme (Scenario 4 with USACE 695 
(1956) Ta based scheme) not translate into appreciable improvements in SWE estimates, but it 696 
turned out that this scheme was the least acceptable among the RSS alternatives evaluated when 697 
compared to SNOTEL SWE observations (evident in both same day and different day 698 
comparison of peak SWE). 699 

When using observed precipitation and unbiased air temperature, our analysis showed 700 
that the humidity-dependent RSS schemes (dew point and wet-bulb temperature based) 701 
overcame the under-modeling of SWE to some extent. This is in line with previous work 702 
reporting on the impact of incorporating humidity into RSS processes on snowfall and snow 703 
mass compared to ground-based snow products (Behrangi et al., 2018; Jennings et al., 2018; 704 
Marks et al., 2013; Wang et al., 2019). In our study, while the Wang et al. (2019) Tw based RSS 705 
method showed better snowfall results than those from the Marks et al. (1999) Td based RSS 706 
scheme, we found greater improvements in modeled SWE from the Td based than Tw based RSS 707 
scheme (Figures 6 and 7). We give this finding that the Td based RSS scheme performs better for 708 
direct comparisons against SNOTEL SWE observations greater credence than the USACE Ta 709 
based method performing best against inferred snowfall, due to the limitations associated with 710 
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the SNOTEL SNRR separation method, and due to predictions of SWE being an ultimate target 711 
of this modeling. There was, however, remaining under-modeling of SWE which could be due to 712 
shortcomings associated with other meteorological inputs such as incoming solar and long-wave 713 
radiation which we did not study in this work and snow processes parameterizations in the NWM 714 
Noah-MP, such as the snow cover fraction calculations which have been reported to be 715 
problematic in modeling of SWE (Helbig et al., 2015; Magand et al., 2014; Wrzesien et al., 716 
2015). These are open areas for future research to advance snow modeling in the NWM. 717 

Collectively, our results showed that, on average, the NWM tended to melt snow early 718 
compared to observations at SNOTEL sites independent of the RSS scheme being used. 719 
However, the humidity-dependent approaches showed slightly better results. This observation 720 
that the modeling of melt timing was not significantly sensitive to the RSS scheme suggests that 721 
there is a need to investigate the overall energy balance and snow surface temperature 722 
calculations in the model. 723 

How do improvements in modeled SWE vary over sites grouped according to the 724 
percentage of precipitation events that are rain on snow? 725 

We observed that the degree of improvement in modeled SWE (in terms of both 726 
magnitude and melt timing) varied across ROS% classes. SWE was not well modeled for the 727 
ROS% classes in the middle rain dominated part of the range (60-80%), while at the lower end 728 
(predominantly snow) or higher end (predominantly rain) the model performed better. For these 729 
ROS% classes where the model performs better, Marks et al. (1999) Td based separation gave the 730 
best improvements. A caveat of this analysis is that we characterized the representative SNOTEL 731 
sites based on the ROS% events metric that we computed based on the inferred precipitation 732 
phase from SNRR. We understand that this approach has limitations; however, without direct 733 
rainfall and snowfall measurements, which are rare across larger areas, it was the approach that 734 
was available to us. 735 

7 Conclusions 736 

Two key points emerge from this work. First, our comparison of the National Water 737 
Model (NWM) Noah-MP snow water equivalent (SWE) and SNOTEL snow water equivalent for 738 
representative sites and dates in the 2009-2019 water years reiterated that the accuracy of model 739 
inputs plays a key role in the accuracy of model outputs. Results showed that using observed 740 
precipitation and bias-corrected air temperature significantly improved the general downward 741 
bias in the NWM SWE magnitude and slightly improved early half melt timing of NWM 742 
compared to observations at representative SNOTEL sites across the western U.S. Second, our 743 
evaluation of three alternative RSS parameterizations in the NWM across a set of representative 744 
SNOTEL sites that spanned site rain-on-snow variability indicated that the negative bias in 745 
NWM SWE can be reduced, on average, by using RSS methods that incorporate specific 746 
humidity information in precipitation separation into rain and snow with consistent best 747 
estimates of the input data. Among the two humidity-based RSS schemes, the dew point 748 
temperature-based method was slightly better (smaller RMSE and Bias and larger NSE) than the 749 
wet-bulb temperature-based method at simulating peak SWE. Using the dew point temperature-750 
based RSS also improved the modeling of melt timing slightly (early melt inferred from the half 751 
melt date comparison). Both SWE magnitude and timing varied across ROS% classes, with 752 
better results for the ROS% classes at the lower end (predominantly sow) or higher end 753 
(predominantly rain). These findings support the benefit of including physically based process 754 
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representations in a model such as the NWM. Future work is required to assess the impact of 755 
improved SWE on streamflow. 756 

Acknowledgments 757 

This work was completed on the land of Eastern Shoshone Tribe, and was supported by the Utah 758 
Water Research Laboratory and National Science Foundation under collaborative grants OAC-759 
1664061, OAC-1664018,  and OAC-1664119. This work used compute allocation TG-760 
EAR190007 from the Extreme Science and Engineering Discovery Environment (XSEDE), 761 
which is supported by National Science Foundation grant number ACI-1548562 (Towns et al., 762 
2014). We thank David Gochis at NCAR and Ed Clark at the National Water Center for 763 
facilitating access to the NWM inputs. Thanks to Mahidhar Tatineni at the San Diego 764 
Supercomputer Center who helped to optimize our computational work load on XSEDE. Thanks 765 
to Mahyar Aboutalebi for his help with computational simulation runs on XSEDE, and to Jeffery 766 
S. Horsburgh for his comments and suggestions. 767 

Open Research 768 

Codes developed for this research and the data we specifically used are publicly available in the 769 
HydroShare repository (Garousi-Nejad & Tarboton, 2022b).  770 
The data and model sources that we drew from include: 771 

• SNOTEL data accessed through the NRCS Report Generator v2: https://wcc.sc.e772 
gov.usda.gov/reportGenerator/  773 

• WRF-Hydro version 5.1.1 source code was accessed in GitHub: https://github.co774 
m/NCAR/wrf_hydro_nwm_public/releases/tag/v5.1.1  775 

• NWM physiographic and atmospheric meteorological inputs were made available to us 776 
by the NCAR team in the NCAR Cheyenne high-performance computer. The specific 777 
data we used from this source are in the HydroShare resource given above. 778 

References 779 

Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., & Dozier, J. (2006). 780 
Mountain hydrology of the western United States: MOUNTAIN HYDROLOGY OF 781 
THE WESTERN US. Water Resources Research, 42(8). 782 
https://doi.org/10.1029/2005WR004387 783 

Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate 784 
on water availability in snow-dominated regions. Nature, 438(7066), 303–309. 785 
https://doi.org/10.1038/nature04141 786 

Behrangi, A., Yin, X., Rajagopal, S., Stampoulis, D., & Ye, H. (2018). On distinguishing 787 
snowfall from rainfall using near‐surface atmospheric information: comparative analysis, 788 
uncertainties and hydrologic importance. Quarterly Journal of the Royal Meteorological 789 
Society, 144(S1), 89–102. https://doi.org/10.1002/qj.3240 790 

Bhatti, A. M., Koike, T., & Shrestha, M. (2016). Climate change impact assessment on mountain 791 
snow hydrology by water and energy budget-based distributed hydrological model. 792 
Journal of Hydrology, 543, 523–541. https://doi.org/10.1016/j.jhydrol.2016.10.025 793 



Confidential manuscript submitted to Water Resources Research 

31 
 

Chen, F., Liu, C., Dudhia, J., & Chen, M. (2014). A sensitivity study of high-resolution regional 794 
climate simulations to three land surface models over the western United States: 795 
SENSITIVITY STUDY OF LSMS IN WRF. Journal of Geophysical Research: 796 
Atmospheres, 119(12), 7271–7291. https://doi.org/10.1002/2014JD021827 797 

Clow, D. W. (2010). Changes in the timing of snowmelt and streamflow in Colorado: A response 798 
to recent warming. Journal of Climate, 23(9), 2293–2306. 799 
https://doi.org/10.1175/2009JCLI2951.1 800 

DeWalle, D. R., & Rango, A. (2008). Principles of Snow Hydrology. Cambridge: Cambridge 801 
University Press. https://doi.org/10.1017/CBO9780511535673 802 

Ding, B., Yang, K., Qin, J., Wang, L., Chen, Y., & He, X. (2014). The dependence of 803 
precipitation types on surface elevation and meteorological conditions and its 804 
parameterization. Journal of Hydrology, 513, 154–163. 805 
https://doi.org/10.1016/j.jhydrol.2014.03.038 806 

Feiccabrino, J., Gustafsson, D., & Lundberg, A. (2013). Surface-based precipitation phase 807 
determination methods in hydrological models. Hydrology Research, 44(1), 44–57. 808 
https://doi.org/10.2166/nh.2012.158 809 

Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N., & Gustafsson, D. (2015). 810 
Meteorological Knowledge Useful for the Improvement of Snow Rain Separation in 811 
Surface Based Models. Hydrology, 2(4), 266–288. 812 
https://doi.org/10.3390/hydrology2040266 813 

Förster, K., Meon, G., Marke, T., & Strasser, U. (2014). Effect of meteorological forcing and 814 
snow model complexity on hydrological simulations in the Sieber catchment (Harz 815 
Mountains, Germany). Hydrology and Earth System Sciences, 18(11), 4703–4720. 816 
https://doi.org/10.5194/hess-18-4703-2014 817 

Garousi-Nejad, I., & Tarboton, D. G. (2022a). A comparison of National Water Model 818 
retrospective analysis snow outputs at snow telemetry sites across the Western United 819 
States. Hydrological Processes, 36(1). https://doi.org/10.1002/hyp.14469 820 

Garousi-Nejad, I., & Tarboton, D. G. (2022b). Data for Evaluating Input Data and Rain Snow 821 
Separation Improvements to the National Water Model Simulation of Snow Water 822 
Equivalent. HydroShare. Retrieved from 823 
http://www.hydroshare.org/resource/bdbecdef23b14848b5da46c4f465ec21 824 

Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P., & Stumbaugh, M. R. (2017). 825 
Effects of climate change on snowpack and fire potential in the western USA. Climatic 826 
Change, 141(2), 287–299. https://doi.org/10.1007/s10584-017-1899-y 827 

Gillies, R. R., Wang, S.-Y., & Booth, M. R. (2012). Observational and Synoptic Analyses of the 828 
Winter Precipitation Regime Change over Utah. Journal of Climate, 25(13), 4679–4698. 829 
https://doi.org/10.1175/JCLI-D-11-00084.1 830 

Gochis, D., Barlage, M., Cabell, R., Casali, M., Dugger, A., FitzGerald, K., et al. (2020). The 831 
WRF-Hydro® modeling system technical description, (Version 5.1.1). NCAR Technical 832 
Note. Retrieved from 833 
https://ral.ucar.edu/sites/default/files/public/WRFHydroV511TechnicalDescription.pdf 834 

Gochis, D., Barlage, M., Cabell, R., Dugger, A., Fanfarillo, A., FitzGerald, K., et al. (2020). 835 
WRF-Hydro® v5.1.1 (Version v5.1.1). Zenodo. 836 
https://doi.org/10.5281/ZENODO.3625238 837 

Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S., et al. 838 
(2021). Changing State of the Climate System (In Climate Change 2021: The Physical 839 



Confidential manuscript submitted to Water Resources Research 

32 
 

Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the 840 
Intergovernmental Panel on Climate Change). Cambridge University Press. In Press. 841 

Harder, P., & Pomeroy, J. (2013). Estimating precipitation phase using a psychrometric energy 842 
balance method: PRECIPITATION PHASE USING A PSYCHROMETRIC ENERGY 843 
BALANCE. Hydrological Processes, 27(13), 1901–1914. 844 
https://doi.org/10.1002/hyp.9799 845 

Harder, P., & Pomeroy, J. W. (2014). Hydrological model uncertainty due to precipitation-phase 846 
partitioning methods: HYDROLOGIC MODEL UNCERTAINTY OF 847 
PRECIPITATION-PHASE METHODS. Hydrological Processes, 28(14), 4311–4327. 848 
https://doi.org/10.1002/hyp.10214 849 

Harpold, A. A., Kaplan, M. L., Klos, P. Z., Link, T., McNamara, J. P., Rajagopal, S., et al. 850 
(2017). Rain or snow: hydrologic processes, observations, prediction, and research needs. 851 
Hydrology and Earth System Sciences, 21(1), 1–22. https://doi.org/10.5194/hess-21-1-852 
2017 853 

Helbig, N., van Herwijnen, A., Magnusson, J., & Jonas, T. (2015). Fractional snow-covered area 854 
parameterization over complex topography. Hydrology and Earth System Sciences, 19(3), 855 
1339–1351. https://doi.org/10.5194/hess-19-1339-2015 856 

Jennings, K. S., Winchell, T. S., Livneh, B., & Molotch, N. P. (2018). Spatial variation of the 857 
rain–snow temperature threshold across the Northern Hemisphere. Nature 858 
Communications, 9(1), 1148. https://doi.org/10.1038/s41467-018-03629-7 859 

Jordan, R. E. (1991). A One-dimensional temperature model for a snow cover : technical 860 
documentation for SNTHERM.89. Cold Regions Research and Engineering Laboratory 861 
(U.S.). Retrieved from http://hdl.handle.net/11681/11677 862 

Kitzmiller, D. H., Wu, H., Zhang, Z., Patrick, N., & Tan, X. (2018). The Analysis of Record for 863 
Calibration: A High-Resolution Precipitation and Surface Weather Dataset for the 864 
United States. Presented at the American Geophysical Union, Fall Meeting, Washington, 865 
D.C. Retrieved from https://ui.adsabs.harvard.edu/abs/2018AGUFM.H41H..06K/abstract 866 

Klos, P. Z., Link, T. E., & Abatzoglou, J. T. (2014). Extent of the rain-snow transition zone in 867 
the western U.S. under historic and projected climate: Climatic rain-snow transition zone. 868 
Geophysical Research Letters, 41(13), 4560–4568. 869 
https://doi.org/10.1002/2014GL060500 870 

Knowles, N., Dettinger, M. D., & Cayan, D. R. (2006). Trends in Snowfall versus Rainfall in the 871 
Western United States. Journal of Climate, 19(18), 4545–4559. 872 
https://doi.org/10.1175/JCLI3850.1 873 

Lahmers, T. M., Gupta, H., Castro, C. L., Gochis, D. J., Yates, D., Dugger, A., et al. (2019). 874 
Enhancing the Structure of the WRF-Hydro Hydrologic Model for Semiarid 875 
Environments. Journal of Hydrometeorology, 20(4), 691–714. 876 
https://doi.org/10.1175/JHM-D-18-0064.1 877 

Li, D., Wrzesien, M. L., Durand, M., Adam, J., & Lettenmaier, D. P. (2017). How much runoff 878 
originates as snow in the western United States, and how will that change in the future?: 879 
Western U.S. Snowmelt-Derived Runoff. Geophysical Research Letters, 44(12), 6163–880 
6172. https://doi.org/10.1002/2017GL073551 881 

Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J., Prein, A. F., et al. (2017). 882 
Continental-scale convection-permitting modeling of the current and future climate of 883 
North America. Climate Dynamics, 49(1–2), 71–95. https://doi.org/10.1007/s00382-016-884 
3327-9 885 



Confidential manuscript submitted to Water Resources Research 

33 
 

Loth, B., Graf, H.-F., & Oberhuber, J. M. (1993). Snow cover model for global climate 886 
simulations. Journal of Geophysical Research, 98(D6), 10451. 887 
https://doi.org/10.1029/93JD00324 888 

Magand, C., Ducharne, A., Le Moine, N., & Gascoin, S. (2014). Introducing Hysteresis in Snow 889 
Depletion Curves to Improve the Water Budget of a Land Surface Model in an Alpine 890 
Catchment. Journal of Hydrometeorology, 15(2), 631–649. https://doi.org/10.1175/JHM-891 
D-13-091.1 892 

Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., & Diffenbaugh, N. S. (2015). The 893 
potential for snow to supply human water demand in the present and future. 894 
Environmental Research Letters, 10(11), 114016. https://doi.org/10.1088/1748-895 
9326/10/11/114016 896 

Marks, D., Domingo, J., Susong, D., Link, T., & Garen, D. (1999). A spatially distributed energy 897 
balance snowmelt model for application in mountain basins. Hydrological Processes, 898 
13(12–13), 1935–1959. https://doi.org/10.1002/(SICI)1099-899 
1085(199909)13:12/13<1935::AID-HYP868>3.0.CO;2-C 900 

Marks, D., Winstral, A., Reba, M., Pomeroy, J., & Kumar, M. (2013). An evaluation of methods 901 
for determining during-storm precipitation phase and the rain/snow transition elevation at 902 
the surface in a mountain basin. Advances in Water Resources, 55, 98–110. 903 
https://doi.org/10.1016/j.advwatres.2012.11.012 904 

Meyer, J. D. D., Jin, J., & Wang, S.-Y. (2012). Systematic Patterns of the Inconsistency between 905 
Snow Water Equivalent and Accumulated Precipitation as Reported by the Snowpack 906 
Telemetry Network. Journal of Hydrometeorology, 13(6), 1970–1976. 907 
https://doi.org/10.1175/JHM-D-12-066.1 908 

Mizukami, N., Koren, V., Smith, M., Kingsmill, D., Zhang, Z., Cosgrove, B., & Cui, Z. (2013). 909 
The Impact of Precipitation Type Discrimination on Hydrologic Simulation: Rain–Snow 910 
Partitioning Derived from HMT-West Radar-Detected Brightband Height versus Surface 911 
Temperature Data. Journal of Hydrometeorology, 14(4), 1139–1158. 912 
https://doi.org/10.1175/JHM-D-12-035.1 913 

Mote, P. W. (2003). Trends in snow water equivalent in the Pacific Northwest and their climatic 914 
causes: TRENDS IN SNOW WATER EQUIVALENT. Geophysical Research Letters, 915 
30(12). https://doi.org/10.1029/2003GL017258 916 

Mote, P. W., Hamlet, A. F., Clark, M. P., & Lettenmaier, D. P. (2005). DECLINING 917 
MOUNTAIN SNOWPACK IN WESTERN NORTH AMERICA*. Bulletin of the 918 
American Meteorological Society, 86(1), 39–50. https://doi.org/10.1175/BAMS-86-1-39 919 

Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu, C., et al. (2018). 920 
Projected increases and shifts in rain-on-snow flood risk over western North America. 921 
Nature Climate Change, 8(9), 808–812. https://doi.org/10.1038/s41558-018-0236-4 922 

National Weather Service, Office of Water Prediction. (2021). Analysis of Record for 923 
Calibration: Version 1.1 Sources, Methods, and Verification. NOAA. Retrieved from 924 
https://hydrology.nws.noaa.gov/aorc-historic/Documents/AORC-Version1.1-925 
SourcesMethodsandVerifications.pdf 926 

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The 927 
community Noah land surface model with multiparameterization options (Noah-MP): 1. 928 
Model description and evaluation with local-scale measurements. Journal of Geophysical 929 
Research, 116(D12), D12109. https://doi.org/10.1029/2010JD015139 930 



Confidential manuscript submitted to Water Resources Research 

34 
 

Raleigh, M. S., Lundquist, J. D., & Clark, M. P. (2015). Exploring the impact of forcing error 931 
characteristics on physically based snow simulations within a global sensitivity analysis 932 
framework. Hydrology and Earth System Sciences, 19(7), 3153–3179. 933 
https://doi.org/10.5194/hess-19-3153-2015 934 

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I., et al. (2009). Evaluation 935 
of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 936 
114(D6), D06111. https://doi.org/10.1029/2008JD011063 937 

Shuttleworth, W. J. (2012). Terrestrial Hydrometeorology: Shuttleworth/Terrestrial 938 
Hydrometeorology. Chichester, UK: John Wiley & Sons, Ltd. 939 
https://doi.org/10.1002/9781119951933 940 

Stull, R. (2011). Wet-Bulb Temperature from Relative Humidity and Air Temperature. Journal 941 
of Applied Meteorology and Climatology, 50(11), 2267–2269. 942 
https://doi.org/10.1175/JAMC-D-11-0143.1 943 

Sun, N., Yan, H., Wigmosta, M. S., Leung, L. R., Skaggs, R., & Hou, Z. (2019). Regional Snow 944 
Parameters Estimation for Large‐Domain Hydrological Applications in the Western 945 
United States. Journal of Geophysical Research: Atmospheres, 124(10), 5296–5313. 946 
https://doi.org/10.1029/2018JD030140 947 

Tarboton, D. G., & Luce, C. H. (1996). Utah Energy Balance Snow Accumulation and Melt 948 
Model (UEB). Utah Water Research Laboratory and USDA Forest Service Intermountain 949 
Research Station. Retrieved from https://hydrology.usu.edu/dtarb/snow/snowreptext.pdf 950 

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., et al. (2014). XSEDE: 951 
Accelerating Scientific Discovery. Computing in Science & Engineering, 16(5), 62–74. 952 
https://doi.org/10.1109/MCSE.2014.80 953 

U.S. Army Corps of Engineers. (1956). Snow Hydrology, Summary report of the Snow 954 
Investigations. U.S. Army Corps of Engineers. Retrieved from 955 
https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/4172/ 956 

Viterbo, F., Mahoney, K., Read, L., Salas, F., Bates, B., Elliott, J., et al. (2020). A Multiscale, 957 
Hydrometeorological Forecast Evaluation of National Water Model Forecasts of the May 958 
2018 Ellicott City, Maryland, Flood. Journal of Hydrometeorology, 21(3), 475–499. 959 
https://doi.org/10.1175/JHM-D-19-0125.1 960 

Wang, Y., Broxton, P., Fang, Y., Behrangi, A., Barlage, M., Zeng, X., & Niu, G. (2019). A Wet‐961 
Bulb Temperature‐Based Rain‐Snow Partitioning Scheme Improves Snowpack 962 
Prediction Over the Drier Western United States. Geophysical Research Letters, 46(23), 963 
13825–13835. https://doi.org/10.1029/2019GL085722 964 

Wen, L., Nagabhatla, N., Lü, S., & Wang, S.-Y. (2013). Impact of rain snow threshold 965 
temperature on snow depth simulation in land surface and regional atmospheric models. 966 
Advances in Atmospheric Sciences, 30(5), 1449–1460. https://doi.org/10.1007/s00376-967 
012-2192-7 968 

Wrzesien, M. L., Pavelsky, T. M., Kapnick, S. B., Durand, M. T., & Painter, T. H. (2015). 969 
Evaluation of snow cover fraction for regional climate simulations in the Sierra Nevada: 970 
EVALUATION OF SNOW COVER FOR REGIONAL SIMULATIONS IN THE 971 
SIERRA NEVADA. International Journal of Climatology, 35(9), 2472–2484. 972 
https://doi.org/10.1002/joc.4136 973 

Zehe, E., Becker, R., Bárdossy, A., & Plate, E. (2005). Uncertainty of simulated catchment 974 
runoff response in the presence of threshold processes: Role of initial soil moisture and 975 



Confidential manuscript submitted to Water Resources Research 

35 
 

precipitation. Journal of Hydrology, 315(1–4), 183–202. 976 
https://doi.org/10.1016/j.jhydrol.2005.03.038 977 

 978 


