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Introduction. This supporting information document provides further details on meth-10

ods used in the analysis described in the main text. We include information about:11

S1. Diffusion-length data and modeling12

S2. Inverse methods13

S3. Sensitivity tests14

S4. Ice-flow modeling15

S5. The δ15N-based thinning function16
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Text S1. Diffusion-length data and modeling17

S1.1 Corrections to diffusion-length data18

We make two corrections to the estimates of diffusion length calculated from the spectra19

of the water-isotope data.20

First, we correct for the effect on the water-isotope data from the continuous-flow-analysis21

(CFA) measurement system. As melted ice samples are transported through the tubing22

and reservoirs of the CFA system, some smoothing of the high-frequencies of the natural23

water-isotope variations occurs. This smoothing is minimized by design of the components24

of the CFA-system, but still impacts the measured signal. The extent of this system25

smoothing can be quantified by measuring the system response to a step change in isotopic26

value using laboratory-produced ice (Jones et al., 2017b). The system diffusion length for27

the CFA system used in this analysis is 0.07 cm for δ17O and δ18O, and 0.08 cm for δD28

(Jones et al., 2017b).29

Second, we correct for the additional diffusion that occurred in the solid ice below the30

bottom of the firn, following Gkinis et al. (2014). To calculate the solid-ice diffusion length,31

we assume the modern borehole temperature profile T (z) remains constant through time32

to find the diffusivity profile Dice(z), following Gkinis et al. (2014):33

Dice(z) = 9.2× 10−4 × exp

(
−7186

T (z)

)
, (1)

with T (z) given in K and Dice(z) given in m2 s−1. For T (z) at SPC14, we use borehole34

temperature measurements from the nearby neutrino observatory (Price et al., 2002).35
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The solid-ice diffusion length is also affected by vertical strain in the ice sheet. We assume36

a simple thinning function from a 1-D ice-flow model (Dansgaard and Johnsen, 1969) with37

a kink-height h0 = 0.2 for this calculation. We describe the total thinning experienced by38

a layer S(t) in a given time interval t = 0 to t = t′ as:39

S(t′) = exp

(∫ t′

0

ε̇z(t)dt

)
, (2)

where ε̇z(t) is the vertical strain rate calculated from the thinning function. The solid-ice40

diffusion length, σice, is then calculated as (Gkinis et al., 2014):41

σ2
ice(t

′) = S(t′)2
∫ t

0

2Dice(t)S(t)−2dt. (3)

To produce the corrected diffusion-length data set used in this analysis, we subtract in42

quadrature both the system diffusion length, σCFA, and the solid-ice diffusion length,43

σsolid, from the total measured diffusion length, σmeas:44

σ2 = σ2
meas − σ2

CFA − σ2
solid. (4)

The diffusion length σ represents the diffusion that occurred within the firn column and45

that has experienced the effects of vertical strain in the ice sheet (i.e., σ = S(z)σfirn).46

Figure S1 shows the effect of these corrections on the estimated diffusion length.47

S1.2 Modeling firn diffusion length48

Within the forward model of the inverse problem, we model diffusion length in the firn49

column. We use the following values in calculating the diffusivity coefficients, Dx, for each50

water-isotope ratio:51
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Dair
δ18O =

Dair

1.0285
(Johnsen et al., 2000) (5)

Dair
δ17O =

Dair

1.01466
(Luz and Barkan, 2010) (6)

Dair
δD =

Dair

1.0251
(Johnsen et al., 2000) (7)

where:52

Dair = 0.211× 10−4 ×
(

T

273.15

)1.94

× P0

P
(Johnsen et al., 2000) (8)

is the diffusivity of water vapor in air. T is temperature given in Kelvin and P is the53

atmospheric pressure compared to a reference pressure of P0 = 1 atm.54

We use the following values in calculating the fractionation factors, αx, for each water-55

isotope ratio, for the equilibrium of water vapor over ice:56

α18 = exp(
11.839

T
− 28.224× 10−3) (Majoube, 1970) (9)

α17 = exp(0.529× log(α18)) (Barkan and Luz, 2007) (10)

αD = exp(−0.0559 +
13525

T 2
) (Lamb et al., 2017) (11)

The tortuosity parameter τ used in Equation 5 in the main text is given by (Schwander57

et al., 1988; Johnsen et al., 2000):58

1

τ
=

1− b×
(

ρ
ρice

)2
, for ρ ≤ ρice√

b

0 , for ρ > ρice√
b

(12)

using a tortuosity parameter b = 1.3.59
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The solution to Equation 4 in the main text for the isotope profile at a given depth z and

time t is given by:

δ(z, t) = S(t)
1

σ
√

2π

∫ ∞
−∞

δ(z, 0) exp

(
−(z − u)2

2σ2

)
du, (13)

as described in (Gkinis et al., 2014) and fully derived in Kahle et al. (2020), where σ is60

the diffusion length and the factor S(t) is the total thinning a layer has experienced due61

to ice flow, as described in Equation 2 of this supplement.62

Text S2. Inverse methods63

The statistical inverse method used in this work relates the three variables that span the64

model space with the three data variables that span the data space. We define the model65

space as a vector space with a dimension for each of the unknown input parameters; a66

particular point in the model space represents a specific set of input parameters m. The67

data space is defined similarly, where each data parameter in d represents a dimension,68

and our observations dobs exist at a particular point in the data space. Because the data69

have measurement uncertainties, the “true” values in the data space may differ from dobs.70

Because we have three model parameters across 208 depth points (624 total unknown71

parameters), our problem spans a high dimensional model space, and an exhaustive search72

of all possible solutions m is not practical. We limit the number of instances of m to73

evaluate by using an importance-sampling algorithm. We use a Markov Chain Monte74

Carlo algorithm to combine a priori information about which solutions m are plausible75

for realistic ice-sheet conditions and information from our data sets. This algorithm76

efficiently explores the parameter space by favoring instances of m that are similar to77

those that have already produced good fits with the observations dobs.78
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In this section, we describe the theoretical framework (S2.1 and S2.2) and the practical79

implementation (S2.3) of the inverse approach we use. In general, the solution of this type80

of inverse problem depends on the formulation of the problem, including what information81

is included in the constraints and how the output is analyzed. We detail below each of82

the choices that we make in our approach.83

S2.1 Bayesian framework84

We use a statistical Bayesian framework to solve this inverse problem. Rather than seek a85

single best-fit solution, we consider the likelihood of different solutions based on probabil-86

ity distributions within the parameter spaces of the data and the model. This framework87

combines a priori model parameter information with data measurement uncertainties.88

Unlike a regularization approach, such as Tikhonov regularization, a Bayesian approach89

does not require a subjective choice about how well the final set of solutions should fit90

the data (Tarantola, 1987; Steen-Larsen et al., 2010).91

We characterize the a priori information describing the model inputs m as a probability92

distribution in the model space. This distribution, denoted as ρm(m), represents the93

likelihood of solutions m based on data-independent prior knowledge about what values94

are realistic for that particular parameter (Mosegaard and Tarantola, 1995; Mosegaard95

& Sambridge, 2002). To produce the complete solution to the problem, the a priori96

information is combined with the likelihood function, which describes how well the output97

d from a given solution G(m) matches our observations dobs. The likelihood function L(m)98

is defined as (Mosegaard and Tarantola, 1995):99

L(m) = CL exp(−M(m)), (14)
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where CL is a normalization constant and M(m) is a misfit function that measures the100

deviation between d and dobs in the data space.101

The likelihood function L(m) is combined with the a priori distribution ρm(m) to define102

the a posteriori distribution f(m) (Tarantola, 1987):103

f(m) = CfL(m)ρm(m). (15)

Note that in our implementation, detailed in S2.3, we directly incorporate a priori in-104

formation into the model space bounds and thus directly compare values of the misfit105

function M(m) calculated for each solution m. Specific values for CL, Cf , and ρm are not106

required.107

The a posteriori distribution f(m) contains all the information we have to constrain108

the inverse problem and thus represents its complete solution. The region of maximum109

values of f(m) denote the most likely solutions to the problem. This distribution may be110

Gaussian-like and simple to interpret, or may be multi-modal and require a more complex111

interpretation. We cannot produce this a posteriori distribution analytically, but we can112

sample its values at discrete points. For each solution m that we test in our forward model113

G, we calculate a discrete value of f(m).114

S2.2 Sampling strategy115

Our sampling strategy uses an algorithm to determine which solutions m to test, with116

the goal of producing f(m) after sufficient iterations (Mosegaard and Tarantola, 1995).117

The algorithm explores the model space by randomly stepping from one solution mi to118

a neighbor mj. In each iteration, the algorithm follows two stages, designed such that it119

asymptotically produces f(m) (Mosegaard, 1998; Mosegaard & Sambridge, 2002).120
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First, an exploration stage defines how the algorithm selects a proposal for mj given its121

starting place at mi. The selection depends on how far in model space the algorithm122

is allowed to step in a single iteration. While the magnitude and direction of the step123

are determined randomly, the magnitude is scaled by a base step-size. The choice of124

base step-size balances the exploration of more of the model space (larger steps) with the125

exploration of regions that result in high values of f(m) (smaller steps). In practice, we126

must tune the step size in order to strike this balance (e.g., Steen-Larsen et al. (2010)).127

Second, an exploitation stage defines the transition probability that the proposed step128

with be accepted. If the proposed step is rejected, the current solution mi is repeated for129

an additional iteration. The simplest choice for the transition probability is the Metropo-130

lis acceptance probability (Metropolis et al., 1953; Mosegaard, 1998; Mosegaard & Sam-131

bridge, 2002):132

paccept = min

(
1,
f(mj)

f(mi)

)
. (16)

This formulation will always accept the proposed step to mj if the a posteriori distribution133

is greater at that point (f(mj) > f(mi)), but may still accept the proposed step even if134

the a posteriori distribution is smaller at that point (f(mj) < f(mi)) by a probability135

proportional to
f(mj)

f(mi)
. This design prevents the algorithm from getting stuck at a local136

maximum of f(m), while still favoring samples from regions of the model space with a137

relatively high value of f(m).138

After sufficient iterations, the sampling of this algorithm will converge on f(m). The139

number of iterations required for convergence, the convergence time, depends on the base140

step-size chosen. Step size is tuned to minimize the number of iterations required while141
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appropriately sampling the model space. Related to the convergence time is the burn-in142

time, which refers to the number of iterations completed before the sampled values of143

f(m) become relatively stationary. After this point, the algorithm continues to sample144

only highly likely solutions m. Prior work has found that after the burn-in time, the145

acceptance rate of the algorithm should be 25-50% (Gelman et al., 1996) in order to strike146

a balance between exploration (bigger steps) and efficiency (smaller steps).147

S2.3 Implementation of sampling148

To sample and estimate the a posteriori distribution, we implement the theory described149

above. We initiate the problem with our initial guess m1 for each parameter and begin150

evaluating successive solutions from that point. Our sampling strategy uses Equation 16151

and the associated ideas about sampling efficiency.152

In the exploration stage of the algorithm, rather than perturb only one parameter within153

mi at a time, all 624 parameters (i.e., values at each depth point for temperature, ac-154

cumulation rate, and thinning function) are perturbed in each iteration. This design155

improves the efficiency of the algorithm. Each perturbation is constructed with the same156

low-frequency, red-noise slope in its power spectral density as that of a comparison data157

set. The comparison data set for temperature is the water-isotope record, for accumu-158

lation rate is a destrained version of the annual-layer thicknesses, and for the thinning159

function is a DJ-model output. Because in reality we expect temperature, accumulation160

rate, and thinning to vary smoothly through time, each proposed perturbation must vary161

smoothly as well. Furthermore, the ∆age and diffusion-length data sets are inherently162

smooth because they integrate information over the depth of the firn column. To pre-163
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vent spurious high-frequency noise from being introduced into the proposed solution m,164

we apply a low-pass filter to the perturbation. To the temperature and accumulation-165

rate perturbations, we apply a lowpass filter at a 3000-year period, which corresponds166

to the maximum value of ∆age. We apply a lowpass filter at a 10,000-year period to167

the thinning-function perturbations because we expect the thinning function to be even168

smoother. The perturbations are then added to the previous accepted solution to generate169

the next proposed solution.170

In the exploitation stage, the algorithm determines whether to accept the proposed solu-171

tion mi+1 by calculating and comparing the values of the a posteriori distribution at mi172

and mi+1. Equation 15 describes how the a posteriori distribution is calculated from the173

likelihood function L(m) and the a priori distribution ρ(m). Because we have already in-174

corporated our prior knowledge directly into the model space bounds, we simply compare175

the value of the likelihood function evaluated at mi and mi+1 (Mosegaard, 1998):176

paccept = min

(
1,
L(mi+1)

L(mi)

)
. (17)

We define the likelihood function, as in Equation 14, with a misfit function M(m) defined177

as (Khan et al., 2000; Mosegaard & Sambridge, 2002):178

M(m) =
∑
n

∣∣∣d(n)(m)− d(n)obs

∣∣∣
σn

, (18)

where d(n)(m) denotes the modeled output, d
(n)
obs the observation, and σn the standard de-179

viation of the observation for the nth datum. This misfit function minimizes the influence180

of outliers, compared to a root-mean-square formulation.181

We run the algorithm until we have 100,000 accepted samples of the a posteriori distribu-182

tion. With an acceptance rate of 30-40%, this requires approximately 300,000 iterations183
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in total. The burn-in time is reached after approximately 10,000 iterations, and we con-184

sider solutions m only after this point. We repeat this process five times to account for185

any persistent impacts from early perturbations, combining all accepted solutions after186

the burn-in time to create the final set of results. Because only a small perturbation is187

made between iterations, successive iterations are correlated. Analysis of the a posteriori188

distribution requires a collection of statistically independent models, so we consider only189

a subset of all accepted models (Mosegaard, 1998; Dahl-Jensen et al., 1998). Through an190

autocorrelation analysis of the accepted models, we conclude that saving every 300th solu-191

tion produces a statistically independent set. Out of a total of 500,000 accepted solutions,192

1500 solutions are included in our analysis of the a posteriori distribution.193

Text S3. Sensitivity tests194

S3.1 Sensitivity to Firn Model195

To evaluate the sensitivity of the results to the choice of firn model, we perform two196

sets of experiments comparing different firn models. First, we use the Community Firn197

Model (CFM) (Stevens et al., 2020; Gkinis et al., 2021) to calculate ∆age using our full198

ensemble of accumulation-rate and temperature reconstructions as inputs for five different199

models: a dynamic version of Herron-Langway, Goujon et al. (2003), Li and Zwally (2015),200

Ligtenberg et al. (2011), and Simonsen et al. (2013). (Solving the full inverse problem201

with any of these dynamic models, which do not have analytical solutions, is impractical,202

but we address this issue in the second set of experiments below.) Comparison of the203

outputs of the five different models and the ∆age data is given in Figure S2. The results204

show that while the Ligtenberg et al. (2011) and Li and Zwally (2015) models produce205
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similar results for the glacial period, the Goujon et al. (2003) and Simonsen et al. (2013)206

models systematically underestimate ∆age by about 500 years. As currently formulated,207

none of these models other than Herron-Langway are consistent with the modern depth-208

density profiles at South Pole. Because the accumulation rate and thinning function are209

tightly constrained by the diffusion-length and layer-thickness data, the only available210

free parameter that could be used to reconcile these other models with the empirical211

∆age data is temperature. For the Goujon et al. (2003) model, for example, adjusting212

the temperature to match ∆age requires reducing the temperature by about 2°C in the213

glacial and by > 3°C in the Holocene; the latter is implausible and would require an even214

smaller glacial-interglacial temperature change than our reconstruction indicates. Thus,215

our choice of Herron-Langway is motivated by the fact that it produces results most216

consistent with multiple, independent, empirical constraints.217

In a second set of experiments, we further examine the sensitivity of our results to the218

choice of firn model by implementing two of the models, Goujon et al. (2003) (GOU) and219

Ligtenberg et al. (2011) (LIG), within our inverse model framework. These two models are220

representative end-members (Figure S2). We use the CFM to run these models to steady221

state using a range of temperature and accumulation-rate pairs that span the climate of222

the SPC14 record. We save the model output in a format that is accessible from within223

the inverse procedure, allowing the appropriate firn age-depth-density profile to be used224

for the corresponding temperature and accumulation-rate value in each iteration.225

Figure S3 shows the results of these experiments compared with the main result using the226

Herron-Langway analytic model (HLA). Both the GOU and LIG firn models produce lower227

temperatures throughout the record, lower accumulation-rate values in the Holocene, and228
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slightly higher thinning function values through the Holocene and glacial transition, com-229

pared to the main HLA result. Although the Last Glacial Maximum (LGM) temperature230

in the GOU and LIG results is lower than that of the HLA result, the glacial-interglacial231

temperature change is similar for all three models, as shown in Figure S4. This shows232

that the relatively small glacial-interglacial change, one of the key results in this paper, is233

not a consequence of our model choice. Building on the result of the first set of firn-model234

experiments, it also further demonstrates that the HLA model is an appropriate model235

for South Pole.236

S3.2 Sensitivity to Measured Data Sets237

To determine the extent to which each of our three data sets affects the results, we238

tested our approach by excluding different combinations of the data sets. We used the239

same inverse framework as before, but took into account only how well the output d240

matches the data observations dobs for the data sets included in that test. Excluding all241

data sets evaluates the effect of the perturbation construction by resampling the a priori242

distribution (Mosegaard and Tarantola, 2002). Figure S5 illustrates that this null test, in243

which there are no constraints from the data, successfully recovers the prior; the mean244

of the a priori distribution is approximately the mean of the bounded model space. This245

result shows that no spurious information is produced by the sampling procedure.246

Building up from the null test, we tested two suites of three runs each to evaluate the247

sensitivity of results to each of the data sets. The first suite includes only one data set248

at a time, and the second suite includes two data sets at a time. The results from both249

suites are similar, and we show here only the results from the second. Figure S6 shows250
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the mean solution from each run of the second suite: excluding ∆age (purple), excluding251

diffusion length (blue), and excluding layer thickness (green), compared alongside the252

full results including all parameters (black). The right three panels show the effect on253

the fit of the data parameters, producing, as expected, the worst fit to each data set254

when that information is excluded from the problem. The left three panels of Figure S6255

show how the exclusion of each data set impacts the mean of each set of solutions. The256

result for the thinning function suggests that, from 40 - 54 ka, the diffusion-length record257

pulls the thinning function to greater values (less thinning), while the layer thickness258

pulls the thinning function to smaller values (more thinning). The accumulation-rate259

reconstruction is most sensitive to diffusion length and layer thickness. To assess the260

sensitivity of the temperature reconstruction, we ran our two suites of sensitivity tests261

again, this time prescribing accumulation rate to the mean solution. Figure S7 shows the262

results for temperature for each of the four types of tests. The results suggest that ∆age263

is most important for temperature at ages younger than 35 ka. At ages older than 35 ka,264

no single data set is most important for temperature, but the results of the 2-parameter265

suite suggest that the combined information from diffusion length and layer thickness has266

the greatest impact on the temperature result.267

Additionally, we tested the impact of the diffusion-length data set on the temperature re-268

sult by isolating the temperature-dependence of the water-isotope diffusion model within269

the forward model. We used a linear step-change input for temperature within the diffu-270

sion model (solid magenta line in temperature panel of Figure S8), not allowing changes271

of temperature in each iteration to influence the misfit of the modeled diffusion lengths to272

the data set. These results (blue shading in Figure S8) show a significant difference in the273
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results for all three variables (temperature, accumulation rate, and thinning function),274

particularly during the LGM. This occurs because the fixed temperature we use for the275

diffusivity increases the modeled firn diffusion length, requiring more thinning to match276

the diffusion-length data. To accommodate the increased thinning, accumulation rate277

must increase to match the layer-thickness data. To compensate for a higher accumula-278

tion rate, a colder temperature is required to match the ∆age data. In this particular279

example, the glacial-interglacial temperature change is reduced by 1.4°C from the main280

results, a significant difference. Setting a constant diffusion temperature colder than the281

main result would have the opposite effect. This sensitivity test demonstrates that the282

water-isotope diffusion model provides a critical constraint on temperature, comparable283

in significance to ∆age.284

S3.3 Sensitivity to δ15N data285

As detailed in Section 5.4 of the main text, we use the δ15N-based diffusive column height286

(DCH) to assess the impact of the δ15N data on our main result. We run a global search287

algorithm over a range of temperature and accumulation-rate values to find those that are288

in agreement with the δ15N-based DCH. The temperature and accumulation-rate values289

included in our global search are defined by a small range about the corresponding mean290

values in the main reconstruction. For temperature values, we define the range as ±5°C,291

and for accumulation-rate values, we define the range as±0.01 m a−1. Given the variability292

in each parameter, the temperature range is relatively larger than the accumulation-rate293

range, which is appropriate since the accumulation rate is fairly well constrained.294
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Accompanying Figure 5 in the main text, Figure S9 shows the DCH as calculated with295

the accumulation-rate and temperature results shown in Figure 5. The red shading,296

corresponding to the red shading in Figure 5, shows the DCH calculated when the δ15N297

constraint is applied to the accumulation rate and temperature solutions. The red shading298

exactly spans the uncertainty of the δ15N-based DCH, demonstrating that the solutions299

shown in Figure 5 are consistent with the δ15N data. A change in the global search ranges300

of temperature and accumulation-rate has a minor effect on the width of the red shading,301

but no impact on the mean values. We note that the equivalent representation of the blue302

shading from Figure 5 in Figure S9 is identical to that of the red shading.303

As noted in the main text, these results show that the Herron-Langway firn model (and all304

other firn models we examined) cannot simultaneously accommodate all data constraints305

at all depths. We emphasize that while δ15N tightly constrains the DCH, δ15N does not306

depend on the details of the depth-density profile, nor on the amount of time represented307

by the DCH, and therefore cannot constrain either of these variables independently. In308

contrast, ∆age is a measure of the firn densification time, and water-isotope diffusion309

length depends on both the densification time and the depth-density structure. Within310

the firn-model framework, warmer temperatures than our main reconstruction permit311

agreement with δ15N, but reduce agreement with diffusion-length constraints. We consider312

our reconstruction conservative with respect to the key result of a relatively warm last313

glacial maximum. We suggest that water-isotope diffusion-length data, such as we present314

in this paper, should be used to a greater extent in developing further refinements to firn315

models in the future (Gkinis et al., 2021).316

S3.4 Sensitivity of Isotope-Temperature Relationship317
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In Section 6.2 of the main test, we show that the δ18O-temperature relationship indicated318

by our reconstruction, based on the HL firn model, is 0.99h°C−1. Table S1 shows results of319

the same calculation for the sensitivity tests using other firn models (Figure S3), and from320

the δ15N and ∆age constraints (main text Figure 5). We also report the correlation coef-321

ficient r between the δ18O record and each temperature reconstruction. All ∂(δ18O)/∂T322

slopes are significantly greater than the modern surface slope of 0.8h°C−1. While all323

correlations are significant, the maximum correlation is for the main reconstruction.324

Text S4. Ice-flow modeling325

We use a 2.5-D flowband ice-flow model to estimate a thinning function for SPC14 to326

compare with the primary thinning function reconstruction described in the main text.327

As described in the main text, the primary thinning reconstruction contains more high-328

frequency variation than a 1-D Dansgaard-Johnsen model output. For emphasis, Fig-329

ure S10 shows this comparison in the depth domain to highlight the main discrepancies330

in the estimates, particularly from 200 to 500 m depth and from 1400 to 1750 m depth.331

This ice-flow-model thinning function is constrained by data for ages younger than 10 ka,332

producing an independent data-based estimate of ice thinning. Beyond 10 ka, we do not333

have sufficient knowledge of past ice flow direction and the associated bed topography334

along that flow path in order to fully constrain the model. For the older ice, the goal335

with the ice-flow-model thinning function is to determine if the structure in the primary336

thinning function is physically plausible. To this end, our flowband modeling suggests337

that variations in the primary thinning function can indeed be explained by observed338

variations in bedrock topography.339
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S4.1 Flowband model340

The flowband model was developed to calculate the time-dependent ice-surface evolution341

and velocity distribution along a flowline in the ice-sheet interior. The model has been342

described in Koutnik et al. (2016) where it was applied near the WAIS Divide ice-core343

site. The model calculates the ice-flow field using the Shallow Ice Approximation, which344

is appropriate for relatively slow-flowing interior ice that is not beneath an ice divide.345

Necessary boundary conditions and initial inputs to the model include the accumulation346

rate (Figure S11A), bed topography (Figure S11C), and ice temperature along the flowline,347

as well as the ice flux and ice-sheet thickness at one location.348

The flow field described by the model is defined within a flowband domain extending349

200 km along the flow line. The downstream edge of the domain is located 10 km from350

the SPC14 site; the upstream edge marks the location of the ice divide, 190 km upstream351

of the SPC4 site. The width of the flowband domain (Figure S11B) is a tunable parameter352

and is determined such that the model matches the measured surface velocities and surface353

elevations described below (Text S4.2). The ice flux and ice-surface elevation are specified354

at one point in the domain, which we chose to be near to the drill site.355

For this work, we calculate a steady-state flow field, rather than consider the transient356

response to time-varying forcing. A steady-state model is justified for three main reasons.357

First, the steady-state model provides a good fit to the observed depth-age relationship358

for the Holocene (Figure S12), where the flowline location and corresponding bed topog-359

raphy are well defined. The steady-state model also compares well with the ice advection360

estimated by Lilien et al. (2018) (Figure S13), which included a ∼15% speed up of sur-361
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face ice over the last 10 ka. Second, temporal variations in the accumulation rate have362

little impact on the cumulative thinning as a function of depth (e.g., Nye, 1963). We363

calculate the thinning as a function of depth and then convert to a function of age based364

on the SP19 timescale (Winski et al., 2019). Third, while accumulation-rate variations365

and other changes to the boundary conditions affect ice-particle-path trajectories, these366

inputs require knowledge of the flowline and bed topography, which are poorly known367

beyond 65 km upstream from SPC14. Without specification of where the ice flowed, we368

cannot determine these time-variable inputs, and a time-dependent model has limited369

value. Additionally, we find that a steady-state model satisfies our goal of evaluating the370

physical plausibility of the primary thinning function reconstruction.371

S4.2 Model Inputs372

Velocity, elevation, spatial pattern of accumulation rate, and flowline determination: Mea-373

surements of the surface velocity, surface elevation, and the determination of the flowline374

from these measurements are described in Lilien et al. (2018), with data available from375

the United States Antarctic Program Data Center (USAP-DC) at: https://www.usap-376

dc.org/view/project/p0000200. The surface velocity was measured at a network of stakes377

with 12.5 km spacing along the lines of longitude every 10° from 110° E to 180° E and378

out to a distance of 100 km from SPC14. The modern surface velocities were used to379

determine the modern flowline. The accumulation-rate pattern along the flowline (Figure380

S11A) was inferred using traced layers imaged with a 200 MHz radar. By comparing the381

measured layer thickness in SPC14 to the expected layer thickness due to advection of382

the upstream accumulation-rate pattern, the flowline was confidently determined for a383
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distance of 65 km upstream of SPC14, spanning the past 10.1 ka (Lilien et al., 2018). For384

ice older than 10 ka, we are uncertain what path the ice took.385

Bedrock topography: The bed topography along the domain of the flowline (from SPC14386

to the ice divide) is a necessary model input, and can be grouped into three sections387

based on the data available (Figure S11C). 1) From 0 to 65 km upstream of SPC14,388

we are confident that the ice flowed over the bedrock topography imaged with radar389

along the modern flowline. 2) For 65 km to 100 km upstream from SPC14, we use the390

bedrock topography measured along the modern flowline; however, we cannot be sure391

that ice reaching the SPC14 site flowed along this path. 3) From 100 km to a divide at392

approximately 190 km upstream, we have no information about the modern flowline, nor393

do we know the bed topography. However, we can obtain a plausible example of the bed394

topography from an airborne radar survey in this region.395

For the first and second sections, the bedrock topography along 100 km of the modern flow-396

line upstream of SPC14 was imaged with a ground-based, bistatic impulse radar with cen-397

ter frequency of 7 MHz (Figure S14). The radar system has been used widely in Antarctica398

(Gades et al., 2000; Neumann et al., 2008; Catania et al., 2010). The radar data and bed399

picks are posted at the USAP-DC at: https://www.usap-dc.org/view/project/p0000200.400

For the third section, to provide additional information about the spatial variability in the401

bed topography beyond 100 km, we use the PolarGAP airborne radar survey (Forsberg402

et al., 2017). Although PolarGAP data were collected along 135° E and 142.5° E (Figure403

S14), the data are publicly available as a gridded product. We interpolate the gridded404

data to extract the bed topography along the two flight lines. The bed topography along405
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our flowline and the two PolarGAP lines are shown in Figure S15. The three profiles track406

together well until about 70 km upstream of SPC14 where they diverge as the spacing407

between the lines increases. To obtain a model input for bed topography that produces408

thinning variations similar to the primary thinning function (recall that our goal is to409

evaluate whether these variations are physically plausible), we combine information from410

the two PolarGAP lines. We connect two points (green circles in Figures S15 and S16)411

that yield a flowline over a high in the bed topography. The orientation of this flowline is412

nearly perpendicular to the modern flowline, so the ice is unlikely to have flowed over it;413

however, this example illustrates that the magnitude of topographic variation required to414

match the structure of the primary thinning function does exist in the region.415

Ice temperature: An ice-temperature profile is specified using a 1-D thermal model fit to416

the measurements from the AMANDA and IceCube projects (Price et al., 2002), forced417

to reach the pressure melting point at the bed. This temperature profile is held constant418

in time and is scaled linearly as a function of ice thickness along the flowline to estimate419

the full temperature field in our model domain.420

Basal melt rate: We test two choices for basal melt rate to gain insight into the sensitivity421

of the thinning result to this parameter. With all other parameters taken to be the422

same, one case has no basal melt and one case has 1 cm a−1 of basal melt across the whole423

domain. A 1 cm a−1 melt rate is similar to the value inferred by Jordan et al. (2018) farther424

upstream of SPC14. The difference between the resulting thinning functions increases with425

depth, but differs by only 17% during the last 10,000 years of the core. For simplicity, we426

plot only the non-basal melt result in Figure 6 of the main text.427
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S4.3 Tuning the model428

The flux out the downstream edge of the domain was specified to obtain a velocity of429

10 m a−1 to match modern observations (Lilien et al., 2018). To approximately match the430

velocities measured at 12.5 km intervals out to a farthest distance of 100 km upstream431

(Figure S11E), the width of the flowband was increased with distance upstream (Fig-432

ure S11B). This represents convergent flow, as indicated for this region from the surface433

topography. The velocity measurements (Lilien et al., 2018) are not precise enough to al-434

low reliable convergence estimates, and we therefore assumed a linear change in flowband435

width for 100 km upstream. Beyond 100 km upstream, the flowband width continues436

to increase, at a different rate, such that the divide position is approximately 190 km437

upstream at an elevation of 3075 m, consistent with a likely ice origin at Titan Dome438

(Fudge et al., 2020).439

S4.4 Comparison with measured layers440

The modeled layers are shown in comparison to 7 internal layers imaged by radar (Figure441

S17). There is a good fit at the core site, which is also reflected in Figure S12, comparing442

the modeled depth-age profile and the measured data from SP19. The match to the radar443

layers is not nearly as good upstream where the amplitude of the modeled layers at the444

bedrock bump is less than what is observed in the measured layers. The discrepancy may445

be related to the greater uncertainty in the flowband model inputs farther upstream from446

SPC14.447

S4.5 Ice-flow-model thinning function448



X - 24 KAHLE ET AL.: INVERSE RECONSTRUCTION FROM SOUTH POLE ICE CORE

The ice-flow-model thinning function (Figure 6 in main text) is calculated from the mod-449

eled layer thickness at the core site divided by the original thickness (the accumulation450

rate) when that ice was deposited at the surface. The numerical calculation can become451

noisy due to the finite model mesh and the difficulty of establishing the accumulation rate452

at the point of origin given variations in the surface accumulation pattern. Therefore,453

we smooth the thinning function with a moving average over a depth interval of 50 m.454

The jaggedness of the thinning function is the most noticeable in the deepest layers where455

there are smaller depth differences for the same age interval. Because we have used a456

steady-state model, the modeled age for a given depth is too young for ages prior to the457

Holocene (since we do not account for the lower accumulation rates of the glacial pe-458

riod). Because the cumulative thinning as a function of depth is insensitive to temporal459

variations in accumulation (e.g., Nye, 1963), we convert modeled depth to age using the460

measured depth-age relationship (SP19; Winski et al. (2019)).461

The most prominent feature in the thinning function calculated for the Holocene period462

is at about 7 ka. The ∼7 ka layers have thinned less than the layers above, which we463

term a “reversal” in the thinning function; for example, Parrenin et al. (2004) noted464

such features for the Vostok ice core. For SPC14, reversals can occur because the strain465

thinning of layers is affected by changes in ice thickness along the flow line (Figure S18).466

As the ice flows from a bedrock high into a trough, the thickening of the ice column467

either reduces the vertical thinning or can even cause vertical thickening. Therefore, ice468

parcels reaching the ∼7 ka layer have thinned less than if the bedrock were flat because469

the ice column thickened. Ice parcels reaching younger layers, for example the 6 ka layer,470

have not experienced this thickening. As the ice flows out of this overdeepening, the rise471
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in bed topography causes thinning of the full ice column (i.e., both the 6 ka and 7 ka472

particles). For the bed topography along the flowline spanning the Holocene time period473

(from SPC14 to 65 km upstream), this bed overdeepening is the only feature that has a474

significant impact on the structure of the thinning function.475

Text S5. δ15N-based thinning function476

We use a thinning function estimated from measurements of δ15N in SPC14 for an ad-477

ditional comparison with the primary thinning function reconstruction described in the478

main text (Figure 6 in main text). Following Parrenin et al. (2012), the δ15N-based thin-479

ning function uses the diffusive column height as calculated from the δ15N measurements480

and the ∆depth as calculated from the ice age scale to determine how much thinning has481

occurred since that ice was at the surface (see main text Section 6.1).482

We calculate the DCH with (Parrenin et al., 2012):483

DCH(t) =
(
δ15N(t)− Ω(T )∆Tdiff

)(∆mg × 1000

RT (t)

)−1
, (19)

where Ω(T ) is the thermal diffusivity, Tdiff is the temperature difference between the top484

and bottom of the diffusive column, ∆m is the difference in molar mass between 15N and485

14N in kg mol−1, g is the gravitational acceleration (9.81 m s−2), R is the gas constant486

(8.314 J mol−1 K−1), and T (t) is the temperature history in K. We use the temperature487

reconstruction from the optimization in the main text to estimate the temperature history.488

The temperature difference in the firn is calculated using a 1-D ice-and-heat flow model489

(Fudge et al., 2019), also forced by the accumulation-rate reconstruction. The temperature490

dependence of the thermal diffusivity is from Grachev and Severinghaus (2003).491
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The ∆depth is conceptually similar to the ∆age except that it is the difference in depth in492

the core, rather than age, of the same climate event in the ice and gas phases. The ∆depth493

is found for each gas tie point used to develop the SP19 gas timescale (Epifanio et al.,494

2020). The depth of the ice of the same age is then found from the SP19 ice timescale495

(Winski et al., 2019).496

The δ15N-based thinning function (Γ) can be described:497

Γ(t) =
∆depth(t)∫ LID(t)

0
D(z, t)dz

=
∆depth(t)

LIDIE(t)
=

∆depth(t)

A× LID(t)
, (20)

where498

LID(t) = DCH(t) + CZ = DCH(t) + 3. (21)

D(z, t) is the density profile of the firn relative to density of ice at a given time, LID(t) is499

the lock-in depth, LIDIE(t) is the lock-in depth in ice equivalent, DCH(t) is the diffusive500

column height, and CZ is the thickness of the convective zone, which we set to 3 m (a501

typical value found in firn air pumping experiments).502

Parrenin et al. (2012) showed that the LID/LDIE ratio changes relatively little for different503

climate conditions at Dome C and thus we can use a constant factor to convert LID to504

LIDIE. We obtain a value of A=0.717 by integrating the SPC14 density profile (Winski505

et al., 2019) from the surface to a density of 824 kg m−3. In the following sections, we506

discuss the primary sources of uncertainty in the δ15N-based thinning function.507

S5.1 Uncertainties508
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We estimate the uncertainties in the calculation of this thinning function by calculating the509

change in the thinning function with a different input for the seven main parameters below510

(Figure S19). We choose values which we believe yield approximately 95% confidence (i.e.,511

2 standard deviation).512

Density and depth of firn column: Converting the LID to LIDIE has two primary un-513

certainties: uncertainty in the measured modern density profile and how much variation514

there is through time. We estimate the first using six firn cores, two at SPC14 and two515

near South Pole, as well as two at 50 km upstream (Lilien et al., 2018). We assume lock-in516

density at 824 kg m−3 with an uncertainty ±5 kg m−3. The conversion factor, A, to get517

LIDIE from LID is equivalent to the average density of the firn column relative to the518

density of ice, and hence is unitless. To estimate the uncertainty of this conversion factor519

A, we find a maximum difference of 0.015 among the six firn cores relative to measured520

value for SPC14.521

For the time-varying uncertainty in the conversion factor A, we use the pairs of temper-522

ature and accumulation rate for each time step found in the primary reconstruction to523

force a Herron-Langway densification model. We also allow the surface density to vary by524

±30 kg m−3 from the SPC14 surface density value. We find the largest difference from525

the modern SPC14 value to define an uncertainty of 0.023 (2 standard deviation).526

Convective zone impact on diffusive column height: The modern convective zone is 3 m527

and we assume the uncertainty is ±3 m.528

Vertical thinning of firn column due to ice flow: Separate from firn compaction, there529

is vertical thinning caused by the lateral stretching due to ice flow and the effectively530



X - 28 KAHLE ET AL.: INVERSE RECONSTRUCTION FROM SOUTH POLE ICE CORE

incompressible nature of ice under these conditions. Measurements of englacial vertical531

velocities have become possible with phase sensitive radars; however, separating the ver-532

tical thinning due to ice flow from the vertical compaction of the firn is not yet possible.533

Therefore, we approximate this vertical thinning assuming a uniform, ice-equivalent ver-534

tical strain rate (e.g., Nye, 1963). We develop the uncertainty by assuming either no535

vertical thinning or double our default vertical thinning.536

∆depth: We estimate the uncertainty of the ∆depth from the ∆age uncertainties devel-537

oped for the SP19 gas timescale (Epifanio et al., 2020). To find the uncertainty, we take538

the difference in depths that correspond to the maximum and minimum gas ages and539

divide it in half.540

Measurement uncertainty and variability: The DCH is calculated from the δ15N of N2 data541

using Equation 19. The uncertainty in determining the DCH depends on three things:542

1) the measurement uncertainty of the δ15N; 2) variability in how well the measurement543

represents the actual DCH; and 3) the uncertainty in interpolation from the closest mea-544

surement. The δ15N has been measured at 50- to 100-year resolution for much of the545

core, such that the interpolation distances are small. To jointly assess these measurement546

uncertainty and variability, we compared the DCH estimates of the three closest mea-547

surements. On average, the three measurements differed by slightly less than 2 m. The548

differences among the three measurements did not have a temporal trend, so we calculate549

the uncertainty with a constant 2 m uncertainty. This is the smallest uncertainty for most550

of the measurements.551
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Thermal fractionation: The thermal fractionation of δ15N is calculated using a 1-D ice-552

and-heat flow model (Fudge et al., 2019). The firn-density profile is assumed constant553

through time, with the temperature and accumulation-rate histories from the main re-554

construction presented here as the primary forcings. The thermal conductivity in the firn555

follows the Van Dusen formula (Cuffey and Paterson, 2010). The temperature difference is556

calculated from top and bottom of the diffusive column. The isothermal diffusive column557

height is used initially in the temperature difference calculation; a new diffusive column558

height is computed including thermal fractionation and the temperature difference is then559

recalculated. One iteration is sufficient to reach a stable diffusive column height. The560

amount of thermal fractionation increases in the glacial compared to the Holocene. This561

is driven by the lower glacial accumulation rates, which decrease the vertical advection in562

the firn column. Because the base of the firn column is warmer than the surface, warming563

will tend to mute the temperature gradient in the firn, while cooling will enhance the564

temperature gradient. Thus, the average temperature only weakly impacts the thermal565

fractionation, but the trend in the temperature history is important.566

Developing an uncertainty for the trend in the temperature history is not straightforward567

because it requires making assumptions about the magnitude of timing of temperature568

change on multi-centennial to millennial timescales. The difference between the main569

reconstruction and the scaled water isotopes (Figure 8 in the main text) illustrates the570

uncertainty in these higher frequency trends. Therefore, we seek a simple approximation to571

capture the main features of the uncertainty to allow comparison with the other sources of572

uncertainty in determining the thinning function. We assume an uncertainty in the glacial573

period of 3 m, which is half the maximum impact of including thermal fractionation. To574
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reflect the lower uncertainty due to increasing accumulation rates during the transition575

into the Holocene, we linearly decrease the uncertainty to 1.5 m from 20 ka to 12 ka,576

where it is then constant through the present.577

S5.2 Total uncertainty on thinning function578

To calculate the total uncertainty on the δ15N-based thinning function, we combine the579

uncertainty calculated for each of the seven terms above. The uncertainties for each term580

are shown in Figure S19. We combine the six sources of uncertainty in quadrature to find581

the total uncertainty. For glacial-aged ice, the dominant uncertainty is that for ∆depth.582

This is driven by the larger uncertainty in ∆age primarily due to the larger ∆age at583

WAIS Divide during the glacial. During the Holocene, all of the terms are more similar584

in magnitude, but the uncertainty due to temporal variations in the density profile is the585

largest. Our use of a uniform value (.023) for temporal density for the full record is likely586

too simplistic, and perhaps too conservative, since the uncertainty is based on glacial587

values which differ from modern value far more than the Holocene values.588
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Figure S1: Impact of corrections applied to diffusion-length measurements. Dashed curves
show the effective diffusion length resulting from the continuous-flow system (CFA, red),
and from diffusion in solid ice (blue). Solid curves show diffusion lengths obtained from
the water-isotope data before (black) and after correction for the CFA (red) and solid-ice
diffusion (blue).
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Figure S2: Close-off age as a function of age for a collection of models from the Community
Firn Model framework (HLD = Herron and Langway (1980), GOU = Goujon et al. (2003),
Li = Li and Zwally (2015), LIG = Ligtenberg et al. (2011), SIM = Simonsen et al. (2013)).
The grey shading shows the ∆age data and two s.d. uncertainty.
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Figure S3: Results of inverse procedure using three different firn models. Grey, blue, and
red shading show two s.d. results for Herron and Langway (1980) (HLA), Goujon et al.
(2003) (GOU), and Ligtenberg et al. (2011) (LIG), respectively.
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Figure S4: Glacial-interglacial temperature change from the inverse framework with three
different firn models. Mean and one s.d. are shown for Herron and Langway (1980)
(HLA), Goujon et al. (2003) (GOU), and Ligtenberg et al. (2011) (LIG). The temperature
difference is calculated on the intervals defined in the main text: present = 500-2500 years;
glacial = 19500-22500 years. The temperature reconstructions have been corrected for ice
advection from upstream, resulting in a temperature change estimate for the South Pole
site.
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Figure S5: Results of the null test to recover the a priori distribution. In the upper two
panels, for which model bounds are defined, two standard deviations of the a posteriori
distribution (grey shading) approximately fill the bounded space (dashed magenta lines),
and the mean of the distribution (black curve) is approximately the mean of the bounds.
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Figure S6: Analysis of the sensitivity of the a posteriori distribution to information in each
data set. Each color shows the a posteriori distribution mean for a different sensitivity
test. We compare the results when ∆age is excluded (purple), when diffusion length is
excluded (blue), when layer thickness is excluded (green), and when all data sets are
included (black). Magenta curves in the left panels show a priori information and red
curves in the right panels show ice-core data and uncertainties.
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Figure S7: Analysis of the sensitivity of temperature to information in each data set.
Colors are defined as in Figure S6. The results of the 1-parameter suite are shown on
the left and of the 2-parameter suite on the right. The upper row shows the result
when accumulation rate is allowed to vary, and the lower row shows the result when
accumulation rate is held at the prescribed values.
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Figure S8: Analysis of sensitivity to the temperature dependence within the water-isotope
diffusion model. Grey shading shows the main inverse result as a control test. Blue shading
shows the results from holding the temperature history constant within the water-isotope
diffusion model, only allowing the diffusion-length data to impact the thinning function.
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Figure S9: Comparison of diffusive column height (DCH), shown as two s.d. for each
source. Grey shading shows the DCH as modeled by the temperature and accumulation
rate solutions accepted in the main reconstruction. The black outline shows the DCH
as calculated from the δ15N data. Red shading shows the δ15N-constrained DCH, recon-
structed from the temperature and accumulation-rate histories shown in Figure 5 in the
main text.
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Table S1: Sensitivity of the relationship between water isotopes and temperature. Cali-
brated slopes are given for the relationship between water isotopes and temperature from
five different temperature reconstructions: the main inverse result, the results from using
the GOU and LIG firn models instead of HLA, and the results from using the constraints
of the δ15N and ∆age data sets. The correlation coefficient r is given for the relationship
between the water-isotope record and each temperature reconstruction.

Reconstruction Slope (h°C−1) r

Main 0.99 0.94

GOU 0.97 0.94

LIG 1.10 0.90

δ15N 1.28 0.84

δ15N & ∆age 1.14 0.86
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Figure S10: Comparison of primary thinning reconstruction (grey band shows two s.d.
uncertainty), the 1-D Dansgaard-Johnsen model output (red) plotted against depth, and
the thinning estimate from the 2.5-D ice flow model (black). As in Figure 6 in the main
text, the dashed black line shows the depths at which the upstream bed topography is
unknown. The reconstruction shows considerably more high-frequency variability. Note
that the reconstruction band collapses to a line at the upper depth points due to an
imposed constraint of a priori information to limit variability in the uppermost part of
the thinning function.



KAHLE ET AL.: 0 X - 49

Figure S11: Flowband model inputs (A-C) and model fits to measured data (D-E). A)
Modern accumulation-rate pattern for 100 km upstream of SPC14 site inferred from the
available shallow radar measurements (Lilien et al., 2018; Fudge et al., 2020). B) Normal-
ized width function used to fit measured surface velocities in panel E. C) Bed topography
was measured from 0 to 100 km. Beyond 100 km, the bed topography used in the model is
determined as discussed in Text S4.2. D) Measured (black) and modeled surface elevation
(blue). The small black “x” at 190 km marks the approximate position and elevation of
Titan Dome relative to SPC14. E) Measured (black circles) and modeled surface velocities
(blue).
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Figure S12: Comparison between modeled and measured depth-age relationship. The
depth-age relationship from the steady-state models compare well to SP19 (Winski et al.,
2019) for the Holocene. The divergence in the modeled values compared to SP19 values
below approximately 900 m depth is due to the decrease in accumulation rate at older
ages that we do not simulate with the steady-state model.
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Figure S13: The origin location of ice parcels in 1 ka increments are shown in red squares
for the reconstruction of Lilien et al. (2018) and the flowband model used in this study
(blue dots). The blue lines are the modeled ice parcel paths. The black vertical line at
1 km represents the 1751 m deep SPC14.
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Figure S14: Radar profile along 100 km of the modern flowline upstream of SPC14 (see
map, Figure S16). The data were imaged using a ground-based, bistatic impulse radar
with center frequency of 7 MHz. The transmitter and receiver were towed inline behind
a skidoo; each record consists of 1024 stacked waveforms and records were located using
GPS. Reflection positions, measured as a function of radar two-way travel time, were
converted to depth below the surface using a wave speed of 168.5 m µs−1 in ice and
300 m µs−1 in air. Wave speed in the firn was calculated using the density profile from
SPC14 and a mixing equation (Looyenga, 1965) to estimate the depth profile of the
dielectric constant. Solid black curves show the surface and bed elevations (m above sea
level (asl)). Note that the SPC14 site is about 40 m below sea level. Blue curves are
radar-detected internal layers (isochrones) that were dated using the SPC14 timescale.
Layer ages with increasing depth are: 1020, 1900, 5070, 6510, 8070, 9690, and 11770
years.
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Figure S15: Profiles of bed topography upstream of the SPC14 site. Black is the bedrock
measured along the modern flowline. Red is along 142.5° E and blue is along 135° E from
the PolarGAP survey. Green circles mark the two points that we use to define a plausible
bed feature to explain the thinning function for older ages (circles correspond to Figure
S16).
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Figure S16: Map view of bed topography near SPC14. Black shows measured flowline.
Red is along 142.5° E and blue is along 135° E from the PolarGAP survey. Green line
shows the transect between PolarGAP lines used to guide the bed topographic feature
beyond 100 km in the ice-flow modeling (circles correspond to Figure S15).
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Figure S17: Comparison between modeled and measured internal layers in the flowband
domain. Measured layers are shown in Figure S14. A) Observed (black) and modeled
with no melt (blue) and 1 cm a−1 melt (orange) internal layers. Observed layer ages are
labeled. B) Percent misfit of layer depths for the “no melt” model. C) Percent misfit of
layer depths for the “1 cm a−1 melt” model.
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Figure S18: Illustration of the development of a reversal in the thinning function. A)
Modeled particle paths with ice thickness (and corresponding bed elevation) at particle
origin marked. Age of the red particle is ∼7 ka and age of the blue particle is ∼6 ka.
Purple vertical line at the far left side is ice-core location and the depth of the core
shows the depth range plotted in B. B) Modeled thinning function showing the reversal in
thinning due to thickening of the ice sheet which the red particle experienced by the blue
particle did not. The jaggedness of the thinning function is due to numerical challenges
in the particle tracking.
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Figure S19: Uncertainty representing two standard deviations for the inferred thinning
function from seven main sources described in Text S5.1.


