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Abstract 24 
Waves which couple to energetic electrons are particularly important in space weather, as they drive 25 
rapid changes in the topology and intensity of Earth’s outer radiation belt during geomagnetic storms. 26 
This includes Ultra Low Frequency (ULF) waves that interact with electrons via radial diffusion which can 27 
lead to electron dropouts and rapid acceleration and inward transport of electrons during. In radiation 28 
belt simulations, the strength of this interaction is specified by ULF wave radial diffusion coefficients. In 29 
this paper we detail the development of new models of electric and magnetic radial diffusion 30 
coefficients derived from in-situ observations of the azimuthal electric field and compressional magnetic 31 
field. The new models use 𝐿∗ as it accounts for adiabatic changes due to the dynamic magnetic field 32 
coupled with an optimized set of four components of solar wind and geomagnetic activity, 𝐵௭, 𝑉, 𝑃ௗ௬௡ 33 
and  𝑆𝑦𝑚-𝐻, as independent variables (inputs). These independent variables are known drivers of ULF 34 
waves and offer the ability to calculate diffusion coefficients at a higher cadence then existing models 35 
based on Kp. We investigate the performance of the new models by characterizing the model residuals 36 
as a function of each independent variable and by comparing to existing radial diffusion models during a 37 
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quiet geomagnetic period and through a geomagnetic storm. We find that the models developed here 38 
perform well under varying levels of activity and have a larger slope or steeper gradient as a function of 39 𝐿∗ as compared to existing models (higher radial diffusion at higher 𝐿∗ values).     40 

Plain Language Summary 41 
The outer radiation belt is a region of space comprising highly energetic electrons. During periods of 42 
extreme space weather, the number and energy of these electrons can rapidly vary. During these 43 
periods as the electron energies and numbers become enhanced, they can pose a threat to satellite and 44 
space infrastructure. While we have an excellent understanding of the physical processes which drive 45 
radiation belt electron dynamics, we still have a limited ability to model and forecast radiation belt 46 
dynamics; this is a result of the complexity of Earth’s radiation belt system. One of the key processes 47 
controlling radiation belt dynamics is Ultra Low Frequency (ULF) wave radial diffusion. In this work we 48 
detail the development a new model quantifying the strength of Ultra Low Frequency (ULF) wave radial 49 
diffusion in the outer radiation belt utilizing space base observations of the electric and magnetic fields 50 
in Earth’s magnetosphere. Accurately quantifying ULF wave radial diffusion is fundamental to 51 
understanding radiation belt dynamics and any improvement or refinements in radial diffusion models 52 
can help to provide a better understanding of the complex radiation belt system and importantly 53 
improve hindcasts, nowcasts, and forecasts.    54 
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1 Introduction 55 
The Earth’s outer radiation belt is a toroidal region between ~2-8 RE comprising energetic electrons from 56 
hundreds of keV to several MeV (Mauk et al., 2013). Periods of elevated solar activity, such as coronal 57 
mass ejections, corotating interaction regions, dynamic solar wind, and interplanetary shocks can drive 58 
increased geomagnetic activity leading to rapid changes in the flux of energetic electrons and 59 
enhancements of the terrestrial ring current (e.g., Kanekal & Miyoshi, 2021). These periods of enhanced 60 
geoeffective solar wind are referred to as geomagnetic storms. During these storms the enhanced fluxes 61 
of the radiation belt can be dangerous for human and robotic space activity as well as causing damage 62 
to sensitive spacecraft systems (e.g., Baker 2001; Cassak et al., 2017). 63 

Though the outer radiation belt was discovered over half a century ago (Van Allen & Frank, 1959), our 64 
understanding of, and ability to model and forecast its dynamics remains somewhat limited. This is not a 65 
result of a lack of understanding of the processes which drive radiation belt dynamics but instead is due 66 
to the complexity and variability of the overall system, from the sources and sinks of electrons and 67 
wave-particle interactions coupling to these electrons, to the cross-coupling with other magnetospheric 68 
regimes such as the magnetopause (e.g., Borovsky & Valdivia, 2018; Halford et al., 2022; J. Rae et al., 69 
2022). During storms, the dynamics of the radiation belt are controlled by a variety of physical processes 70 
leading to loss, transport, and acceleration of electrons. For instance, magnetopause shadowing (Staples 71 
et al., 2022; West et al. 1972) coupled with outward radial diffusion driven by Ultra Low Frequency (ULF) 72 
waves (e.g., Turner et al., 2012) can drive rapid losses of electrons. At the same time wave-particle 73 
interactions driven by Very Low Frequency (VLF) Chorus and Hiss waves (e.g., Breneman et al., 2015; 74 
Halford et al., 2022; O’Brien et al., 2004), electromagnetic ion cyclotron waves (EMIC) (e.g., Bingley et 75 
al., 2019; Bruno et al., 2022), ULF waves (e.g., Brito et al., 2015;  Rae et al. 2018), and kinetic Alfven (e.g., 76 
Chaston et al., 2018) waves can enhance electron precipitation across a wide range of energies leading 77 
to a loss of radiation belt electrons. Further, enhanced convection and substorm injections can replenish 78 
lower energy electrons providing pathway for the excitation of whistler mode chorus which can rapidly 79 
accelerate electrons to relativistic (several MeV) energies (Horne 2003; Horne and Thorne 1998; Horne 80 
et al. 2005; Thorne et al., 2013) creating peaks in electron phase space density (Reeves et al., 2013). ULF 81 
(Ozeke et al. 2014) waves can further rapidly accelerate and transport these lower energy seed 82 
electrons to MeV energies via ULF wave radial diffusion.  83 

The evolution of the radiation belt is controlled by the sum of the effects of the physical processed 84 
described above, and whose strengths varies throughout any given storm leading to a variety of 85 
responses. For example, while loss processes typically dominate during the early part of geomagnetic 86 
storms (Murphy et al. 2018), the relative strength of these processes varies through the course of a 87 
storm and for storm to storm. This variation can lead to striking differences in the topology of the outer 88 
radiation belt such as the formation of multiple outer radiation belts (Baker et al. 2013). Following this 89 
initial period of loss, the outer radiation belt typically experiences a short period of rapid acceleration 90 
(Murphy et al. 2018). However, the dominant process controlling this acceleration can also vary from 91 
storm to storm (Ma et al., 2018) and though this period of acceleration is typical of all storms, the 92 
amount of acceleration varies (Murphy et al. 2020). This delicate balance between loss, acceleration and 93 
transport processes is often referred to as a competition. However, it’s more a symphony than a 94 
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competition; an orchestra of physical processes of varying magnitudes working in concert to shape the 95 
topology of the radiation belt through the course of a geomagnetic storm. 96 

Fully understanding the dynamics of the outer radiation belt requires at least three key steps. First we 97 
need to be able to quantify the strength of physical processes controlling these dynamics. Second, we 98 
need to assess how the varying strength of the processes act together to impact the overall topology of 99 
the outer radiation belt. Finally, we need understand the pre-existing state of the belts (e.g. initial 100 
conditions), and the availability or lack thereof of various source populations (e.g., boundary conditions) 101 
through the course of a storm.  102 

ULF wave radial diffusion is a key physical processes controlling the dynamics of the outer radiation belt 103 
(Schulz & Lanzerotti, 1974). Depending on the gradient of electron phase space density in the outer 104 
radiation belt ULF wave radial diffusion can drive either rapid loss or rapid acceleration of radiation belt 105 
electrons (Figure 16 of Li & Hudson, 2019;  Figure 3 of Turner et al., 2012) across a wide range of 106 
energies. In this paper we detail the development of a new model for electric and magnetic ULF wave 107 
radial diffusion coefficients, 𝐷௅௅ா  and 𝐷௅௅஻ , driven by both solar wind input and geomagnetic activity and 108 
addressing the first of the three steps described above. This is a more detailed approach which allows 109 
the model to account for variability in radial diffusion as well as allowing the model to have a higher 110 
cadence than existing models based on a single low resolution independent variable Kp. The new model 111 
is derived from in-situ observations of the azimuthal electric field and compressional magnetic field 112 
which are used to create a database of satellite-derived 𝐷௅௅ா  and 𝐷௅௅஻ s. Using this database, we further 113 
characterize the performance of the models and identify, quantify, and remove biases in the model to 114 
provide an overall improved model of both 𝐷௅௅ா  and 𝐷௅௅஻ .  Accurately quantifying ULF wave radial 115 
diffusion is fundamental to understanding the spatio-temporal dynamics of the radiation belt. Thus, any 116 
improvement or refinements in the quantification of the rates of ULF radial diffusion coefficients can 117 
increase the fidelity of radiation belt simulations. This in turn can provide better hindcasts, nowcasts, 118 
and forecasts of the outer radiation belt, and thus deliver a better understanding of the complex system 119 
of wave-particle interaction processes described above and which act in concert to produce the 120 
observed radiation belt response.  121 

In the subsequent sections we detail the data and methodology used to calculate satellite-derived ULF 122 
wave radial diffusion coefficients. This is followed by a description of the development of the 𝐷௅௅ா  and 123 𝐷௅௅஻  models, including a parametric study to identify the best set of solar wind and geomagnetic 124 
variables to use, and an investigation of the performance and bias of the new models as a function of 125 
independent variable. The new 𝐷௅௅ா  and 𝐷௅௅஻  models are then compared to existing models of ULF wave 126 
radial diffusion during an interval of quiet geomagnetic activity as well as during a geomagnetic storm. 127 
These results are then summarized and we conclude with future work and potential directions for future 128 
research. 129 

2 Data and Methodology 130 

In this work we utilize in-situ observations of ULF wave fluctuations to develop an analytic model of ULF 131 
wave electric and magnetic radial diffusion coefficients (𝐷௅௅ா  and 𝐷௅௅஻ ) which can be used in radiation belt 132 
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simulations. To achieve this, observations of the inner-magnetosphere magnetic and electric field from 133 
the Time History of Events and Macroscale Interactions During Substorms (THEMIS) probes 134 
(Angelopoulos, 2008; Sibeck & Angelopoulos, 2008), the two Van Allen Probes (Mauk et al., 2013), and  135 
magnetic field data from the Operational Environment 15 (NOAA GOES-15) satellite (Singer et al., 1996) 136 
from a similar time period are used (2012-2020). From these data, we develop a database of ULF wave 137 
power spectral density (PSD), calculate satellite-derived 𝐷௅௅ா  and 𝐷௅௅஻  from the PSD database, and 138 
subsequently derive an analytic model of both 𝐷௅௅s. Supporting Information Table S1 lists the satellites, 139 
time period, instruments, and observables used to calculate the electric and magnetic ULF wave PSD. 140 
These PSD are then used to estimate the magnetic and electric 𝐷௅௅s. In addition to the in-situ 141 
magnetospheric observations, we also use the OMNI dataset (King & Papitashvili, 2005), and the 142 
SpacePy (Niehof et al., 2022) and International Radiation Belt Environment Modeling (IRBEM) libraries 143 
(Boscher et al., 2022) to parameterize the derived PSD and 𝐷௅௅s as function of prevailing solar wind, 144 
geomagnetic conditions, and third adiabatic invariant 𝐿∗. In this study we use the TS05 magnetic field 145 
model (Tsyganenko & Sitnov, 2005) to derive 𝐿∗ using the (IRBEM) library (Boscher et al., 2022) assuming 146 
a 90° local pitch angle. The OMNI data set and 𝐿∗ are used as independent variables (or inputs) to train 147 
our radial diffusion models (Section 3). Note, we only use GOES West as it is closer to the magnetic 148 
equator then GOES East and therefore provides a better estimate of equatorial ULF wave PSD. This 149 
requirement, along with ensuring that the missions overlap in time, means that only GOES-15 is used in 150 
this study. Further, we use THEMIS A, D, and E as during the period of interest the other two probes are 151 
orbiting the moon. Finally, we use 𝐿∗ rather then 𝐿 or radial distance as it more accurately characterizes 152 
the topological state of the outer radiation belt as it accounts for adiabatic changes due to dynamic 153 
changes in Earth’s magnetic field. In the following subsections we describe the methodology for 154 
calculating ULF wave PSD as well as the methodology to estimate radial diffusion coefficients from the 155 
derived PSDs.     156 

2.1 ULF Power Spectral Density  157 
Estimating ULF wave radial diffusion coefficients requires the compressional magnetic field 𝑩∥ and 158 
azimuthal electric field 𝑬ఝ power spectral density (PSD) (e.g., Fei et al., 2006; Ozeke 2014). To calculate 159 𝑩∥ and 𝑬ఝ we follow the same general framework utilized within the community (e.g., Ali et al., 2015; 160 
Ozeke et al. 2014). For each satellite the magnetic and electric fields are rotated into a field aligned 161 
coordinate system using a twenty-minute average of the background field to obtain the compressional 162 
magnetic field 𝑩∥ and azimuthal electric field 𝑬ఝ. From 𝑩∥ and 𝑬ఝ the PSD can be calculated using 163 
several methods such as the multi-taper (Ali et al., 2015; Bentley et al., 2018), wavelet (Dimitrakoudis et 164 
al., 2015; Sandhu et al., 2021), or the Fourier transform (Murphy et al. 2011; Rae et al. 2012). In general, 165 
each method produces similar estimates of the PSD. Here we use the Fourier transform method outlined 166 
in Rae et al. (2012) which has been used in several studies for quantifying ULF wave PSD (Murphy et al. 167 
2011; Murphy et al. 2018) as well as subsequently estimating radial diffusion coefficients (e.g., Ma et al., 168 
2018; Mann et al., 2016; Ozeke et al. 2017; Ozeke et al. 2014). Using this method, the 𝑩∥ and 𝑬ఝ PSD is 169 
calculated for each satellite from a twenty-minute time window stepped by five minutes. Each PSD is 170 
then tagged with the prevailing solar wind and geomagnetic conditions from the OMNI database and 171 
the satellites position in 𝐿∗ corresponding to the middle of the 20-minute window (spectra with no 172 
corresponding OMNI or 𝐿∗ data are dropped from the database).  173 
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There are several caveats to note in the calculation of the field aligned coordinates and of the electric 174 
and magnetic field PSD. First, the datasets in Table S1 all have different cadences, and so, prior to 175 
calculating the PSD, 𝑩∥ and 𝑬ఝ are downsampled to 12s so that all time-series have the same cadence. 176 
Second, at low L-shells THEMIS and Van Allen Probes rapidly move through 𝐿 leading to large variations 177 
in the background magnetic field. This introduces artificial power into the magnetic field ULF wave PSDs. 178 
To circumvent this, for the Van Allen Probes below 𝐿 = 4 we remove a third-degree polynomial from 𝑩∥; 179 
this removes the background magnetic field while aiming to retain the ULF wave fluctuations. Further, 180 
we limit Van Allen Probe data to 𝐿 >3 RE, whilst for THEMIS data we limit observations to 𝐿 > 5. Different 181 
limits are chosen due to the different rates at which these different satellites cross 𝐿 along their orbit. 182 
Third, both THEMIS and the Van Allen Probes measure with high-fidelity long-wire antennas a two-183 
component electric field in the spin plane; in this study we utilize the Level-2 THEMIS EFI data and Level-184 
3 Van Allen Probes EFW data, both which use the 𝑬 ∙ 𝑩 = 0 approximation to estimate the third 185 
component of the electric field. THEMIS data is further calibrated using SPEDAS (Angelopoulos et al., 186 
2019) while Van Allen Probes Level-3 data has undergone extensive processing by the EFW team 187 
(Breneman et al., 2022). Finally, regardless of calibration and data processing it is still possible for poor 188 
quality electric and magnetic field data to exist leading to anomalous PSDs. Thus, both the 𝑩∥ and 𝑬ఝ 189 
PSD spectra are further scrubbed by identifying and removing outliers using the following analysis: 190 

1. Calculate the summed PSD for each of 𝑩∥ and 𝑬ఝ spectra between 0.83-15 mHz. 191 
2. Bin the summed PSD datasets by Kp and L-shell.  192 
3. Calculate the interquartile range (IQR) of each bin (upper quartile-lower quartile, QU-QL) 193 
4. Identify outlying spectra as any spectra whose summed PSD is less than QL-1.5*IQR or greater 194 

than QU+1.5*IQR and are removed from the PSD data set. 195 

This method of scrubbing data and removing outliers is often used in statistical analysis and data 196 
sciences. In our study, this method does an excellent job removing anomalously high power associated 197 
with erroneous or unphysical data. For example, prior to removing outliers the mean spectrum is larger 198 
than the upper quartile spectra. Once the outliers are removed, the mean spectrum closely follows the 199 
upper quartile spectrum; though this still represents a skewed distribution, the similarity between the 200 
mean and upper quartile is in agreement with previous statistical studies of ULF wave PSD (e.g., Bentley 201 
et al., 2018; Murphy et al. 2011).  202 



203 
204 
205 
206 
207 
208 
209 
210 
211 
212 

213 

214 
215 
216 

217 
218 
219 
220 

221 
222 
223 
224 
225 

 

Once proc
magnetic 
inner mag
median 𝑩
1-8). Evide
frequenci
al. 2012). 
2.5 mHz. C
with both
and show

Figure 1: S
function of
frequency 

2.2 Radi
Radial diff
1974). In t
(2014) an

Ozeke et a
which dep
energy an
(2014) use
and groun

cessed, scrub
and 0.46 mil

gnetosphere t𝑩∥ (top) and 𝑬
ent in Figure 
es with Kp, co
Panels 9 of F
Consistent w

h 𝐿∗ and geom
wn in Figure 1 

tatistical variat
f frequency (y-
of 2.5 mHz as 

ial Diffusion
fusion coeffic
this work, sin
d Mann et al

al. (2014) dev
pend on the a
nd azimuthal w
ed in-situ THE
nd-based mag

bbed, and tagg
lion electric f
through a var𝑬ఝ(bottom) P
1 is that pow
onsistent wit
igure 1 (far ri
ith previous s

magnetic activ
is used to est

tion of the 𝑩∥ 
-axis), Kp (x-axi
a function of 𝐿

n Estimation
cients can be 
nce we are uti
. (2016) whic

veloped expre
azimuthal ele
wave numbe
EMIS and GO
gnetometer o

ged with the 
ield PSD whic
riety of solar 
SD at each fre

wer is concent
h previous st
ight) shows h
studies this fi
vity as parame
timate 𝐷௅௅ா  an

(top) and 𝑬ఝ(b
is) and 𝐿∗ (pan𝐿∗ and Kp (colo

n 
calculated in
ilizing 𝑩∥ and
h follows the

essions for th
ctric field and
r independen
ES observatio

observations t

7 

OMNI data a
ch span nearly
wind and geo
equency (y-ax
trated at lowe
udies (Ali et a

how the PSD v
nal panel dem
eterized by K
nd 𝐷௅௅஻  as des

bottom) PSD. T
els 1-8). The li

or) for the entir

several ways
d 𝑬ఝ we use t
 Brizard and C

he electric and
d compressio
nt (see equati
ons to quantif
to quantify th

and 𝐿∗ positio
y an entire so

omagnetic co
xis) as functio
er frequencie
al., 2015; Bra
varies with 𝐿∗
monstrates th

Kp. The databa
scribed in the

The spectral pl
ne plots show 
re dataset. 

s (e.g., Fei et a
the framewor
Chan (2001) a

d magnetic ra
onal magnetic
ions 19 and 2
fy the compre
he azimuthal

n there are o
olar cycle and

onditions. Figu
on of Kp (x-ax
es and increas
utigam & Alb∗ and Kp at a f
hat ULF wave
ase of PSD sp
 next subsect

ots show the m
the variation o

al., 2006; Sch
rk outlined by
and Fei et al. 

adial diffusion
c field PSD an
22). In their w
essional mag
electric field 

over 1.7 millio
d cover the en
ure 1 shows t
xis) and 𝐿∗ (pa
ses at all 

bert, 2000; Ra
fixed frequen
 PSD increase

pectra describ
tion. 

median PSD as
of PSD at fixed

hulz & Lanzero
y Ozeke et al.
(2006) forma

n coefficients
d which are 

work Ozeke et
netic field 𝑩∥𝑬ఝ PSD. The 

on 
ntire 
the 
anels 

ae et 
ncy of 
es 
bed 

 

 a 
 a 

otti, 
 

alism.  

s 

 al. ∥ PSD 
 



226 
227 

228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 

242 

243 

244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 

 

statistical
analytical

In a follow
specific 𝐷
fixed freq
dependen
specific di
by the Va
specific U
the doubl
diffusion 
used the s
coefficien
have dem
perform b
that do no

Figure 2: M

Here, we 
PSD using
averaged 
and 22 of 𝐷௅௅஻  and 𝐷
The 𝐷௅௅s 
activity (e
to 𝐷௅௅ா . Th
the magn
approach 
Faraday’s

 variation of t
 Kp dependen

w on study, M𝐷௅௅ா s  from gro
uency range 

nt-event-spec
iffusion coeff
n Allen Probe
LF wave radia
e belt structu
in controlling
same method

nts to study th
monstrated th
better, in that
ot (Ma et al., 

Median 𝐷௅௅஻  (lef

use the same
g equations 19

between 0.8
Ozeke et al. 𝐷௅௅ா  respective
are similar in

e.g., Ozeke et 
his is consiste
itude of 𝐷௅௅஻  ~𝑬ఝ and 𝑩∥ a
 law.  In addit

these PSD as 
nt function of

Mann et al. (20
ound-based m

and substitut
cific diffusion 
ficients to mo
es in Septemb
al diffusion co
ure of the out
g the dynamic
dology as Ma
he importanc
at radiation b
t they more a
2018; L. G. O

ft) and 𝐷௅௅ா (righ

e approach as
9 and 22 from
3-15.00 mHz
(2014) provid
ely. Figure 2 s
 magnitude t
al. 2014). At 
nt with recen
~ 𝐷௅௅ா  (Olifer e
re treated ind
tion, the elec

a function of
f 𝐷௅௅஻  and 𝐷௅௅ா
016) expande

magnetomete
ted it into equ
coefficients.

odel the forma
ber 2012 (Bak
oefficients co
ter radiation 
c topology of 
nn et al. (201
e of radial dif

belt simulatio
accurately rep
Ozeke et al., 20

ht) as function

s Mann et al. 
m Ozeke et al.
. The average
ding an energ
shows the me
o other studi
higher Kp val

nt work that h
et al., 2019; S
dependently 

ctric field inclu

8 

f Kp were sub௅.   

ed on the Oze
rs. Mann et a
uation 22 of O
In their study
ation of the o

ker et al. 2013
oupled with dy
belt, highligh
the outer rad

16) to derive e
ffusion radiat

ons using even
produce radia
019, 2020). 

 of 𝐿∗ and Kp f

(2016) to der
. (2014). Each

ed 𝑩∥ and 𝑬ఝ
gy and azimut
edian 𝐷௅௅஻  (lef
es and increa
lues (e.g., 5 a
has demonstr
Sandhu et al.,
whereas in fa

udes both the

bstituted into 

eke et al. (201
al. (2016) ave
Ozeke et al. (2
y Mann et al. 
outer and sto
3). These auth
ynamic boun
ting the impo

diation belt. S
event-specific
tion belt dyna
nt specific rad
ation belt elec

 

for the entire d

rive in-situ 𝐷௅ா
h spectrum fr
 PSD are then

thal wave num
ft) and 𝐷௅௅ா (rig
ase with 𝐿∗ an
nd 6), the ma

rated that du
, 2021). It is im
act they fact t
e electrostati

equations 19

14) framewor
raged the UL
2014) to deri
 (2016) used 
rage radiatio
hors demons
dary conditio

ortance of UL
Several follow
c ULF wave ra
amics. In gene
dial diffusion 
ctron dynami

dataset. ௅௅ா  and 𝐷௅௅஻  fro
rom the PSD d
n substituted
mber indepen
ght) as a func
nd increasing 
agnitude of 𝐷
ring the main
mportant to n
they are corr
c as well as th

9 and 22 to de

rk to derive ev
F wave PSD o
ve time-
these event 
n belts obser
trated that ev

ons reproduce
LF wave radia
w-on studies h
adial diffusion
eral, these stu
coefficients 

ics, than thos

om the 𝑬ఝ an
database is 
 into equatio

ndent estimat
ction of 𝐿∗ and
geomagnetic𝐷௅௅஻  is compar

n phase of sto
note that in t
elated via 
he 

erive 

vent-
over a 

rved 
vent-
ed 
l 

have 
n 
udies 

se 

nd 𝑩∥ 

ns 19 
te of 
d Kp. 
c 
able 

orms 
his 



9 
 

electromagnetic component. Regardless, recent work has demonstrated that the resulting diffusion 255 
coefficients are within a factor of approximately two of the electromagnetic diffusion coefficients 256 
(Lejosne, 2019). In the next section we describe the development of a radial diffusion model utilizing the 257 
database of 𝐷௅௅s described here. 258 

3 Radial Diffusion Model 259 
ULF wave radial diffusion is a key component of radiation belt dynamics, driving periods of enhanced 260 
electron loss via outward radial transport  as well as electron acceleration via inward transport (e.g., 261 
Ozeke et al. 2017). In radiation belt models, the strength of ULF wave radial diffusion is specified by 262 
diffusion coefficients 𝐷௅௅ (e.g., Brizard & Chan, 2001; Fei et al., 2006). Several researchers have 263 
developed models which specify the strength of radial diffusion coefficients as a function of 264 
geomagnetic activity from both in-situ and ground-based observations of ULF wave PSD (Ali et al., 2015; 265 
Brautigam & Albert, 2000; Ozeke et al. 2014). In this section we build on these studies using a database 266 
of satellited-derived ULF wave 𝐷௅௅ா  and 𝐷௅௅஻  radial diffusion coefficients in an attempt to develop a more 267 
robust characterization of the rates of ULF wave radial diffusion based on known drivers of ULF waves. 268 
Here we describe the development of the radial diffusion model including a parametric study to identify 269 
a robust set of independent variables as model inputs, a discussion of different model types/algorithms, 270 
and training, testing, and performance of a final model. In section 4 we investigate the final model, 271 
including its performance under different geomagnetic conditions (e.g., quiet and storm times) and 272 
comparing to existing diffusion models.      273 

3.1 Parametric Study 274 
Previous studies developing radial diffusion models parameterized their diffusion coefficients based on 275 
the planetary index Kp. Kp is a three-hour index ranging from 0 to 9; the indices correspond to 276 
exponentially increasing perturbations of Earth’s magnetic field as characterized by several ground-277 
based magnetometers from around the world. While Kp is a good measure of geomagnetic activity, its 278 
utility in models is limited for three reasons. First, Kp is a measure of the response of the coupled solar 279 
wind-magnetosphere-ionosphere system as opposed to a driver of the dynamics of this system. Second, 280 
the three-hour cadence is long compared to storm-time radiation belt time-scales (Olifer et al., 2018; 281 
Ozeke et al. 2017). Finally, the exponentially increasing index limits the dynamic range of models, 282 
requiring models to extrapolate to high values of Kp during very active times. For example, the 283 
Brautigam and Albert (2000) and Ozeke et al. (2014) models are limited to using data derived for 284 
conditions with Kp≤6 while Liu et al. (2016) and Ali et al. (2016) diffusion models are limited to a 285 
maximum Kp value of 5. Above these values the respective models must extrapolate to higher Kp values  286 
to estimate the magnitude of radial diffusion coefficients under active conditions. Despite these 287 
limitations, there is a key advantage in that the 𝐷௅௅s parameterized by Kp in that they can be easily 288 
forecasted when forecasts of Kp are readily available (Glauert et al., 2021; Horne et al. 2021). 289 

In this work we use the OMNI dataset to parameterize and develop models of radial diffusion at higher 290 
cadence using known drivers of ULF waves. The OMNI data has a higher cadence (1 hour, 5 minute, and 291 
1 minute) than the Kp index. This is ideal for radiation belt models as it provides increased temporal 292 
dynamics and resolution. In addition, the OMNI dataset contains multiple parameters including the solar 293 
wind vector magnetic field, dynamic pressure, the vector solar wind velocity, as well as multiple 294 
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Figure 3c focuses on the combination of variables which maximize the correlation and minimize the MSE 324 
of the trained model. Evident in Figure 3c is that combinations of 𝐿∗, 𝑆𝑦𝑚-𝐻, IMF 𝐵௭ and 𝑃ௗ௬௡ coupled 325 
with various combinations of IMF 𝐵௬, 𝑉,  𝑉௫, and 𝑛 all lead to high correlations and low MSE. The 326 
correlation peaks and MSE minimizes when all input variables are used in the parametric study; 327 
however, this introduces significant multicollinearity between the input variables (e.g., 𝐵௭ and 𝐵௬, 𝑉 and 328  𝑉௫) which can decrease model performance as well as adding additional complexity. From the 329 
parametric study, 𝐿∗, 𝑆𝑦𝑚-𝐻, 𝐵௭, 𝑉, and 𝑃ௗ௬௡, are identified as an optimized set of input parameters to 330 
model 𝐷௅௅஻  (vertical line Figure 3c); the correlation is high, MSE low, and the correlation between input 331 
variables is limited compared to the other combination of inputs while also maintaining a level of 332 
simplicity by including only five independent variables. A similar dependence has also been discussed by 333 
Dimitrakoudis et al. (2022), albeit for ULF wave power which is directly related strength of radial 334 
diffusion. Finally note, that the correlations and MSE for this set of independent variables is on the same 335 
order as those when Kp and 𝐿∗ are considered as independent variables. However, in this paper we 336 
focus on developing a model based on known drivers of ULF wave power as opposed to variables and 337 
indices which respond to ULF wave power and enhanced geomagnetic activity like Kp. Thus, for the 338 
purpose of this study the combination of 𝐿∗, 𝑆𝑦𝑚-𝐻, IMF 𝐵௭, 𝑉, and 𝑃ௗ௬௡ are used as independent 339 
variables train models of 𝐷௅௅஻  and 𝐷௅௅ா .    340 

3.2 DLL Model  341 
There are several methods and algorithms which could be used to generate or train models for the 342 
parameterization of the electric and magnetic field 𝐷௅௅s. In this work we investigated two algorithms for 343 
training models of 𝐷௅௅஻  and 𝐷௅௅ா , a multi-linear regression model (Murphy et al. 2015, 2020), and a neural 344 
network model (Bortnik et al., 2018). In general, both the multi-linear regression and neural network 345 
models performed similarly using the independent variables identified in Section 3.1; both algorithms 346 
produced similar correlations and MSEs when fitted to 𝐷௅௅஻  and 𝐷௅௅ா . Given the similar model 347 
performance, we use a multi-linear regression model for the final parameterisation we present here due 348 
to its simplicity as compared to the implementation, use, and sharing of neural networks.   349 

In developing the multi-linear regression models, the 𝐷௅௅஻  and 𝐷௅௅ா  datasets are first regularized as a 350 
function of 𝐿∗. The regularization ensures that the distribution of 𝐷௅௅s as a function of 𝐿∗ is uniform, i.e., 351 
the number of 𝐷௅௅ data points for any given 𝐿∗ is the same. This is important as the spacecraft spend 352 
more time at apogee, high 𝐿∗, which can bias any model by fitting to the bulk of the data which are 353 
preferentially located in one part of the domain. The datasets are then randomly separated into 354 
train/test sets using a 70/30 percent split. The models are trained on the train set while the test set is 355 
used to verify performance. Before training, the independent variables are normalized between 0 and 1 356 
by the maximum and minimum values in the train set; this normalization ensures the dependence on 357 
each of the independent variables is assessed on a similar scale and generally increases the stability and 358 
performance of the resulting models. Finally, we restrict the model space to 𝐿∗ ∈ [3,7]; this 359 
encompasses the outer radiation belt and in general improves model performance by removing highly 360 
variable data at higher 𝐿∗. Though this limits the dynamic range of the data used to train the linear 361 
regression models, the linear regression models can still be used calculate 𝐷௅௅s outside this range. 362 
However, care must be taken when extending the model outside these limits as it is not possible to test 363 
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sets is high, ~0.86 accounting for ~74% of the variance within the data sets. For both models the MSE is 383 
also low. Overall, the normal distribution of the residuals, high correlation and low MSE, coupled with 384 
the similarities between the train and test data sets demonstrates the robustness and accuracy of the 385 
trained models. Table S2, shows the fitting and normalization coefficients for both 𝐷௅௅ models as 386 
described by Equations 1 and 2.  387 

3.3 Model Performance 388 
In this section we investigate the residuals as a function of each independent variable to provide the 389 
reader and specifically modelers with a clear overview of the model’s performance under varying 390 
conditions. Figure 5 shows the probability distribution functions (PDFs) of the 𝐷௅௅஻  and 𝐷௅௅ா  model 391 
residuals (top and bottom; modelled 𝐷௅௅ minus satellite-derived 𝐷௅௅) as a function of the independent 392 
variables (rows) for the combined train and test datasets. In general, both the 𝐷௅௅஻  and 𝐷௅௅ா  models 393 
perform well as a function of the independent variables. The residuals are peaked around zero as a 394 
function of the independent variable. However, this is not true for 𝐿∗ and for more extreme values of 395 𝑆𝑦𝑚-𝐻, 𝐵௭, and 𝑃ௗ௬௡. With regard to 𝐿∗, both the 𝐷௅௅஻  and 𝐷௅௅ா  models show bias at 𝐿∗ > 6 and 𝐿∗ < 4.5 396 
where the residuals are skewed to either positive or negative values. The biases in 𝐿∗ are more 397 
pronounced than those observed as a function of 𝑆𝑦𝑚-𝐻, 𝐵௭, and 𝑃ௗ௬௡ and are likely the result of biases 398 
that exist in in the calculation of 𝐿∗.  Note, a similar distribution of residuals is observed when 399 
considering only storm-time or quiet-time periods with this choice of independent variables. This 400 
similarity is ideal as it demonstrates that both the 𝐷௅௅஻  and 𝐷௅௅ா  radial diffusion models perform well 401 
during both storm- and quiet-times. This was not the case for storm- and non-storm-time Kp-402 
parameterisation of 𝐷௅௅ examined by Dimitrakoudis (2022) which highlights another pitfall of 403 
parametrizing 𝐷௅௅ by Kp as such parameterizations cannot account for both storm and quiet times. Due 404 
to the similarity between storm-time, quiet-time, and all data, the storm- and quiet-time distributions 405 
are shown in Supporting Information S3 and S4.   406 
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𝐷௅௅s is used to construct a new 𝐿∗ dependent and optimized bias-removed model of 𝐷௅௅஻  and 𝐷௅௅ா   driven 534 
by 𝐵௭, 𝑉௦௪, 𝑃ௗ௬௡ and 𝑆𝑦𝑚-𝐻. Overall, the new models of 𝐷௅௅஻  and 𝐷௅௅ா  perform well when compared to 535 
the satellite-derived 𝐷௅௅s from which the models were developed. 536 

The new bias-removed 𝐷௅௅s derived where compared to existing 𝐷௅௅ models from Ozeke et al. (2014), 537 
Brautigam and Albert (2000), and Lejosne (2019) during a period of quiet geomagnetic activity and the 538 
March 2013 geomagnetic storm. If one ignores the main phase of the storm, the comparison of quiet 539 
time 𝐷௅௅s is similar to that of the geomagnetic storm; 𝐷௅௅் generally has a steeper gradient as compared 540 
to existing models such that 𝐷௅௅் is larger at high 𝐿∗ and smaller at low 𝐿∗. The steeper gradient in the 541 𝐷௅௅s derived here is likely due to the use of a 𝐿∗ and the TS05 model. The previous studies all used 542 
dipole 𝐿 which does not vary with varying solar wind and geomagnetic conditions. Whereas with 𝐿∗, as 543 
activity increases the Earth’s magnetic field is distorted resulting in changes in 𝐿∗. For example, during 544 
periods of enhanced solar wind and geomagnetic activity regions of high ULF wave power can be 545 
associated with lower 𝐿∗ then would be in a dipole model; this leads to a steeper gradient in ULF wave 546 
power as a function of 𝐿∗ then as a function of 𝐿. Overall, the steeper gradient here is likely to be more 547 
representative of the actual radial diffusion as it accounts for variations in the third adiabatic invariant 548 𝐿∗.   549 

During the main phase of the storm 𝐷௅௅் is larger then 𝐷௅௅ Lejosne (2019) and smaller then the Ozeke et 550 
al. (2014), Brautigam and Albert (2000) 𝐷௅௅s. And, prior to the storm onset, the 𝐷௅௅s derived here are 551 
smaller at all 𝐿∗ values then the existing models. These differences are likely a result of the 552 
parameterization used to quantify the 𝐷௅௅s. Lejosne (2019) uses the magnetopause boundary defined 553 
by 𝑃ௗ௬௡ and 𝐵௭ to derive the magnetic field perturbations which drive radial diffusion. Both 𝑃ௗ௬௡ and 𝐵௭ 554 
are elevated for only a short period of time compared to 𝑆𝑦𝑚-𝐻 and 𝑉௦௪ which is likely why the 𝐷௅௅s 555 
derived here are larger then those of  Lejosne (2019) during the main phase. With regard to the period 556 
prior to storm onset, Kp is elevated as compared to 𝑆𝑦𝑚-𝐻, 𝐵௭, 𝑉௦௪, and 𝑃ௗ௬௡ which is likely why the 557 
Ozeke et al. (2014) and Brautigam and Albert (2000) 𝐷௅௅s are larger then those derived here. These 558 
periods of elevated Kp are associate with enhanced AE driven by magnetospheric substorms. Though 559 
substorm activity leads to enhanced ULF waves in the form of short lived and irregular pulsations 560 
(Jacobs et al., 1964), the actual enhancement in Kp is the result of the larger substorm bays (Cramoysan 561 
et al., 1995) as opposed to ULF waves. Thus, its unclear whether this period would in fact lead to 562 
enhanced radial diffusion as depicted by the Ozeke et al. (2014) and Brautigam and Albert (2000) 𝐷௅௅s 563 
as the resulting substorm-driven ULF wave activity is short lived. This difference is likely to propagate 564 
through any radial diffusion simulation leading to significant differences in the strength of radial 565 
transport and global topology of the radiation belt when using the different 𝐷௅௅models.  566 

Finally, it is important to note that 𝐷௅௅஻ , 𝐷௅௅ா  and total 𝐷௅௅ can reach rates greater then 10/day. Though 567 
this is in agreement with other models, as illustrated in Error! Reference source not found. (see also 568 
lifer et al., 2019; Sandhu et al., 2021), at these values the concept of radial diffusion will start to break 569 
down as electrons would be moving inward on time-scales on the order of or shorter than a drift period. 570 
In this regime coherent ULF wave-particle interactions may instead play an important role in the global 571 
dynamics of the outer radiation belt (e.g., Murphy 2020; 2018). The effect that enhanced ULF wave 572 
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power, which leads to these large 𝐷௅௅s, and the effect they have on outer radiation belt is an important 573 
avenue of future research and which can be investigated with global models (Degeling et al., 2008, 2013, 574 
2014; Komar et al., 2017).  575 

In summary, we have used over 40 years of satellite data to calculate 𝐷௅௅஻  and 𝐷௅௅ா over a range of 𝐿∗ 576 
from 3-7 in non-dipole field using TS05.  The diffusion rates are parameterised by an optimized set of 577 
solar wind and geomagnetic variables and provide diffusion coefficients at much higher time resolution 578 
and over a larger dynamic range then previous studies. The main results are: 579 

• The gradient in our 𝐷௅௅் is generally steeper as compared to existing models, giving higher 580 
diffusion rates at larger 𝐿∗  and lower rates at low 𝐿∗. 581 

• 𝐷௅௅ா  is generally higher than 𝐷௅௅஻ at all 𝐿∗ except during the main phase of storms. 582 
• During the March 2013 magnetic storm 𝐷௅௅ generally agrees with previous work except for the 583 

initial phase of the storm where diffusion rates are lower at all L* < 5.  We suggest that this is 584 
due to substorm activity which is captured in the Kp models and not in our new models.  585 

 586 
The results are available for use in global radiation belt models to develop better reconstructions of the 587 
radiation belt environment (see Supporting Information for model coefficients). Future work will test 588 
both the model and model bias-removed 𝐷௅௅ performance in radiation belt simulations under varying 589 
geomagnetic conditions to determine if the new models improve the performance of radiation belt 590 
simulations as compared to existing 𝐷௅௅ models. In addition, future studies will investigate the 591 
performance of our new models as compared to existing models when using forecasted inputs. Finally, 592 
future studies will investigate including additional model inputs and independent variables and the time 593 
history of independent variables, along with more complex algorithms for regression as a path to 594 
improved 𝐷௅௅ models and radiation belt simulations.  595 

Acknowledgments 596 
This work is partly funded by UKRI grants ST/V006320/1 (STFC) and NE/P017185/2 and NE/V002554/2 597 
(NERC); for the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) 598 
license [where permitted by UKRI, ‘Open Government Licence’ or ‘Creative Commons Attribution No-599 
derivatives (CC BY-ND) license may be stated instead] to any Author Accepted Manuscript version 600 
arising. TD is supported by the Air Force Office of Scientific Research under award number FA9550-19-1-601 
7039. SG and RBH were supported by NERC grant NE/V00249X/1 (Sat-Risk), NERC National Capability 602 
grants NE/R016038/1 and by NERC National Public Good activity grant NE/R016445/1. AJH and AB’s 603 
contribution was funded by the Space Precipitation Impacts group, a NASA Goddard Internal Science 604 
Funding Model grant. IRM is supported by a Discovery Grant from Canadian NSERC, and by a UK Royal 605 
Society Wolfson Visiting Fellowship. LO is supported by the Canadian Space Agency. 606 

Open Research 607 
The THEMIS data is available via SPEDAS, PySPEDAS or the THEMIS data server, 608 
http://themis.ssl.berkeley.edu/data/themis. The GOES data is available from the NOAA National Centers 609 
for Environmental Information website, https://www.ngdc.noaa.gov/stp/satellite/goes/. Van Allen 610 
Probes data is available at the Coordinated Data Analysis Web (CDAWeb) https://cdaweb.gsfc.nasa.gov/. 611 



22 
 

The OMNI data is available at https://omniweb.gsfc.nasa.gov/. The higher level database used to 612 
develop the 𝐷௅௅ models is available via Zenodo, https://zenodo.org/record/7569732, doi: 613 
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