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Abstract

Waves which couple to energetic electrons are particularly important in space weather, as they drive
rapid changes in the topology and intensity of Earth’s outer radiation belt during geomagnetic storms.
This includes Ultra Low Frequency (ULF) waves that interact with electrons via radial diffusion which can
lead to electron dropouts and rapid acceleration and inward transport of electrons during. In radiation
belt simulations, the strength of this interaction is specified by ULF wave radial diffusion coefficients. In
this paper we detail the development of new models of electric and magnetic radial diffusion
coefficients derived from in-situ observations of the azimuthal electric field and compressional magnetic
field. The new models use L* as it accounts for adiabatic changes due to the dynamic magnetic field
coupled with an optimized set of four components of solar wind and geomagnetic activity, B,, V, Pyyn

and Sym-H, as independent variables (inputs). These independent variables are known drivers of ULF
waves and offer the ability to calculate diffusion coefficients at a higher cadence then existing models
based on Kp. We investigate the performance of the new models by characterizing the model residuals
as a function of each independent variable and by comparing to existing radial diffusion models during a
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quiet geomagnetic period and through a geomagnetic storm. We find that the models developed here
perform well under varying levels of activity and have a larger slope or steeper gradient as a function of
L* as compared to existing models (higher radial diffusion at higher L* values).

Plain Language Summary

The outer radiation belt is a region of space comprising highly energetic electrons. During periods of
extreme space weather, the number and energy of these electrons can rapidly vary. During these
periods as the electron energies and numbers become enhanced, they can pose a threat to satellite and
space infrastructure. While we have an excellent understanding of the physical processes which drive
radiation belt electron dynamics, we still have a limited ability to model and forecast radiation belt
dynamics; this is a result of the complexity of Earth’s radiation belt system. One of the key processes
controlling radiation belt dynamics is Ultra Low Frequency (ULF) wave radial diffusion. In this work we
detail the development a new model quantifying the strength of Ultra Low Frequency (ULF) wave radial
diffusion in the outer radiation belt utilizing space base observations of the electric and magnetic fields
in Earth’s magnetosphere. Accurately quantifying ULF wave radial diffusion is fundamental to
understanding radiation belt dynamics and any improvement or refinements in radial diffusion models
can help to provide a better understanding of the complex radiation belt system and importantly
improve hindcasts, nowcasts, and forecasts.
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1 Introduction

The Earth’s outer radiation belt is a toroidal region between ~2-8 R comprising energetic electrons from
hundreds of keV to several MeV (Mauk et al., 2013). Periods of elevated solar activity, such as coronal
mass ejections, corotating interaction regions, dynamic solar wind, and interplanetary shocks can drive
increased geomagnetic activity leading to rapid changes in the flux of energetic electrons and
enhancements of the terrestrial ring current (e.g., Kanekal & Miyoshi, 2021). These periods of enhanced
geoeffective solar wind are referred to as geomagnetic storms. During these storms the enhanced fluxes
of the radiation belt can be dangerous for human and robotic space activity as well as causing damage
to sensitive spacecraft systems (e.g., Baker 2001; Cassak et al., 2017).

Though the outer radiation belt was discovered over half a century ago (Van Allen & Frank, 1959), our
understanding of, and ability to model and forecast its dynamics remains somewhat limited. This is not a
result of a lack of understanding of the processes which drive radiation belt dynamics but instead is due
to the complexity and variability of the overall system, from the sources and sinks of electrons and
wave-particle interactions coupling to these electrons, to the cross-coupling with other magnetospheric
regimes such as the magnetopause (e.g., Borovsky & Valdivia, 2018; Halford et al., 2022; J. Rae et al.,
2022). During storms, the dynamics of the radiation belt are controlled by a variety of physical processes
leading to loss, transport, and acceleration of electrons. For instance, magnetopause shadowing (Staples
et al., 2022; West et al. 1972) coupled with outward radial diffusion driven by Ultra Low Frequency (ULF)
waves (e.g., Turner et al., 2012) can drive rapid losses of electrons. At the same time wave-particle
interactions driven by Very Low Frequency (VLF) Chorus and Hiss waves (e.g., Breneman et al., 2015;
Halford et al., 2022; O’Brien et al., 2004), electromagnetic ion cyclotron waves (EMIC) (e.g., Bingley et
al., 2019; Bruno et al., 2022), ULF waves (e.g., Brito et al., 2015; Rae et al. 2018), and kinetic Alfven (e.g.,
Chaston et al., 2018) waves can enhance electron precipitation across a wide range of energies leading
to a loss of radiation belt electrons. Further, enhanced convection and substorm injections can replenish
lower energy electrons providing pathway for the excitation of whistler mode chorus which can rapidly
accelerate electrons to relativistic (several MeV) energies (Horne 2003; Horne and Thorne 1998; Horne
et al. 2005; Thorne et al., 2013) creating peaks in electron phase space density (Reeves et al., 2013). ULF
(Ozeke et al. 2014) waves can further rapidly accelerate and transport these lower energy seed
electrons to MeV energies via ULF wave radial diffusion.

The evolution of the radiation belt is controlled by the sum of the effects of the physical processed
described above, and whose strengths varies throughout any given storm leading to a variety of
responses. For example, while loss processes typically dominate during the early part of geomagnetic
storms (Murphy et al. 2018), the relative strength of these processes varies through the course of a
storm and for storm to storm. This variation can lead to striking differences in the topology of the outer
radiation belt such as the formation of multiple outer radiation belts (Baker et al. 2013). Following this
initial period of loss, the outer radiation belt typically experiences a short period of rapid acceleration
(Murphy et al. 2018). However, the dominant process controlling this acceleration can also vary from
storm to storm (Ma et al., 2018) and though this period of acceleration is typical of all storms, the
amount of acceleration varies (Murphy et al. 2020). This delicate balance between loss, acceleration and
transport processes is often referred to as a competition. However, it's more a symphony than a
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competition; an orchestra of physical processes of varying magnitudes working in concert to shape the
topology of the radiation belt through the course of a geomagnetic storm.

Fully understanding the dynamics of the outer radiation belt requires at least three key steps. First we
need to be able to quantify the strength of physical processes controlling these dynamics. Second, we
need to assess how the varying strength of the processes act together to impact the overall topology of
the outer radiation belt. Finally, we need understand the pre-existing state of the belts (e.g. initial
conditions), and the availability or lack thereof of various source populations (e.g., boundary conditions)
through the course of a storm.

ULF wave radial diffusion is a key physical processes controlling the dynamics of the outer radiation belt
(Schulz & Lanzerotti, 1974). Depending on the gradient of electron phase space density in the outer
radiation belt ULF wave radial diffusion can drive either rapid loss or rapid acceleration of radiation belt
electrons (Figure 16 of Li & Hudson, 2019; Figure 3 of Turner et al., 2012) across a wide range of
energies. In this paper we detail the development of a new model for electric and magnetic ULF wave
radial diffusion coefficients, DEL and DLBL, driven by both solar wind input and geomagnetic activity and
addressing the first of the three steps described above. This is a more detailed approach which allows
the model to account for variability in radial diffusion as well as allowing the model to have a higher
cadence than existing models based on a single low resolution independent variable Kp. The new model
is derived from in-situ observations of the azimuthal electric field and compressional magnetic field
which are used to create a database of satellite-derived DE, and DZ; s. Using this database, we further
characterize the performance of the models and identify, quantify, and remove biases in the model to
provide an overall improved model of both DEL and DEL. Accurately quantifying ULF wave radial
diffusion is fundamental to understanding the spatio-temporal dynamics of the radiation belt. Thus, any
improvement or refinements in the quantification of the rates of ULF radial diffusion coefficients can
increase the fidelity of radiation belt simulations. This in turn can provide better hindcasts, nowcasts,
and forecasts of the outer radiation belt, and thus deliver a better understanding of the complex system
of wave-particle interaction processes described above and which act in concert to produce the
observed radiation belt response.

In the subsequent sections we detail the data and methodology used to calculate satellite-derived ULF
wave radial diffusion coefficients. This is followed by a description of the development of the DLEL and
DE models, including a parametric study to identify the best set of solar wind and geomagnetic
variables to use, and an investigation of the performance and bias of the new models as a function of
independent variable. The new Df, and DB models are then compared to existing models of ULF wave
radial diffusion during an interval of quiet geomagnetic activity as well as during a geomagnetic storm.
These results are then summarized and we conclude with future work and potential directions for future
research.

2 Data and Methodology

In this work we utilize in-situ observations of ULF wave fluctuations to develop an analytic model of ULF
wave electric and magnetic radial diffusion coefficients (Df;, and DE, ) which can be used in radiation belt
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simulations. To achieve this, observations of the inner-magnetosphere magnetic and electric field from
the Time History of Events and Macroscale Interactions During Substorms (THEMIS) probes
(Angelopoulos, 2008; Sibeck & Angelopoulos, 2008), the two Van Allen Probes (Mauk et al., 2013), and
magnetic field data from the Operational Environment 15 (NOAA GOES-15) satellite (Singer et al., 1996)
from a similar time period are used (2012-2020). From these data, we develop a database of ULF wave
power spectral density (PSD), calculate satellite-derived DLEL and DLBL from the PSD database, and
subsequently derive an analytic model of both D;;s. Supporting Information Table S1 lists the satellites,
time period, instruments, and observables used to calculate the electric and magnetic ULF wave PSD.
These PSD are then used to estimate the magnetic and electric D;; s. In addition to the in-situ
magnetospheric observations, we also use the OMNI dataset (King & Papitashvili, 2005), and the
SpacePy (Niehof et al., 2022) and International Radiation Belt Environment Modeling (IRBEM) libraries
(Boscher et al., 2022) to parameterize the derived PSD and D;; s as function of prevailing solar wind,
geomagnetic conditions, and third adiabatic invariant L*. In this study we use the TS05 magnetic field
model (Tsyganenko & Sitnov, 2005) to derive L* using the (IRBEM) library (Boscher et al., 2022) assuming
a 90° local pitch angle. The OMNI data set and L* are used as independent variables (or inputs) to train
our radial diffusion models (Section 3). Note, we only use GOES West as it is closer to the magnetic
equator then GOES East and therefore provides a better estimate of equatorial ULF wave PSD. This
requirement, along with ensuring that the missions overlap in time, means that only GOES-15 is used in
this study. Further, we use THEMIS A, D, and E as during the period of interest the other two probes are
orbiting the moon. Finally, we use L* rather then L or radial distance as it more accurately characterizes
the topological state of the outer radiation belt as it accounts for adiabatic changes due to dynamic
changes in Earth’s magnetic field. In the following subsections we describe the methodology for
calculating ULF wave PSD as well as the methodology to estimate radial diffusion coefficients from the
derived PSDs.

2.1 ULF Power Spectral Density

Estimating ULF wave radial diffusion coefficients requires the compressional magnetic field B and
azimuthal electric field E,, power spectral density (PSD) (e.g., Fei et al., 2006; Ozeke 2014). To calculate
B and E , we follow the same general framework utilized within the community (e.g., Ali et al., 2015;
Ozeke et al. 2014). For each satellite the magnetic and electric fields are rotated into a field aligned
coordinate system using a twenty-minute average of the background field to obtain the compressional
magnetic field By and azimuthal electric field E,. From B} and E, the PSD can be calculated using
several methods such as the multi-taper (Ali et al., 2015; Bentley et al., 2018), wavelet (Dimitrakoudis et
al., 2015; Sandhu et al., 2021), or the Fourier transform (Murphy et al. 2011; Rae et al. 2012). In general,
each method produces similar estimates of the PSD. Here we use the Fourier transform method outlined
in Rae et al. (2012) which has been used in several studies for quantifying ULF wave PSD (Murphy et al.
2011; Murphy et al. 2018) as well as subsequently estimating radial diffusion coefficients (e.g., Ma et al.,
2018; Mann et al., 2016; Ozeke et al. 2017; Ozeke et al. 2014). Using this method, the B| and E(p PSD is
calculated for each satellite from a twenty-minute time window stepped by five minutes. Each PSD is
then tagged with the prevailing solar wind and geomagnetic conditions from the OMNI database and
the satellites position in L* corresponding to the middle of the 20-minute window (spectra with no
corresponding OMNI or L* data are dropped from the database).
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There are several caveats to note in the calculation of the field aligned coordinates and of the electric
and magnetic field PSD. First, the datasets in Table S1 all have different cadences, and so, prior to
calculating the PSD, B and E, are downsampled to 12s so that all time-series have the same cadence.
Second, at low L-shells THEMIS and Van Allen Probes rapidly move through L leading to large variations
in the background magnetic field. This introduces artificial power into the magnetic field ULF wave PSDs.
To circumvent this, for the Van Allen Probes below L = 4 we remove a third-degree polynomial from B;
this removes the background magnetic field while aiming to retain the ULF wave fluctuations. Further,
we limit Van Allen Probe data to L >3 R, whilst for THEMIS data we limit observations to L > 5. Different
limits are chosen due to the different rates at which these different satellites cross L along their orbit.
Third, both THEMIS and the Van Allen Probes measure with high-fidelity long-wire antennas a two-
component electric field in the spin plane; in this study we utilize the Level-2 THEMIS EFl data and Level-
3 Van Allen Probes EFW data, both which use the E - B = 0 approximation to estimate the third
component of the electric field. THEMIS data is further calibrated using SPEDAS (Angelopoulos et al.,
2019) while Van Allen Probes Level-3 data has undergone extensive processing by the EFW team
(Breneman et al., 2022). Finally, regardless of calibration and data processing it is still possible for poor
quality electric and magnetic field data to exist leading to anomalous PSDs. Thus, both the B and E,

PSD spectra are further scrubbed by identifying and removing outliers using the following analysis:

Calculate the summed PSD for each of B and E, spectra between 0.83-15 mHz.
Bin the summed PSD datasets by Kp and L-shell.
Calculate the interquartile range (IQR) of each bin (upper quartile-lower quartile, Q,-Q,)

el

Identify outlying spectra as any spectra whose summed PSD is less than Q;-1.5*IQR or greater
than Q+1.5*IQR and are removed from the PSD data set.

This method of scrubbing data and removing outliers is often used in statistical analysis and data
sciences. In our study, this method does an excellent job removing anomalously high power associated
with erroneous or unphysical data. For example, prior to removing outliers the mean spectrum is larger
than the upper quartile spectra. Once the outliers are removed, the mean spectrum closely follows the
upper quartile spectrum; though this still represents a skewed distribution, the similarity between the
mean and upper quartile is in agreement with previous statistical studies of ULF wave PSD (e.g., Bentley
et al., 2018; Murphy et al. 2011).



203
204
205
206
207
208
209
210
211
212

213

214
215
216

217
218
219
220

221
222
223
224
225

Once processed, scrubbed, and tagged with the OMNI data and L* position there are over 1.7 million
magnetic and 0.46 million electric field PSD which span nearly an entire solar cycle and cover the entire
inner magnetosphere through a variety of solar wind and geomagnetic conditions. Figure 1 shows the
median B, (top) and E,(bottom) PSD at each frequency (y-axis) as function of Kp (x-axis) and L* (panels
1-8). Evident in Figure 1 is that power is concentrated at lower frequencies and increases at all
frequencies with Kp, consistent with previous studies (Ali et al., 2015; Brautigam & Albert, 2000; Rae et
al. 2012). Panels 9 of Figure 1 (far right) shows how the PSD varies with L* and Kp at a fixed frequency of
2.5 mHz. Consistent with previous studies this final panel demonstrates that ULF wave PSD increases
with both L* and geomagnetic activity as parameterized by Kp. The database of PSD spectra described
and shown in Figure 1 is used to estimate DE, and D5, as described in the next subsection.
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Figure 1: Statistical variation of the B, (top) and E ,(bottom) PSD. The spectral plots show the median PSD as a
function of frequency (y-axis), Kp (x-axis) and L* (panels 1-8). The line plots show the variation of PSD at fixed a
frequency of 2.5 mHz as a function of L* and Kp (color) for the entire dataset.

2.2 Radial Diffusion Estimation

Radial diffusion coefficients can be calculated in several ways (e.g., Fei et al., 2006; Schulz & Lanzerotti,
1974). In this work, since we are utilizing B) and E, we use the framework outlined by Ozeke et al.
(2014) and Mann et al. (2016) which follows the Brizard and Chan (2001) and Fei et al. (2006) formalism.

Ozeke et al. (2014) developed expressions for the electric and magnetic radial diffusion coefficients
which depend on the azimuthal electric field and compressional magnetic field PSD and which are
energy and azimuthal wave number independent (see equations 19 and 22). In their work Ozeke et al.
(2014) used in-situ THEMIS and GOES observations to quantify the compressional magnetic field B, PSD
and ground-based magnetometer observations to quantify the azimuthal electric field E, PSD. The
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statistical variation of these PSD as a function of Kp were substituted into equations 19 and 22 to derive
analytical Kp dependent function of D5, and DE, .

In a follow on study, Mann et al. (2016) expanded on the Ozeke et al. (2014) framework to derive event-
specific DfLs from ground-based magnetometers. Mann et al. (2016) averaged the ULF wave PSD over a
fixed frequency range and substituted it into equation 22 of Ozeke et al. (2014) to derive time-
dependent-event-specific diffusion coefficients. In their study Mann et al. (2016) used these event
specific diffusion coefficients to model the formation of the outer and storage radiation belts observed
by the Van Allen Probes in September 2012 (Baker et al. 2013). These authors demonstrated that event-
specific ULF wave radial diffusion coefficients coupled with dynamic boundary conditions reproduced
the double belt structure of the outer radiation belt, highlighting the importance of ULF wave radial
diffusion in controlling the dynamic topology of the outer radiation belt. Several follow-on studies have
used the same methodology as Mann et al. (2016) to derive event-specific ULF wave radial diffusion
coefficients to study the importance of radial diffusion radiation belt dynamics. In general, these studies
have demonstrated that radiation belt simulations using event specific radial diffusion coefficients
perform better, in that they more accurately reproduce radiation belt electron dynamics, than those
that do not (Ma et al., 2018; L. G. Ozeke et al., 2019, 2020).

KP
10°h 100t 0
1
-1
= 10 ~10""
. - :
> 10 >
S 1073 10
o 1074 D1O_3 6
1073 . _ . 10~* . _ .
3 4 5 6 7 3 4 5 6 7
L* L*

Figure 2: Median DZ, (left) and DZ (right) as function of L* and Kp for the entire dataset.

Here, we use the same approach as Mann et al. (2016) to derive in-situ Df; and D5, from the E, and B
PSD using equations 19 and 22 from Ozeke et al. (2014). Each spectrum from the PSD database is
averaged between 0.83-15.00 mHz. The averaged By and E, PSD are then substituted into equations 19
and 22 of Ozeke et al. (2014) providing an energy and azimuthal wave number independent estimate of
DE and DE, respectively. Figure 2 shows the median D5, (left) and DE, (right) as a function of L* and Kp.
The D; ;s are similar in magnitude to other studies and increase with L* and increasing geomagnetic
activity (e.g., Ozeke et al. 2014). At higher Kp values (e.g., 5 and 6), the magnitude of DZ is comparable
to Df, . This is consistent with recent work that has demonstrated that during the main phase of storms
the magnitude of DE ~ Df; (Olifer et al., 2019; Sandhu et al., 2021). It is important to note that in this
approach E, and B are treated independently whereas in fact they fact they are correlated via
Faraday’s law. In addition, the electric field includes both the electrostatic as well as the
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electromagnetic component. Regardless, recent work has demonstrated that the resulting diffusion
coefficients are within a factor of approximately two of the electromagnetic diffusion coefficients
(Lejosne, 2019). In the next section we describe the development of a radial diffusion model utilizing the
database of D;; s described here.

3 Radial Diffusion Model

ULF wave radial diffusion is a key component of radiation belt dynamics, driving periods of enhanced
electron loss via outward radial transport as well as electron acceleration via inward transport (e.g.,
Ozeke et al. 2017). In radiation belt models, the strength of ULF wave radial diffusion is specified by
diffusion coefficients D;; (e.g., Brizard & Chan, 2001; Fei et al., 2006). Several researchers have
developed models which specify the strength of radial diffusion coefficients as a function of
geomagnetic activity from both in-situ and ground-based observations of ULF wave PSD (Ali et al., 2015;
Brautigam & Albert, 2000; Ozeke et al. 2014). In this section we build on these studies using a database
of satellited-derived ULF wave Df, and D2, radial diffusion coefficients in an attempt to develop a more
robust characterization of the rates of ULF wave radial diffusion based on known drivers of ULF waves.
Here we describe the development of the radial diffusion model including a parametric study to identify
a robust set of independent variables as model inputs, a discussion of different model types/algorithms,
and training, testing, and performance of a final model. In section 4 we investigate the final model,
including its performance under different geomagnetic conditions (e.g., quiet and storm times) and
comparing to existing diffusion models.

3.1 Parametric Study

Previous studies developing radial diffusion models parameterized their diffusion coefficients based on
the planetary index Kp. Kp is a three-hour index ranging from 0 to 9; the indices correspond to
exponentially increasing perturbations of Earth’s magnetic field as characterized by several ground-
based magnetometers from around the world. While Kp is a good measure of geomagnetic activity, its
utility in models is limited for three reasons. First, Kp is a measure of the response of the coupled solar
wind-magnetosphere-ionosphere system as opposed to a driver of the dynamics of this system. Second,
the three-hour cadence is long compared to storm-time radiation belt time-scales (Olifer et al., 2018;
Ozeke et al. 2017). Finally, the exponentially increasing index limits the dynamic range of models,
requiring models to extrapolate to high values of Kp during very active times. For example, the
Brautigam and Albert (2000) and Ozeke et al. (2014) models are limited to using data derived for
conditions with Kp<6 while Liu et al. (2016) and Ali et al. (2016) diffusion models are limited to a
maximum Kp value of 5. Above these values the respective models must extrapolate to higher Kp values
to estimate the magnitude of radial diffusion coefficients under active conditions. Despite these
limitations, there is a key advantage in that the D;; s parameterized by Kp in that they can be easily
forecasted when forecasts of Kp are readily available (Glauert et al., 2021; Horne et al. 2021).

In this work we use the OMNI dataset to parameterize and develop models of radial diffusion at higher
cadence using known drivers of ULF waves. The OMNI data has a higher cadence (1 hour, 5 minute, and
1 minute) than the Kp index. This is ideal for radiation belt models as it provides increased temporal
dynamics and resolution. In addition, the OMNI dataset contains multiple parameters including the solar
wind vector magnetic field, dynamic pressure, the vector solar wind velocity, as well as multiple

9



295
296
297
298
299

300
301
302
303
304
305
306
307
308
309
310

311

312
313
314
315
316
317
318
319
320
321
322
323

geomagnetic indices. This allows for the development of models with multiple inputs which can increase
model performance; however, one must identify an ideal set of inputs which maximizes model
performance, while maintaining model stability (e.g., modelled D; ;s do not exhibit high variance with
certain combinations of variables) and simplicity (e.g., avoiding the addition of variables with little
impact).

In our development of new parameterizations of DEL and DEL we perform a parametric study of L* a
proxy of the third adiabatic invariant, Sym-H, the GSM y and z components of the interplanetary
magnetic field (IMF; By, and B,), solar wind speed V and x-component V,. GSM, and the solar wind
dynamic pressure (Pzy,) and density (n) to identify the best combination of independent variables (or
inputs) with which to develop models of DZ, and DE, . From this set of independent variables, L* is the
only required variable in our model as it defines the radial diffusion coefficients on a set grid as is
required for its implementation in radiation belt simulations. Unlike other models we use L* as it is more
physically meaningful then radial distance or L as it accounts for adiabatic changes due to the dynamic
magnetic field. The other independent variables selected for our parametric study correspond to known
drivers of ULF wave power in the magnetosphere (Bentley et al., 2018; Kepko et al., 2002; Mathie &
Mann, 2001; Murphy et al. 2015; Rae et al. 2019).
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Figure 3: Results of the parametric study. (a) and (b) Correlation and mean square error (MSE) of data and multi-
linear regression model for all combinations of independent variables (identified as integers on the x-axis). (c) A
zoom in of (a) and (b) highlighting the combination of independent variables resulting in a high correlation and low
MSE between the data and multi-linear regression model; the black line is the correlation and blue the MSE, the x-
axis shows the various combinations of independent variables.

To identify an optimized set of independent variables the parametric study loops through every
combination of input variables and fits a multi-linear regression model to the log;, of DLBL. For each
model we determine the model-data correlation and mean square error (MSE). Using the correlation
and MSE we identify the best combination of independent variables to subsequently train final models
of DB and D, . Figure 3 shows the results of this parametric study; panels a and b show the correlation
and MSE for every combination of variables (identified simply as integers on the x-axis). Evident in
panels a and b is that the correlation increases and MSE decreases for different combinations of inputs.
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Figure 3c focuses on the combination of variables which maximize the correlation and minimize the MSE
of the trained model. Evident in Figure 3c is that combinations of L*, Sym-H, IMF B, and P, coupled
with various combinations of IMF By, V, V, and n all lead to high correlations and low MSE. The
correlation peaks and MSE minimizes when all input variables are used in the parametric study;
however, this introduces significant multicollinearity between the input variables (e.g., B, and B, V and
V,) which can decrease model performance as well as adding additional complexity. From the
parametric study, L*, Sym-H, B,, V, and den, are identified as an optimized set of input parameters to
model DLBL (vertical line Figure 3c); the correlation is high, MSE low, and the correlation between input
variables is limited compared to the other combination of inputs while also maintaining a level of
simplicity by including only five independent variables. A similar dependence has also been discussed by
Dimitrakoudis et al. (2022), albeit for ULF wave power which is directly related strength of radial
diffusion. Finally note, that the correlations and MSE for this set of independent variables is on the same
order as those when Kp and L* are considered as independent variables. However, in this paper we
focus on developing a model based on known drivers of ULF wave power as opposed to variables and
indices which respond to ULF wave power and enhanced geomagnetic activity like Kp. Thus, for the
purpose of this study the combination of L*, Sym-H, IMF B,, V, and den are used as independent

variables train models of DZ and D, .

3.2 DLL Model

There are several methods and algorithms which could be used to generate or train models for the
parameterization of the electric and magnetic field D;;s. In this work we investigated two algorithms for
training models of DEL and DEL, a multi-linear regression model (Murphy et al. 2015, 2020), and a neural
network model (Bortnik et al., 2018). In general, both the multi-linear regression and neural network
models performed similarly using the independent variables identified in Section 3.1; both algorithms
produced similar correlations and MSEs when fitted to D2, and D, . Given the similar model
performance, we use a multi-linear regression model for the final parameterisation we present here due
to its simplicity as compared to the implementation, use, and sharing of neural networks.

In developing the multi-linear regression models, the DB, and Df, datasets are first regularized as a
function of L*. The regularization ensures that the distribution of D;; s as a function of L* is uniform, i.e.,
the number of D;; data points for any given L* is the same. This is important as the spacecraft spend
more time at apogee, high L*, which can bias any model by fitting to the bulk of the data which are
preferentially located in one part of the domain. The datasets are then randomly separated into
train/test sets using a 70/30 percent split. The models are trained on the train set while the test set is
used to verify performance. Before training, the independent variables are normalized between 0 and 1
by the maximum and minimum values in the train set; this normalization ensures the dependence on
each of the independent variables is assessed on a similar scale and generally increases the stability and
performance of the resulting models. Finally, we restrict the model space to L* € [3,7]; this
encompasses the outer radiation belt and in general improves model performance by removing highly
variable data at higher L*. Though this limits the dynamic range of the data used to train the linear
regression models, the linear regression models can still be used calculate D;; s outside this range.
However, care must be taken when extending the model outside these limits as it is not possible to test

11



364
365
366

367

368

369
370
371
372
373
374
375

376

377
378
379
380
381
382

the models performance in these regions. This final dataset is then fitted to the logy, of D5, and DE;
following the functional form shown in Equation 1; the D;; s can then be calculated as shown in
Equation 2.

log10(Dy) = ¢ + a;L* + a;Sym-H + a3B; + a4V + asPgyy (1)

DLL — 10c+a1L*+a25ymH+ang+a4Vt+a5den (2)

Figure 4 shows the results of the training of the linear models for D2 and D, . The left column of Figure
4 shows the residuals, defined as the difference between the model and satellite-derived logy D; ;.
(referred to as the residuals), for both the train and test datasets (red and blue) and both D2 and Df;
(top and bottom). For both DEL and DEL the residuals are normally distributed and peak around zero for
both test and train data sets (left column). This is ideal as it demonstrates that in general the modelled
D; s are similar to the satellite-derived D, ; s. Further, the similarity in the distributions of train and test
residuals indicates that the model does not suffer from overfitting (e.g., fitting only to the training data).
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Figure 4: The residuals for the multi-linear regression D and DE, models (top and bottom). Right, distribution of
the residuals for the train and test data sets (red and blue). Middle and right, observed D;; versus modelled D,
for the train and test data sets (blue and red); in each panel the correlation, r, and MSE are shown in the top left.
The middle and right columns of Figure 4 show the observed D;; versus the modelled D, ; for both the
train and test datasets (middle and right); the correlation and MSE are shown in the top left. For both
DE and DE, the correlation between the modelled and observed Dj; s in both the train and test data
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sets is high, ~0.86 accounting for ~74% of the variance within the data sets. For both models the MSE is
also low. Overall, the normal distribution of the residuals, high correlation and low MSE, coupled with
the similarities between the train and test data sets demonstrates the robustness and accuracy of the
trained models. Table S2, shows the fitting and normalization coefficients for both D;; models as
described by Equations 1 and 2.

3.3 Model Performance

In this section we investigate the residuals as a function of each independent variable to provide the
reader and specifically modelers with a clear overview of the model’s performance under varying
conditions. Figure 5 shows the probability distribution functions (PDFs) of the DfL and DEL model
residuals (top and bottom; modelled D;; minus satellite-derived D;;) as a function of the independent
variables (rows) for the combined train and test datasets. In general, both the DB, and DE, models
perform well as a function of the independent variables. The residuals are peaked around zero as a
function of the independent variable. However, this is not true for L* and for more extreme values of
Sym-H, B,, and Pyy,,. With regard to L*, both the Df; and Df;, models show bias at L* > 6 and L* < 4.5
where the residuals are skewed to either positive or negative values. The biases in L* are more
pronounced than those observed as a function of Sym-H, B,, and P4y, and are likely the result of biases
that exist in in the calculation of L*. Note, a similar distribution of residuals is observed when
considering only storm-time or quiet-time periods with this choice of independent variables. This
similarity is ideal as it demonstrates that both the DJ, and Df; radial diffusion models perform well
during both storm- and quiet-times. This was not the case for storm- and non-storm-time Kp-
parameterisation of D;; examined by Dimitrakoudis (2022) which highlights another pitfall of
parametrizing D;; by Kp as such parameterizations cannot account for both storm and quiet times. Due
to the similarity between storm-time, quiet-time, and all data, the storm- and quiet-time distributions
are shown in Supporting Information S3 and S4.
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Figure 5: PDFs of the DE and DE, model residuals calculated from the combined train and test data sets for each of
the independent variables.

While the overall performance of both the D2 and D, diffusion model is good (Figure 4) the biases as a
function of L* may introduce errors which can propagate through any radiation belt simulation. For this
reason, the residuals have been characterized as a function of L* so that the bias can be readily
removed from the models. To remove the bias, we use the residual-L* PDF. The data is binned in L* in
increments of 0.1 (corresponding to the grid size in many radiation belt simulations) and so are the
residuals. For each L* bin we fit a Gaussian of the form shown in equation 3, where A, is the height, 4;
is the center, and A, is the width (standard deviation) of the fitted Gaussian. This analysis is shown in
Supporting Information Figure S5 for both the D, and DE, models and several select L* bins. From
these fits we can use A;to shift the modelled D;; s by subtracting A; from the modelled D,
corresponding to a particular L* bin. In this way when the residuals are recalculated they peak around
zero.

T_Al)Z

F@) = Age A2 (3)
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Figure 6: Comparison of the PDFs of both D2, (top) and Df, (bottom) model residuals (left) and residuals-biased-
removed (right) of the combined train/test datasets

Figure 6 shows the results of the biased-removed D;; s calculated by shifting each D;; based on the
Gaussian fits and corresponding L* bin. The left column shows the PDF of residuals versus L* and the
right column shows the PDF of the residuals-biased-removed versus L* for the combined trained/test
datasets. Evident in Figure 6 is that once the bias is removed from the modelled D, s the residuals peak
around zero and the bias as a function of L* is no longer evident. In this analysis it is important to note
that bias as function of L* is discrete and not continuous; however, the bias has been characterized on
an L* grid typically used in radiation belt simulations. Finally, though not the purpose of characterizing
residuals, the Gaussian fits provide a very simple means to generate ensembles of D;; s which can be
used in radiation belt simulations. For example, the width and center of the Gaussian can be used with a
random number generator to sample from the fitted distribution of residuals and subtract the randomly
sampled residual from the modeled D;; s. In this way several D;; time series can be generated to run
ensemble simulations of the radiation belt response. Supporting Information Table S6 contains the
Gaussian fit parameters as a function of L* for both D5, and DZ; . Note that the shift in the residuals,
defined by the center of the Gaussian is largest for DZ, and that the DF, model performs better then the
DLBL. Finally, while these corrections help with the model residuals, they are generally small, not
exceeding a factor of ~2.

4 Event Case studies and Model Comparisons

In the previous section we discussed the development of new D5, and DE, models and assessed their
overall performance as a function of each independent variable. In this section we investigate the
dynamics and performance of the new DB and D, models during two case studies, an extended period
of quiet geomagnetic activity and the March 2013 Geospace Environment Modeling Quantitative
Assessment of Radiation Belt Modeling focus group storm challenge event (e.g., Engebretson et al.,
2018; Ma et al., 2018). For both cases we compare the D;; s derived here with the Ozeke et al. (2014),
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Brautigam and Albert (2000), and Lejosne (2019) D;;s. Note the Ozeke et al. (2014), Brautigam and
Albert (2000), and Lejosne (2019) D, ;s are all parameterized by L and not L*; however, since such
models are routinely used in simulations with no conversion to L* we are able to compare them to the

model developed here assuming their L is directly used as L* in simulations.
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Figure 7: The modelled D, ;s during an interval of quiet solar wind and low geomagnetic activity. From top to
bottom the left panel shows V, Py, B, Sym-H (black) and Kp (red), and the satellite derived D}, and Df;. The
middle and right panel show the modelled and model-bias-removed D;;s. From top to bottom the two right panels
show D5, DE,, the difference between the log of D2, and Df,, and then the model residuals calculated by
comparing the modelled D;; s to the satellite derived D;;s. The contours in the top two panels are contours of
constant D;;, the white dashed lines are placed at major tick marks to aid in comparison between the model and
model-bias-removed D;;s.

Figure 7 provides an overview of the solar wind and geomagnetic conditions as well as the satellite-
derived D;; s during a quiet solar wind and geomagnetic period in November 2013 (see caption for
details). At the start of the quiet period the solar wind speed was elevated and Sym-H slightly negative
for ~12 hours. Towards the end of the interval the IMF turned southward in association with a period of
enhanced dynamic pressure and another period of negative Sym-H lasting ~24 hours. Throughout the
quiet interval Kp remained low, below 3+. The observed D, ; s were largest at the start and end of the
quiet period, in association with elevated solar wind speeds and enhanced dynamic pressure and
southward IMF. Through the middle of the quiet period the observed D;; s were generally small. This
can be seen in the bottom two rows of the left panel. Throughout the quiet period the modelled D;; s
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(middle and right panels) showed the same overall pattern as the observed D;; s and the modelled
residuals remained consistent with the overall model performance (bottom panels of middle and right
column). There is also little difference between the modeled D;; s and the modeled-biased-removed
D, s through the duration of the quiet period. Finally, in both models DE, is larger then D5, by about an
order of magnitude; this is generally consistent with the difference between DE, and DZ, for higher
energy electrons in Ozeke et al. (2014).
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Figure 8: A comparison of bias-removed D; ;s derived here and those from Ozeke et al. (2014), Brautigam and
Albert (2000), and Lejosne (2019). From left to right the columns show DE, DE , and D], = DB, +DE . From top to
bottom the rows show the modelled D;; s derived here followed by the difference between the logs of modelled
D; ;s and those from Ozeke et al. (2014), Brautigam and Albert (2000), and Lejosne (2019).

During the quiet interval the modelled D;; s vary as one would expect. They were highest during
elevated solar wind speed and negative Sym-H, and again with southward IMF, increased Py,,,,, and

negative Sym-H. However, what is more interesting, is the comparison between the D;; s derived here
and existing models of D, s (Figure 8). The top row of Figure 8 shows the modelled D, DE,, and the
total DI, = DE, +DE,, with the biases-removed. The subsequent rows show the difference between the
logs of the model bias-removed D; ;s and the Ozeke et al. (2014), Brautigam and Albert (2000), and
Lejosne (2019) D;; s (see Figure caption for additional details). Compared to Ozeke et al. (2014), the
modeled DB, derived here is larger while the modeled D, derived here is larger at higher L* and smaller
at lower L*. The combined diffusion DY, shows the same pattern as DE, . For Brautigam and Albert
(2000) we only consider their electromagnetic term as the electrostatic term is typically ignored in
radiation belt simulations (Ozeke et al. 2013). In this case the electromagnetic diffusion is larger than
DE, at higher L* and smaller at lower L*; the modelled DY, shows the same pattern when compared to
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the Brautigam and Albert (2000) electromagnetic term. A similar pattern is also observed when
comparing with the Lejosne (2019) D;;s. In this case we only compare D] to those of Lejosne (2019) as
there is no analogous DE, or DB, . Note the Brautigam and Albert (2000) electromagnetic term and
Ozeke et al. (2014) DE; are very similar in magnitude.
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Figure 9: Solar wind dynamics, geomagnetic activity, satellite derived D;; s, and modelled D; ;s during a
geomagnetic storm in March 2013. The figure is in the same format as Figure 7. The red traces in the bottom two
panels of the left column and top two panels of the middle and right column show the position of the last close
drift shell throughout the interval.

Figure 9 and Figure 10 show the same set of observations, model-data comparison, and model-model
comparison as Figure 7 and Figure 8 for the March 2013 storm. The storm is associated with high-speed
solar wind, and ~1 day of large dynamic pressure and southward IMF (left panel Figure 9). This leads to a
large geomagnetic storm where the last closed drift shell reaches below geosynchronous orbit (red trace
in Figure 9 and Figure 10), Kp exceeds 6, and Sym-H reaches nearly -150 nT. During the main phase of
the storm, March 17, DE, peaks and even exceeds DE; during the same interval. This is consistent with
other studies which have shown D, to be large during the main phase of storms (Olifer et al., 2019;
Sandhu et al., 2021). Following the main phase and through the recovery phase both D2 and D, decay
reaching pre-storm levels before rapidly enhancing again on March 21 during a second interval of fast
solar speed and southward IMF. These patterns are seen in the satellite-derived, modelled, and
modelled-biased-removed D;; s (left, right and middle panels) and are consistent with what would be
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expected given the solar wind and geomagnetic activity. Comparing the modelled and modelled-bias-
removed D;; s there is generally little difference. The model bias-removed DEL is slightly smaller at high
and low L*. During the main phase D2 ~ DE, in both models. Finally, the residuals for both models are
normally distributed and peak around zero.
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Figure 10: A comparison of the bias-removed D, s derived here and those from Ozeke et al. (2014), Brautigam and
Albert (2000), and Lejosne (2019) during a geomagnetic storm in March 2013. The figure is in the same format as
Figure 8. The red lines show the position of the last close drift shell throughout the interval.

During the geomagnetic storm (Figure 10) the D; ;s derived here show a similar relation to the Ozeke et
al. (2014), Brautigam and Albert (2000), and Lejosne (2019) D; ;s as that observed during quiet times
(Figure 8). D5, is larger than that of Ozeke et al. (2014), especially during the main phase of the storm
(Figure 10 left). At high L*, DE, is larger than that of Ozeke et al. (2014) and Brautigam and Albert (2000)
and smaller at low L* (Figure 10 Figure 10 middle). Comparing D;; total (column 3) the D;; s derived
here are larger at higher L* and smaller at lower L* as compared to Ozeke et al. (2014) and Brautigam
and Albert (2000) (Figure 10 right). Compared to Lejosne (2019) the D, ;s derived here are larger during
the main phase of the storm and at higher L and are generally smaller at lower L* (Figure 10 bottom
right). Prior to the storm main phase, March 16, DE; and D, total derived here are smaller then the
other three models across all L*. During this period Kp is elevated compared to quiet values reaching a
Kp of 4, while the solar wind remains quiet accounting for the differences between the models.

5 Summary and Conclusions
In this work we utilize in-situ observations to develop a database of ULF wave power spectral density
(PSD) and satellite-derived ULF wave radial diffusion coefficients, D;;s. The database of satellite-derived
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Dy,s is used to construct a new L* dependent and optimized bias-removed model of DF, and Df, driven
by B;, Vsw, Payn and Sym-H. Overall, the new models of DE and D, perform well when compared to
the satellite-derived D;; s from which the models were developed.

The new bias-removed D;; s derived where compared to existing D;; models from Ozeke et al. (2014),
Brautigam and Albert (2000), and Lejosne (2019) during a period of quiet geomagnetic activity and the
March 2013 geomagnetic storm. If one ignores the main phase of the storm, the comparison of quiet
time Dy, s is similar to that of the geomagnetic storm; D,TL generally has a steeper gradient as compared
to existing models such that DLTL is larger at high L* and smaller at low L*. The steeper gradient in the
D; ;s derived here is likely due to the use of a L* and the TS05 model. The previous studies all used
dipole L which does not vary with varying solar wind and geomagnetic conditions. Whereas with L*, as
activity increases the Earth’s magnetic field is distorted resulting in changes in L*. For example, during
periods of enhanced solar wind and geomagnetic activity regions of high ULF wave power can be
associated with lower L* then would be in a dipole model; this leads to a steeper gradient in ULF wave
power as a function of L* then as a function of L. Overall, the steeper gradient here is likely to be more
representative of the actual radial diffusion as it accounts for variations in the third adiabatic invariant
L.

During the main phase of the storm D] is larger then D, Lejosne (2019) and smaller then the Ozeke et
al. (2014), Brautigam and Albert (2000) D;;s. And, prior to the storm onset, the D;; s derived here are
smaller at all L* values then the existing models. These differences are likely a result of the
parameterization used to quantify the D;;s. Lejosne (2019) uses the magnetopause boundary defined
by P4y and B, to derive the magnetic field perturbations which drive radial diffusion. Both Py,,,, and B,

are elevated for only a short period of time compared to Sym-H and V,,, which is likely why the D;; s
derived here are larger then those of Lejosne (2019) during the main phase. With regard to the period
prior to storm onset, Kp is elevated as compared to Sym-H, B,, Vs,,, and P4y, which is likely why the
Ozeke et al. (2014) and Brautigam and Albert (2000) D, ;s are larger then those derived here. These
periods of elevated Kp are associate with enhanced AE driven by magnetospheric substorms. Though
substorm activity leads to enhanced ULF waves in the form of short lived and irregular pulsations
(Jacobs et al., 1964), the actual enhancement in Kp is the result of the larger substorm bays (Cramoysan
et al., 1995) as opposed to ULF waves. Thus, its unclear whether this period would in fact lead to
enhanced radial diffusion as depicted by the Ozeke et al. (2014) and Brautigam and Albert (2000) D, ; s
as the resulting substorm-driven ULF wave activity is short lived. This difference is likely to propagate
through any radial diffusion simulation leading to significant differences in the strength of radial
transport and global topology of the radiation belt when using the different D;; models.

Finally, it is important to note that D2 , DE, and total D;; can reach rates greater then 10/day. Though
this is in agreement with other models, as illustrated in Error! Reference source not found. (see also
lifer et al., 2019; Sandhu et al., 2021), at these values the concept of radial diffusion will start to break
down as electrons would be moving inward on time-scales on the order of or shorter than a drift period.
In this regime coherent ULF wave-particle interactions may instead play an important role in the global
dynamics of the outer radiation belt (e.g., Murphy 2020; 2018). The effect that enhanced ULF wave

20



573
574
575

576
577
578
579

580
581
582

583
584
585
586
587

588
589
590
591
592
593
594
595

596
597
598
599
600
601
602
603
604
605
606

607
608
609
610
611

power, which leads to these large D;; s, and the effect they have on outer radiation belt is an important
avenue of future research and which can be investigated with global models (Degeling et al., 2008, 2013,
2014; Komar et al., 2017).

In summary, we have used over 40 years of satellite data to calculate D2 and Df, over a range of L*
from 3-7 in non-dipole field using TSO5. The diffusion rates are parameterised by an optimized set of
solar wind and geomagnetic variables and provide diffusion coefficients at much higher time resolution
and over a larger dynamic range then previous studies. The main results are:

e The gradientin our D} is generally steeper as compared to existing models, giving higher
diffusion rates at larger L* and lower rates at low L*.
. DEL is generally higher than DfLat all L* except during the main phase of storms.

e During the March 2013 magnetic storm D;; generally agrees with previous work except for the
initial phase of the storm where diffusion rates are lower at all L* < 5. We suggest that this is
due to substorm activity which is captured in the Kp models and not in our new models.

The results are available for use in global radiation belt models to develop better reconstructions of the
radiation belt environment (see Supporting Information for model coefficients). Future work will test
both the model and model bias-removed D;; performance in radiation belt simulations under varying
geomagnetic conditions to determine if the new models improve the performance of radiation belt
simulations as compared to existing D;; models. In addition, future studies will investigate the
performance of our new models as compared to existing models when using forecasted inputs. Finally,
future studies will investigate including additional model inputs and independent variables and the time
history of independent variables, along with more complex algorithms for regression as a path to
improved D;; models and radiation belt simulations.

Acknowledgments

This work is partly funded by UKRI grants ST/V006320/1 (STFC) and NE/P017185/2 and NE/V002554/2
(NERC); for the purpose of open access, the author has applied a Creative Commons Attribution (CC BY)
license [where permitted by UKRI, ‘Open Government Licence’ or ‘Creative Commons Attribution No-
derivatives (CC BY-ND) license may be stated instead] to any Author Accepted Manuscript version
arising. TD is supported by the Air Force Office of Scientific Research under award number FA9550-19-1-
7039. SG and RBH were supported by NERC grant NE/V00249X/1 (Sat-Risk), NERC National Capability
grants NE/R016038/1 and by NERC National Public Good activity grant NE/R016445/1. AJH and AB’s
contribution was funded by the Space Precipitation Impacts group, a NASA Goddard Internal Science
Funding Model grant. IRM is supported by a Discovery Grant from Canadian NSERC, and by a UK Royal
Society Wolfson Visiting Fellowship. LO is supported by the Canadian Space Agency.

Open Research

The THEMIS data is available via SPEDAS, PySPEDAS or the THEMIS data server,
http://themis.ssl.berkeley.edu/data/themis. The GOES data is available from the NOAA National Centers
for Environmental Information website, https://www.ngdc.noaa.gov/stp/satellite/goes/. Van Allen
Probes data is available at the Coordinated Data Analysis Web (CDAWeb) https://cdaweb.gsfc.nasa.gov/.

21



612
613
614
615
616
617
618
619
620

621

622

623

The OMNI data is available at https://omniweb.gsfc.nasa.gov/. The higher level database used to

develop the D;; models is available via Zenodo, https://zenodo.org/record/7569732, doi:

10.5281/zenodo.7569732. The database contains two data sets, a magnetic field data set and an electric
field data set. The magnetic field dataset contains the derived power spectral density for the
compressional magnetic field B from THEMIS, Van Allen Probes, and accompanying position (MLT, L, L*
TS05), solar wind, and geomagnetic data. The electric field contains the derived power spectral density
for the azimuthal electric field E, from THEMIS, Van Allen Probes, and GOES and accompanying position
(MLT, L, L* TSO5), solar wind, and geomagnetic data. See the Zenodo record for more description of the
derived database and datasets.
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626 Figure 11: Statistical variation of the B (top) and E ,(bottom) PSD. The spectral plots show the median PSD as a
627 function of frequency (y-axis), Kp (x-axis) and L* (panels 1-8). The line plots show the variation of PSD at fixed a
628 frequency of 2.5 mHz as a function of L* and Kp (color) for the entire dataset.
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633 Figure 13: Results of the parametric study. (a) and (b) Correlation and mean square error (MSE) of data and multi-
634 linear regression model for all combinations of independent variables (identified as integers on the x-axis). (c) A
635 zoom in of (a) and (b) highlighting the combination of independent variables resulting in a high correlation and low
636 MSE between the data and multi-linear regression model; the black line is the correlation and blue the MSE, the x-
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Figure 17: The modelled D; ;s during an interval of quiet solar wind and low geomagnetic activity. From top to
bottom the left panel shows V, Py, B;, Sym-H (black) and Kp (red), and the satellite derived DE and DE . The
middle and right panel show the modelled and model-bias-removed D;;s. From top to bottom the two right panels
show D5, DE, the difference between the log of D2, and Df,, and then the model residuals calculated by
comparing the modelled D;; s to the satellite derived D;;s. The contours in the top two panels are contours of
constant D;;, the white dashed lines are placed at major tick marks to aid in comparison between the model and

model-bias-removed D;;s.
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660 Figure 18: A comparison of bias-removed D;; s derived here and those from Ozeke et al. (2014), Brautigam and
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662 bottom the rows show the modelled D, ;s derived here followed by the difference between the logs of modelled
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666 Figure 19: Solar wind dynamics, geomagnetic activity, satellite derived D;; s, and modelled D;; s during a

667 geomagnetic storm in March 2013. The figure is in the same format as Figure 7. The red traces in the bottom two
668 panels of the left column and top two panels of the middle and right column show the position of the last close
669 drift shell throughout the interval.
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672 Figure 20: A comparison of the bias-removed D, ;s derived here and those from Ozeke et al. (2014), Brautigam and
673 Albert (2000), and Lejosne (2019) during a geomagnetic storm in March 2013. The figure is in the same format as
674 Figure 8. The red lines show the position of the last close drift shell throughout the interval.
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