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Introduction This supporting information document provides further details on the10

methods and analysis described in the main text. We include information about:11

S1. Diffusion-length data and modeling12

S2. Inverse methods13

S3. Sensitivity tests14

S4. Ice-flow modeling15

S5. δ15N-based thinning function16
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Text S1. Diffusion-length data and modeling17

S1.1 Corrections to diffusion-length data18

We make two corrections to the estimates of diffusion length calculated from the spectra19

of the water-isotope data.20

First, we correct for the effect on the water-isotope data from the continuous-flow-analysis21

(CFA) measurement system. As melted ice samples are transported through the tubing22

and reservoirs of the CFA system, some smoothing of the high-frequencies of the natural23

water-isotope variations occurs. This smoothing is minimized by design of the components24

of the CFA-system, but still impacts the measured signal. The extent of this system25

smoothing can be quantified by measuring the system response to a step change in isotopic26

value using laboratory-produced ice (Jones et al., 2017b). The system diffusion length for27

the CFA system used in this analysis is 0.07 cm for δ17O and δ18O, and 0.08 cm for δD28

(Jones et al., 2017b).29

Second, we correct for the additional diffusion that occurred in the solid ice below the30

bottom of the firn, following Gkinis et al. (2014). To calculate the solid-ice diffusion length,31

we assume the modern borehole temperature profile T (z) remains constant through time32

to find the diffusivity profile Dice(z), following Gkinis et al. (2014):33

Dice(z) = 9.2× 10−4 × exp

(
−7186

T (z)

)
, (1)

with T (z) given in K and Dice(z) given in m2 s−1. For T (z) at SPC14, we use borehole34

temperature measurements from the nearby neutrino observatory (Price et al., 2002).35
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The solid-ice diffusion length is also affected by vertical strain in the ice sheet. We assume36

a simple thinning function from a 1-D ice-flow model (Dansgaard and Johnsen, 1969) with37

a kink-height h0 = 0.2 for this calculation. We describe the total thinning experienced by38

a layer S(t) in a given time interval t = 0 to t = t′ as:39

S(t′) = exp

(∫ t′

0

ε̇z(t)dt

)
, (2)

where ε̇z(t) is the vertical strain rate calculated from the thinning function.40

The solid-ice diffusion length, σice, is then calculated as (Gkinis et al., 2014):41

σ2
ice(t

′) = S(t′)2
∫ −t
0

2Dice(t)S(t)−2dt. (3)

To produce the corrected diffusion-length data set used in this analysis, we subtract in42

quadrature both the system diffusion length, σCFA, and the solid-ice diffusion length,43

σsolid, from the total measured diffusion length, σmeas:44

σ2 = σ2
meas − σ2

CFA − σ2
solid. (4)

The diffusion length σ represents the diffusion that occurred within the firn column and45

that has experienced the effects of vertical strain in the ice sheet (i.e. σ = S(z)σfirn).46

Figure S1 shows the effect of these corrections on the estimated diffusion length.47

S1.2 Modeling firn diffusion length48

Within the forward model of the inverse problem, we model diffusion length in the firn49

column. We use the following values in calculating the diffusivity coefficients, Dx, for each50

water-isotope ratio:51
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Dair
δ18O =

Dair

1.0285
(Johnsen et al., 2000)

Dair
δ17O =

Dair

1.01466
(Luz and Barkan, 2010)

Dair
δD =

Dair

1.0251
(Johnsen et al., 2000)

where:52

Dair = 0.211× 10−4 ×
(

T

273.15

)1.94

× P0

P
(Johnsen et al., 2000)

is the diffusivity of water vapor in air. T is temperature given in Kelvin and P is the53

atmospheric pressure compared to a reference pressure of P0 = 1 atm.54

We use the following values in calculating the fractionation factors, αx, for each water-55

isotope ratio, for the equilibrium of water vapor over ice:56

α18 = exp(
11.839

T
− 28.224× 10−3) (Majoube, 1970)

α17 = exp(0.529× log(α18)) (Barkan and Luz, 2007)

αD = exp(−0.0559 +
13525

T 2
) (Lamb et al., 2017)

The tortuosity parameter τ used in Equation 5 in the main text is given by (Schwander57

et al., 1988; Johnsen et al., 2000):58
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1

τ
=

1− b×
(

ρ
ρice

)2
, for ρ ≤ ρice√

b

0 , for ρ > ρice√
b

using a tortuosity parameter b = 1.3.59

The solution to Equation 4 in the main text for the isotope profile at a given depth z and

time t is given by:

δ(z, t) = S(t)
1

σ
√

2π

∫ ∞
−∞

δ(z, 0) exp

(
−(z − u)2

2σ2

)
du, (5)

as described in (Gkinis et al., 2014) and fully derived in Kahle et al. (2020), where σ is60

the diffusion length and the factor S(t) is the total thinning a layer has experienced due61

to ice flow, as described in Equation 2 of this supplement.62

Text S2. Inverse methods63

The statistical inverse method used in this work relates the three variables that span the64

model space with the three data variables that span the data space. We define the model65

space as a vector space with a dimension for each of the unknown input parameters; a66

particular point in the model space represents a specific set of input parameters m. The67

data space is defined similarly, where each data parameter in d represents a dimension,68

and our observations dobs exist at a particular point in the data space. Because the data69

have measurement uncertainties, the “true” values in the data space may differ from dobs.70

Because we have three model parameters across 208 depth points (624 total unknown71

parameters), our problem spans a high dimensional model space, and an exhaustive search72

of all possible solutions m is not practical. We limit the number of instances of m to73
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evaluate by using an importance-sampling algorithm. We use a Markov Chain Monte74

Carlo algorithm to combine a priori information about which solutions m are plausible75

for realistic ice-sheet conditions and information from our data sets. This algorithm76

efficiently explores the parameter space by favoring instances of m that are similar to77

those that have already produced good fits with the observations dobs.78

In this section, we describe the theoretical framework and the practical implementation79

of the inverse approach we use. In general, the solution of this type of inverse problem80

depends on the formulation of the problem, including what information is included in the81

constraints and how the output is analyzed. We detail below each of the choices that we82

make in our approach.83

S2.1 Bayesian framework84

We use a statistical Bayesian framework to solve this inverse problem. Rather than seek a85

single best-fit solution, we consider the likelihood of different solutions based on probabil-86

ity distributions within the parameter spaces of the data and the model. This framework87

combines a priori model parameter information with data measurement uncertainties.88

Unlike a regularization approach, such as Tikhonov regularization, a Bayesian approach89

does not require a subjective choice about how well the final set of solutions should fit90

the data (Tarantola, 1987; Steen-Larsen et al., 2010).91

We characterize the a priori information describing the model inputs m as a probability92

distribution in the model space. This distribution, denoted as ρm(m), represents the93

likelihood of solutions m based on data-independent prior knowledge about what values94

are realistic for that particular parameter (Mosegaard and Tarantola, 1995; Mosegaard95
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and Sambridge, 2002). To produce the complete solution to the problem, the a priori96

information is combined with the likelihood function, which describes how well the output97

d from a given solution matches our observations dobs. The likelihood function L(m) is98

defined as (Mosegaard and Tarantola, 1995):99

L(m) = CL exp(−M(m)), (6)

where CL is a normalization constant and M(m) is a misfit function that measures the100

deviation between d and dobs.101

The likelihood function L(m) is combined with the a priori distribution ρm(m) to define102

the a posteriori distribution f(m) (Tarantola, 1987):103

f(m) = CfL(m)ρm(m). (7)

The a posteriori distribution f(m) contains all the information we have to constrain104

the inverse problem and thus represents its complete solution. The region of maximum105

values of f(m) denote the most likely solutions to the problem. This distribution may be106

Gaussian-like and simple to interpret, or may be multi-modal and require a more complex107

interpretation. We cannot produce this a posteriori distribution analytically, but we can108

sample its values at discrete points. For each solution m that we test in our forward model109

G, we calculate a discrete value of f(m).110

S2.2 Sampling strategy111

Our sampling strategy uses an algorithm to determine which solutions m to test, with112

the goal of producing f(m) after sufficient iterations (Mosegaard and Tarantola, 1995).113

The algorithm explores the model space by randomly stepping from one solution mi to114
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a neighbor mj. In each iteration, the algorithm follows two stages, designed such that it115

asymptotically produces f(m) (Mosegaard, 1998; Mosegaard and Sambridge, 2002).116

First, an exploration stage defines how the algorithm selects a proposal for mj given its117

starting place at mi. The selection depends on how far in model space the algorithm118

is allowed to step in a single iteration. While the magnitude and direction of the step119

are determined randomly, the magnitude is scaled by a base step-size. The choice of120

base step-size balances the exploration of more of the model space (larger steps) with the121

exploration of regions that result in high values of f(m) (smaller steps). In practice, we122

must tune the step size in order to strike this balance (e.g. Steen-Larsen et al. (2010)).123

Second, an exploitation stage defines the transition probability that the proposed step124

with be accepted. If the proposed step is rejected, the current solution mi is repeated for125

an additional iteration. The simplest choice for the transition probability is the Metropolis126

acceptance probability (Metropolis et al., 1953; Mosegaard, 1998; Mosegaard and Sam-127

bridge, 2002):128

paccept = min

(
1,
f(mj)

f(mi)

)
. (8)

This formulation will always accept the proposed step to mj if the a posteriori distribution129

is greater at that point (f(mj) > f(mi)), but may still accept the proposed step even if130

the a posteriori distribution is smaller at that point (f(mj) < f(mi)) by a probability131

proportional to
f(mj)

f(mi)
. This design prevents the algorithm from getting stuck at a local132

maximum of f(m), while still favoring samples from regions of the model space with a133

relatively high value of f(m).134
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After sufficient iterations, the sampling of this algorithm will converge on f(m). The135

number of iterations required for convergence, the convergence time, depends on the base136

step-size chosen. Step size is tuned to minimize the number of iterations required while137

appropriately sampling the model space. Related to the convergence time is the burn-in138

time, which refers to the number of iterations completed before the sampled values of139

f(m) become relatively stationary. After this point, the algorithm continues to sample140

only highly likely solutions m. Prior work has found that after the burn-in time, the141

acceptance rate of the algorithm should be 25-50% (Gelman et al., 1996) in order to strike142

a balance between exploration (bigger steps) and efficiency (smaller steps).143

S2.3 Implementation of sampling144

To sample and estimate the a posteriori distribution, we implement the theory described145

above. We initiate the problem with our initial guess m1 for each parameter and begin146

evaluating successive solutions from that point. Our sampling strategy uses Equation 8147

and the associated ideas about sampling efficiency.148

In the exploration stage of the algorithm, rather than perturb only one parameter within149

mi at a time, all 624 parameters (i.e. values at each depth point for temperature, accumu-150

lation rate, and thinning function) are perturbed in each iteration. This design improves151

the efficiency of the algorithm. Each perturbation is constructed with the same low-152

frequency, red-noise slope in its power spectral density as that of a comparison data set.153

The comparison data set for temperature is the water-isotope record, for accumulation154

rate is a destrained version of the annual-layer thicknesses, and for the thinning function155

is a DJ-model output. Because in reality we expect temperature, accumulation rate, and156
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thinning to vary smoothly through time, each proposed perturbation must vary smoothly157

as well. Furthermore, the ∆age and diffusion-length data sets are inherently smooth be-158

cause they integrate information over the depth of the firn column. To prevent spurious159

high-frequency noise from being introduced into the proposed solution m, we apply a160

low-pass filter to the perturbation. To the temperature and accumulation-rate perturba-161

tions, we apply a lowpass filter at a 3000-year period, which corresponds to the maximum162

value of ∆age. We apply a lowpass filter at a 10,000-year period to the thinning-function163

perturbations because we expect the thinning function to be even smoother. The pertur-164

bations are then added to the previous accepted solution to generate the next proposed165

solution.166

In the exploitation stage, the algorithm determines whether to accept the proposed solu-167

tion mi+1 by calculating and comparing the values of the a posteriori distribution at mi168

and mi+1. Equation 7 describes how the a posteriori distribution is calculated from the169

likelihood function L(m) and the a priori distribution ρ(m). Because we have already in-170

corporated our prior knowledge directly into the model space bounds, we simply compare171

the value of the likelihood function evaluated at mi and mi+1 (Mosegaard, 1998):172

paccept = min

(
1,
L(mi+1)

L(mi)

)
. (9)

We define the likelihood function, as in Equation 6, with a misfit function M(m) defined173

as (Khan et al., 2000; Mosegaard and Sambridge, 2002):174

M(m) =
∑
n

∣∣∣d(n)(m)− d(n)obs

∣∣∣
σn

, (10)
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where d(n)(m) denotes the modeled output, d
(n)
obs the observation, and σn the standard devi-175

ation of the observation for the nth datum. This misfit function minimizes the importance176

of outliers, compared to a root-mean-square formulation.177

We run the algorithm until we have 100,000 accepted samples of the a posteriori distribu-178

tion. With an acceptance rate of 30-40%, this requires approximately 300,000 iterations179

in total. The burn-in time is reached after approximately 10,000 iterations, and we con-180

sider solutions m only after this point. We repeat this process five times to account for181

any persistent impacts from early perturbations, combining all accepted solutions after182

the burn-in time to create the final set of results. Because only a small perturbation is183

made between iterations, successive iterations are correlated. Analysis of the a posteriori184

distribution requires a collection of statistically independent models, so we consider only185

a subset of all accepted models (Mosegaard, 1998; Dahl-Jensen et al., 1998). Through an186

autocorrelation analysis of the accepted models, we conclude that saving every 300th solu-187

tion produces a statistically independent set. Out of a total of 500,000 accepted solutions,188

1500 solutions are included in our analysis of the a posteriori distribution.189

Text S3. Sensitivity tests190

To determine the extent to which each of our three data sets affects the results, we191

tested our approach by excluding different combinations of the data sets. We used the192

same inverse framework as before, but took into account only how well the output d193

matches the data observations dobs for the data sets included in that test. Excluding all194

data sets evaluates the effect of the perturbation construction by resampling the a priori195

distribution (Mosegaard and Tarantola, 2002). Figure S2 illustrates that this null test, in196
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which there are no constraints from the data, successfully recovers the prior; the mean197

of the a priori distribution is approximately the mean of the bounded model space. This198

result shows that no spurious information is produced by the sampling procedure.199

Building up from the null test, we tested two suites of three runs each to evaluate the200

sensitivity of results to each of the data sets. The first suite includes only one data set201

at a time, and the second suite includes two data sets at a time. The results from both202

suites are similar, and we show here only the results from the second. Figure S3 shows203

the mean solution from each run of the second suite: excluding ∆age (purple), excluding204

diffusion length (blue), and excluding layer thickness (green), compared alongside the205

full results including all parameters (black). The right three panels show the effect on206

the fit of the data parameters, producing, as expected, the worst fit to each data set207

when that information is excluded from the problem. The left three panels of Figure S3208

show how the exclusion of each data set impacts the mean of each set of solutions. The209

result for the thinning function suggests that, from 40 - 54 ka, the diffusion-length record210

pulls the thinning function to greater values (less thinning), while the layer thickness211

pulls the thinning function to smaller values (more thinning). The accumulation-rate212

reconstruction is most sensitive to diffusion length and layer thickness. The temperature213

reconstruction is not sensitive to any particular parameter from 0 - 20 ka, but beyond 20214

ka, the temperature reconstruction is sensitive to all three datasets.215

Text S4. Ice-flow modeling216

We use a 2.5-D flowband ice-flow model to estimate a thinning function for SPC14 to217

compare with the primary thinning function reconstruction described in the main text.218
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This ice-flow-model thinning function is constrained by data for ages younger than 10 ka,219

producing an independent data-based estimate of ice thinning. Beyond 10 ka, we do not220

have sufficient knowledge of past ice flow direction and the associated bed topography221

along that flow path in order to fully constrain the model. For the older ice, the goal222

with the ice-flow-model thinning function is to determine if the structure in the primary223

thinning function is physically plausible. To this end, our flowband modeling suggests224

that variations in the primary thinning function can indeed be explained by observed225

variations in bedrock topography.226

S4.1 Flowband model227

The flowband model was developed to calculate the time-dependent ice-surface evolution228

and velocity distribution along a flowline in the ice-sheet interior. The model has been229

described in Koutnik et al. (2016) where it was applied near the WAIS Divide ice-core230

site. The model calculates the ice-flow field using the Shallow Ice Approximation, which231

is appropriate for relatively slow-flowing interior ice that is not beneath an ice divide.232

Necessary boundary conditions and initial inputs to the model include the bed topography,233

accumulation rate, and ice temperature along the flowline, as well as the ice flux and ice-234

sheet thickness at one location.235

The flow field described by the model is defined within a flowband domain extending 200236

km along the flow line. The downstream edge of the domain is located 10 km from the237

SPC14 site; the upstream edge marks the location of the ice divide, 190 km upstream238

of the SPC4 site. The width of the flowband domain is a tunable parameter and is239

determined such that the model matches the measured surface velocities and surface240
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elevations described below (Text S4.2). The ice flux and ice-surface elevation are specified241

at one point in the domain, which we chose to be near to the drill site.242

For this work, we calculate a steady-state flow field, rather than consider the transient243

response to time-varying forcing. A steady-state model is justified for three main reasons.244

First, the steady-state model provides a good fit to the observed depth-age relationship for245

the Holocene (Figure S9), where the flowline location and corresponding bed topography246

are well defined. Second, temporal variations in the accumulation rate have little impact247

on the cumulative thinning as a function of depth (e.g. Nye, 1963). We calculate the248

thinning as a function of depth and then convert to a function of age based on the249

SP19 timescale (Winski et al., 2019). Third, while accumulation-rate variations and250

other changes to the boundary conditions affect ice-particle-path trajectories, these inputs251

require knowledge of the flowline and bed topography, which are poorly known beyond252

65 km upstream from SPC14. Without specification of where the ice flowed, we cannot253

determine these time-variable inputs, and a time-dependent model has limited value.254

Additionally, we find that a steady-state model satisfies our goal of evaluating the physical255

plausibility of the primary thinning function reconstruction.256

S4.2 Model Inputs257

Velocity, elevation, spatial pattern of accumulation rate, and flowline determination: Mea-258

surements of the surface velocity, surface elevation, and the determination of the flowline259

from these measurements are described in Lilien et al. (2018), with data available from260

the United States Antarctic Program Data Center (USAP-DC) at: https://www.usap-261

dc.org/view/project/p0000200. The surface velocity was measured at a network of stakes262
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with 12.5 km spacing along the lines of longitude every 10° from 110°E to 180°E and out to263

a distance of 100 km from SPC14. The modern surface velocities were used to determine264

the modern flowline. The accumulation-rate pattern along the flowline (Figure S4a) was265

inferred using traced layers imaged with a 200 MHz radar. By comparing the measured266

layer thickness in SPC14 to the expected layer thickness due to advection of the upstream267

accumulation-rate pattern, the flowline was confidently determined for a distance of 65268

km upstream of SPC14, spanning the past 10.1 ka (Lilien et al., 2018). For ice older than269

10 ka, we are uncertain what path the ice took.270

Bedrock topography: The bed topography along the domain of the flowline (from SPC14271

to the ice divide) is a necessary model input, and can be grouped into three sections based272

on the data available. 1) From 0 to 65 km upstream of SPC14, we are confident that the273

ice flowed over the bedrock topography imaged with radar along the modern flowline. 2)274

For 65 km to 100 km upstream from SPC14, we use the bedrock topography measured275

along the modern flowline; however, we cannot be sure that ice reaching the SPC14 site276

flowed along this path. 3) From 100 km to a divide at approximately 190 km upstream,277

we have no information about the modern flowline, nor do we know the bed topography.278

However, we can obtain a plausible example of the bed topography from an airborne radar279

survey in this region.280

For the first and second sections, the bedrock topography along 100 km of the modern flow-281

line upstream of SPC14 was imaged with a ground-based, bistatic impulse radar with cen-282

ter frequency of 7 MHz (Figure S5). The radar system has been used widely in Antarctica283

(Gades et al., 2000; Neumann et al., 2008; Catania et al., 2010). The radar data and bed284

picks are posted at the USAP-DC at: https://www.usap-dc.org/view/project/p0000200.285
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For the third section, to provide additional information about the spatial variability in the286

bed topography beyond 100 km, we use the PolarGAP airborne radar survey (Forsberg287

et al., 2017). Although PolarGAP data were collected along 135°E and 142.5°E (Figure288

S5), the data are publicly available as a gridded product. We interpolate the gridded data289

to extract the bed topography along the two flight lines. The bed topography along our290

flowline and the two PolarGAP lines are shown in Figure S6. The three profiles track291

together well until about 70 km upstream of SPC14 where they diverge as the spacing292

between the lines increases. To obtain a model input for bed topography that produces293

thinning variations similar to the primary thinning function (recall that our goal is to294

evaluate whether these variations are physically plausible), we combine information from295

the two PolarGAP lines. We connect two points (green circles in Figures S6 and S7) that296

yield a flowline over a high in the bed topography. The orientation of this flowline is297

nearly perpendicular to the modern flowline, so the ice is unlikely to have flowed over it;298

however, this example illustrates that the magnitude of topographic variation required to299

match the structure of the primary thinning function does exist in the region.300

Ice temperature: An ice-temperature profile is specified using a 1-D thermal model fit to301

the measurements from the AMANDA and IceCube projects (Price et al., 2002), forced302

to reach the pressure melting point at the bed. This temperature profile is held constant303

in time and is scaled linearly as a function of ice thickness along the flowline to estimate304

the full temperature field in our model domain.305

Basal melt rate: We test two choices for basal melt rate to gain insight into the sensitivity306

of the thinning result to this parameter. With all other parameters taken to be the307

same, one case has no basal melt and one case has 1 cm yr−1 of basal melt across the308
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whole domain. A 1 cm yr−1 melt rate is similar to the value inferred by Jordan et al.309

(2018) farther upstream of SPC14. The difference between the resulting thinning functions310

increases with depth, but varies only by 17% during the last 10,000 years of the core. For311

simplicity, we plot only the non-basal melt result in Figure 5 of the main text.312

S4.3 Tuning the model313

We tune the flowband width function and the ice flux out of the downstream edge of the314

domain in order to approximately match the modern surface velocity, surface elevation,315

and the approximate divide location (Figure S4). To match the surface velocities where316

measurements are available, the flowband must narrow from the divide to the core site,317

consistent with the convergent flow observed in this region. The modeled divide location318

is 190 km upstream of SPC14 at 3075 m elevation, which matches the likely origin at319

Titan Dome (Fudge et al., 2020).320

S4.4 Comparison with measured layers321

The modeled layers are shown in comparison to 7 internal layers imaged by radar (Figure322

S8). There is a good fit at the core site, which is also reflected in Figure S9, comparing323

the modeled depth-age profile and the measured data from SP19. The match to the radar324

layers is not nearly as good upstream where the amplitude of the modeled layers at the325

bedrock bump is less than what is observed in the measured layers. The discrepancy may326

be related to the greater uncertainty in the flowband model inputs farther upstream from327

SPC14.328

S4.5 Ice-flow-model thinning function329
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The ice-flow-model thinning function (Figure 5 in main text) is calculated from the mod-330

eled layer thickness at the core site divided by the original thickness (the accumulation331

rate) when that ice was deposited at the surface. The numerical calculation can become332

noisy due to the finite model mesh and the difficulty of establishing the accumulation333

rate at the point of origin given variations in the surface accumulation pattern. There-334

fore, we smooth the thinning function with a moving average over a depth interval of 50335

m. The jaggedness of the thinning function is the most noticeable in the deepest layers336

where there are smaller depth differences for the same age interval. Because we have used337

a steady-state model, the modeled age for a given depth is too young for ages prior to338

the Holocene (since we do not account for the lower accumulation rates of the glacial339

period). Because the cumulative thinning as a function of depth is insensitive to temporal340

variations in accumulation (e.g. Nye, 1963), we convert modeled depth to age using the341

measured depth-age relationship (SP19; Winski et al. (2019)).342

The most prominent feature in the thinning function calculated for the Holocene period343

is at about 7 ka. The ∼7 ka layers have thinned less than the layers above, which we344

term a “reversal” in the thinning function; for example, Parrenin et al. (2004) noted345

such features for the Vostok ice core. For SPC14, reversals can occur because the strain346

thinning of layers is affected by changes in ice thickness along the flow line (Figure S10).347

As the ice flows from a bedrock high into a trough, the thickening of the ice column348

either reduces the vertical thinning or can even cause vertical thickening. Therefore, ice349

parcels reaching the ∼7 ka layer have thinned less than if the bedrock were flat because350

the ice column thickened. Ice parcels reaching younger layers, for example the 6 ka layer,351

have not experienced this thickening. As the ice flows out of this overdeepening, the rise352
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in bed topography causes thinning of the full ice column (e.g. both the 6 ka and 7 ka353

particles). For the bed topography along the flowline spanning the Holocene time period354

(from SPC14 to 65 km upstream), this bed overdeepening is the only feature that has a355

significant impact on the structure of the thinning function.356

Text S5. δ15N-based thinning function357

We use a thinning function estimated from measurements of δ15N in SPC14 for an ad-358

ditional comparison with the primary thinning function reconstruction described in the359

main text (Figure 5 in main text). Following Parrenin et al. (2012), the δ15N-based thin-360

ning function uses the diffusive column height as calculated from the δ15N measurements361

and the ∆depth as calculated from the ice age scale to determine how much thinning has362

occurred since that ice was at the surface (see main text Section 6.1).363

We calculate the DCH with (Parrenin et al., 2012):364

DCH(t) = δ15N(t)

(
∆mg × 1000

RT (t)

)−1
, (11)

where ∆m is the difference in molar mass between 15N and 14N in kg mol−1, g is the365

gravitational acceleration (9.81 m s−2), R is the gas constant (8.314 J mol−1 K−1), and366

T (t) is the temperature history in K. We use the temperature reconstruction from the367

optimization in the main text to estimate the temperature history.368

The ∆depth is similar to the ∆age except that it is the difference in depth in the core,369

rather than age, of the same climate event in the ice and gas phases. The ∆depth is found370

for each gas tie point used to develop the SP19 gas timescale (Epifanio et al., 2020). The371
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depth of the ice of the same age is then found from the SP19 ice timescale (Winski et al.,372

2019).373

The δ15N-based thinning function (Γ) can be described:374

Γ(t) =
∆depth(t)∫ LID(t)

0
D(z, t)dz

=
∆depth(t)

LIDIE(t)
=

∆depth(t)

A× LID(t)
, (12)

where375

LID(t) = DCH(t) + CZ = DCH(t) + 3. (13)

D(z, t) is the density profile of the firn relative to density of ice at a given time, LID(t) is376

the lock-in depth, LIDIE(t) is the lock-in depth in ice equivalent, DCH(t) is the diffusive377

column height, and CZ is the thickness of the convective zone which we set to 3 m (a378

typical value found in firn air pumping experiments).379

Parrenin et al. (2012) showed that the LID/LIDIE ratio changes relatively little for differ-380

ent climate conditions at Dome C and thus we can use a constant factor to convert LID381

to LIDIE. We obtain a value of A=0.717 by integrating the SPC14 density profile (Winski382

et al., 2019) from the surface to a density of 824 kg m−3. In the following sections, we383

discuss the primary sources of uncertainty in the δ15N-based thinning function.384

S5.1 Uncertainties385

We estimate the uncertainties in the calculation of this thinning function by calculating386

the change in the thinning function with a different input for the six main parameters387

below. We choose values which we believe yield approximately 95% confidence (i.e. 2388

standard deviation).389
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Density and depth of firn column: Converting the LID to LIDIE has two primary un-390

certainties: how the modern density profile is known and how much variation there is391

through time. We estimate the first using six firn cores, two at SPC14 and two near392

South Pole, as well as two at 50 km upstream (Lilien et al., 2018). We assume lock-in393

density at 824 kg m−3 with an uncertainty ±5 kg m−3. The conversion factor to get LIDIE394

from LID is equivalent to the average density of the firn column relative to the density of395

ice, and hence is unitless. To estimate the uncertainty of this conversion factor, we find396

a maximum difference of 0.015 among the six firn cores relative to measured value for397

SPC14.398

For the time-varying uncertainty, we use the pairs of temperature and accumulation rate399

for each time step found in the primary reconstruction to force a Herron-Langway densi-400

fication model. We also allow the surface density to vary by ±30 kg m−3 from the SPC14401

surface density value. We find the largest difference from the modern SPC14 value to402

define an uncertainty of 0.023 (2 standard deviation).403

Convective zone impact on diffusive column height: The modern convective zone is 3 m404

and we assume the uncertainty is ±3 m.405

Vertical thinning of firn column due to ice flow: Separate from firn compaction, there406

is vertical thinning caused by the lateral stretching due to ice flow. Measurements of407

englacial vertical velocities have become possible with phase sensitive radars; however,408

separating the vertical thinning due to ice flow from the vertical compaction of the firn is409

not yet possible. Therefore, we approximate this vertical thinning assuming a uniform, ice-410
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equivalent vertical strain rate (e.g. Nye, 1963). We develop the uncertainty by assuming411

either no vertical thinning or double the vertical thinning.412

∆depth: We estimate the uncertainty of the ∆depth from the ∆age uncertainties devel-413

oped for the SP19 gas timescale (Epifanio et al., 2020). To find the uncertainty, we take414

the difference in depths that correspond to the maximum and minimum gas ages and415

divide in it in half.416

Measurement uncertainty and variability: The DCH is calculated from the δ15N of N2 data417

using Equation 11. The uncertainty in determining the DCH depends on three things:418

1) the measurement uncertainty of the δ15N; 2) variability in how well the measurement419

represents the actual DCH; and 3) the uncertainty in interpolation from the closest mea-420

surement. The δ15N has been measured at 50- to 100-year resolution for much of the421

core, such that the interpolation distances are small. To jointly assess these measurement422

uncertainty and variability, we compared the DCH estimates of the three closest mea-423

surements. On average, the three measurements differed by slightly less than 2 m. The424

differences among the three measurements did not have a temporal trend, so we calculate425

the uncertainty with a constant 2 m uncertainty. This is the smallest uncertainty for most426

of the measurements.427

S5.2 Total uncertainty on thinning function428

To calculate the total uncertainty on the δ15N-based thinning function, we combine the429

uncertainty calculated for each of the six terms above. The uncertainties for each term430

are shown in Figure S11. We combine the six sources of uncertainty in quadrature to find431

the total uncertainty. For glacial-aged ice, the dominant uncertainty is that for ∆depth.432
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This is driven by the larger uncertainty in ∆age primarily due to the larger ∆age at433

WAIS Divide during the glacial. During the Holocene, all of the terms are more similar434

in magnitude, but the uncertainty due to temporal variations in the density profile is the435

largest. Our use of a uniform value (.023) for temporal density for the full record is likely436

too simplistic since the uncertainty is based on glacial values which differ from modern437

value far more than the Holocene values.438
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Figure S1: Impact of corrections applied to diffusion-length measurements. Dashed curves
show the effective diffusion length resulting from the continuous-flow system (CFA, red),
and from diffusion in solid ice (blue). Solid curves show diffusion lengths obtained from
the water-isotope data before (black) and after correction for the CFA (red) and solid-ice
diffusion (blue).
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Figure S2: Results of the null-test to recover the a priori distribution. In the upper two
panels, for which model bounds are defined, two standard deviations of the a posteriori
distribution (grey shading) approximately fill the bounded space (dashed magenta lines),
and the mean of the distribution (black curve) is approximately the mean of the bounds.
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Figure S3: Analysis of the sensitivity of the a posteriori distribution to information in each
data set. Each color shows the a posteriori distribution mean for a different sensitivity
test. We compare the results when ∆age is excluded (purple), when diffusion length is
excluded (blue), when layer thickness is excluded (green), and when all data sets are
included (black). Red curves in the right panel show ice-core data and uncertainties.
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Figure S4: Flowband model inputs (A-C) and model fits to measured data (D-E). A)
Modern accumulation-rate pattern for 100 km upstream of SPC14 site inferred from the
available shallow radar measurements (Lilien et al., 2018; Fudge et al., 2020). B) Normal-
ized width function used to fit measured surface velocities in panel D. C) Bed topography
was measured from 0 to 100 km. Beyond 100 km, the bed topography used in the model is
determined as discussed in Text S4.2. D) Measured (black) and modeled surface elevation
(blue). The small blue “x” at 190 km marks the approximate position and elevation of
Titan Dome relative to SPC14. E) Measured (black circles) and modeled surface velocities
(blue).
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Figure S5: Radar profile along 100 km of the modern flowline upstream of SPC14 (see
map, Figure S7). The data were imaged using a ground-based, bistatic impulse radar
with center frequency of 7 MHz. The transmitter and receiver were towed inline behind
a skidoo; each record consists of 1024 stacked waveforms and records were located using
GPS. Reflection positions, measured as a function of radar two-way travel time, were
converted to depth below the surface using a wave speed of 168.5 m µs−1 in ice and 300
m µs−1 in air. Wave speed in the firn was calculated using the density profile from SPC14
and a mixing equation (Looyenga, 1965) to estimate the depth profile of the dielectric
constant. Solid black curves show the surface and bed elevations (m above sea level
(asl)). Note that the SPC14 site is about 40 m below sea level. Blue curves are radar-
detected internal layers (isochrones) that were dated using the SPC14 timescale. Layer
ages with increasing depth are: 1020, 1900, 5070, 6510, 8070, 9690, and 11770 years.
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Figure S6: Profiles of bed topography upstream of the SPC14 site. Black is the bedrock
measured along the modern flowline. Red is along 142.5°E and blue is along 135°E from
the PolarGAP survey. Green circles mark the two points that we use to define a plausible
bed feature to explain the thinning function for older ages (circles correspond to Figure
S7).
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Figure S7: Map view of bed topography near SPC14. Black shows measured flowline. Red
is along 142.5°E and blue is along 135°E from the PolarGAP survey. Green line shows the
transect between PolarGAP lines used to guide the bed topographic feature beyond 100
km in the ice-flow modeling (circles correspond to Figure S6).
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Figure S8: Comparison between modeled and measured internal layers in the flowband
domain. Measured layers are shown in Figure S5. A) Observed (black) and modeled
with no melt (blue) and 1 cm yr−1 melt (orange) internal layers. Observed layer ages are
labeled. B) Percent misfit of layer depths for the “no melt” model. C) Percent misfit of
layer depths for the “1 cm yr−1 melt” model.
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Figure S9: Comparison between modeled and measured depth-age relationship. The
depth-age relationship from the steady-state models compare well to SP19 (Winski et al.,
2019) for the Holocene. The divergence in the modeled values compared to SP19 values
below approximately 900 m depth is due to the decrease in accumulation rate at older
ages that we do not simulate with the steady-state model.
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Figure S10: Illustration of the development of a reversal in the thinning function. A)
Modeled particle paths with ice thickness (and corresponding bed elevation) at particle
origin marked. Age of the red particle is ∼7 ka and age of the blue particle is ∼6 ka.
Purple vertical line at the far left side is ice-core location and the depth of the core
shows the depth range plotted in B. B) Modeled thinning function showing the reversal
in thinning due to thickening of the ice sheet experienced by the red particle but not the
blue particle. The jaggedness of the thinning function is due to numerical artifacts in the
particle tracking.
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Figure S11: Uncertainty representing two standard deviations for the inferred thinning
function from six main sources described in Text S5.1.
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