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SUMMARY5

Cross-correlations of ambient seismic noise are widely used for seismic velocity imaging, mon-6

itoring, and ground motion analyses. A typical step in analyzing Noise Cross-correlation Func-7

tions (NCFs) is stacking short-term NCFs over longer time periods to increase the signal qual-8

ity. Spurious NCFs could contaminate the stack, degrade its quality, and limit its use. Many9

methods have been developed to improve the stacking of coherent waveforms, including earth-10

quake waveforms, receiver functions, and NCFs. This study systematically evaluates and com-11

pares the performance of eight stacking methods, including arithmetic mean or linear stacking,12

robust stacking, selective stacking, cluster stacking, phase-weighted stacking, time-frequency13

phase-weighted stacking, N th-root stacking, and averaging after applying an adaptive covari-14

ance filter. Our results demonstrate that, in most cases, all methods can retrieve clear ballistic15

or first arrivals. However, they yield significant differences in preserving the phase and am-16

plitude information. This study provides a practical guide for choosing the optimal stacking17

method for specific research applications in ambient noise seismology. We evaluate the per-18

formance using multiple onshore and offshore seismic arrays in the Pacific Northwest region.19

We compare these stacking methods for NCFs calculated from raw ambient noise (referred to20

as Raw NCFs) and from ambient noise normalized using a one-bit clipping time normalization21

method (referred to as One-bit NCFs). We evaluate six metrics, including signal-to-noise ratios,22

phase dispersion images, convergence rate, temporal changes in the ballistic and coda waves,23

relative amplitude decays with distance, and computational time. We show that robust stacking24
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is the best choice for all applications (velocity tomography, monitoring, and attenuation stud-25

ies) using Raw NCFs. For applications using One-bit NCFs, all methods but phase-weighted,26

time-frequency phase-weighted, and N th-root stacking are good choices for seismic velocity27

tomography. Linear, robust, and selective stacking methods are all equally appropriate choices28

when using One-bit NCFs for monitoring applications. For applications relying on accurate29

relative amplitudes, both the robust and cluster stacking methods perform well with One-bit30

NCFs. The evaluations in this study can be generalized to a broad range of time-series analysis31

that utilizes data coherence to perform ensemble stacking. Another contribution of this study is32

the accompanying open-source software, which can be used for general purposes in time-series33

stacking.34

Key words: Seismic interferometry, Seismic tomography, Earthquake ground motions, Seis-35

mic noise, Time-series analysis, Coda waves36
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1 INTRODUCTION37

Cross-correlations of ambient seismic noise have been widely used to image the Earth’s elastic (L. Feng and Ritzwoller 2019;38

Shapiro et al. 2005; S.-M. Wu et al. 2021; X. Yang and Gao 2018, 2020) and anelastic structure (Prieto et al. 2009), model39

ground motions (Marine A Denolle et al. 2013, 2014, 2018; Kwak et al. 2017; Viens and Marine A Denolle 2019; Viens et al.40

2017), and monitor transient velocity changes in the shallow subsurface (F. Brenguier et al. 2008; Clements and Marine A41

Denolle 2018; Donaldson et al. 2019; K.-F. Feng et al. 2021; Olivier et al. 2019; Q.-Y. Wang et al. 2017; Z. Yang et al. 2022).42

The Noise Cross-correlation Functions (NCFs) are typically computed in short-time windows (such as hours or days) after43

diverse pre-processing on the raw ambient noise waveforms (Bensen et al. 2007; L. Feng and Ritzwoller 2019). Stacking of44

NCFs over a longer period (such as weeks, months, or years) is a common procedure for most applications utilizing NCFs (e.g.,45

Seats et al. 2012). For seismic tomography, the final stack over the entire time period is used to make waveform or travel-time46

measurements. Seismic monitoring requires stacking over a subset of time windows, balancing the temporal resolution and the47

coherence of the NCFs (Hadziioannou et al. 2011). These applications rely on the phase information of ballistic (first arrival)48

and/or coda waves. Studies of ground motion prediction and attenuation tomography, on the other hand, require accurate49

relative amplitude measurements between station pairs. Because NCFs consist primarily of dispersive surface waves, preserving50

the relative amplitude also preserves the spectral content. Therefore, the performance of stacking and the preservation of either51

phase or amplitude information are important to ensure the robustness of the scientific results.52

The most commonly used stacking method is the arithmetic mean of the data over temporal or spatial samples, referred53

to as Linear stacking. For NCFs, substantial temporal variation may exist across individual short time windows, which could54

result from the seasonal change of the location and strength of the microseismic sources (Bensen et al. 2007; L. Ermert et55

al. 2016; L. A. Ermert et al. 2021; Tian and Ritzwoller 2017; X. Yang et al. 2019), disruption from tectonic signals (Baig56

et al. 2009), or unknown instrumental failures. It is important to use an appropriate stacking method to extract coherent NCFs,57

particularly when strong variations of the data quality are present. Many more advanced methods have been developed to58

improve the stacking of NCFs, and time-series data in general and overcome the limitations of Linear stacking. Rückemann59

(2012) provides a summary of the theoretical background of several stacking methods to improve the common-mid-point60

gathers in seismic reflection data. A systematical evaluation of the performance of different stacking methods in processing61

real NCF data is highly desirable and required for optimal processing strategies.62

In this paper, we compare eight algorithms used for stacking NCFs and evaluate their performance for canonical research63

applications. These methods include: robust stacking (Pavlis and Vernon 2010), selective stacking (modified from Liu et al.64

2009; Olivier et al. 2015), cluster stacking (a new method), Phase-Weighted Stacking (PWS; Schimmel and Paulssen 1997),65

time-frequency Phase-Weighted Stacking (tf-PWS; Baig et al. 2009; Li et al. 2017; Schimmel and Gallart 2007; Schimmel66

et al. 2011; Thurber et al. 2014; Zeng and Thurber 2016), N th-root stacking (Millet et al. 2019; Rückemann 2012), and linear67

stacking after applying an Adaptive Covariance Filter (ACF; Nakata et al. 2015). We exclude the stacking methods that use68
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Figure 1. Seismic stations used in this study. The USArray Transportable Array and Cascadia Initiative Ocean Bottom Seismographs (red open triangles) form

a composite dataset that is referred to as the ”Amphibious” dataset. The 1993-1994 Cascadia broadband XZ linear array (blue dots) is referred to as the ”XZ”

dataset. Labeled stations are used as virtual sources and receivers in the examples in this paper.

the curvelet transform (Laurent Stehly et al. 2011) and singular value decomposition (Moreau et al. 2017), as these focus69

specifically on short-term convergence alone. We assess the performance of the eight algorithms using six different metrics70

relevant to specific research applications. Because the one-bit pre-processing is designed to reduce the influence of earthquake-71

like transient signals and to improve the quality of individual NCFs (Bensen et al. 2007), we benchmark our tests using both72

the raw and one-bit normalization pre-processing techniques. The development of new methods and computer codes and the73

performance tests from this study aim to guide the community in choosing the appropriate stacking method for ambient-noise74

seismology use cases, though they can also be generalized to process other time-series data.75

2 AMBIENT NOISE CROSS-CORRELATIONS76

This study uses the Pacific Northwest as a natural laboratory (Fig. 1). We gather data from 29 Cascadia Initiative Ocean77

Bottom Seismographs (OBS) (network code: 7D; https://doi.org/10.7914/SN/7D_2011), 15 US Transportable Array78

stations (network code: TA; https://doi.org/10.7914/SN/TA), and 43 stations from the 1993-1994 Cascadia subduction79

zone experiment (network code: XZ; Nabelek et al. 1993). We group the data into two datasets: 1) the composite dataset from80

the Cascadia Initiative OBSs and onshore TA stations is referred to as the ”Amphibious” dataset; 2) the data from the East-West81

XZ linear array in northern Oregon is referred to as the ”XZ” dataset. All data are publicly accessible from the seismic data82

archive of the Incorporate Research Institutions for Seismology Data Management Center (IRIS DMC).83

We use the SeisGo Python toolbox to download the continuous seismic waveforms and compute the NCFs (X. Yang et al.84

2022a). The cross-correlation function in SeisGo was modified from NoisePy (Jiang and Marine A Denolle 2020). We download85
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Figure 2. Examples of ambient noise cross-correlation functions (NCFs) between (a-b) OBS station 7D.J33A and onshore station TA.G03D and (c-d) XZ

linear array stations XZ.A02 and XZ.A24. The NCFs are filtered at 0.1-0.4 Hz. The left panels are NCFs computed with raw waveforms and the right panels

are NCFs computed after applying one-bit time-domain normalization. The dashed cyan boxes mark the windows used for the analysis of the preservation

of transient phase changes (Section 4.4) using (a-b) coda waves and (c-d) ballistic phases. On the top of each panel, we show the linear stack as arithmetic

averages. The NCFs are color-coded by the normalized amplitudes (red is 1, blue is -1).

the vertical component of the continuous waveforms in 12-hour segments. We select data from 10/1/2011 to 7/31/2012 for the86

Amphibious dataset and from 6/1/1993 to 5/31/1994 for the XZ dataset. We remove the instrument responses and convert87

the waveforms to displacements, followed by down-sampling to 5 Hz. We compute the NCFs in 6-hour windows sliding88

every 3 hours. The data is demeaned and detrended for each 6-hour segment. We attempt to remove transient signals in the89

ambient noise that will contaminate the noise cross correlations by removing the windows with anomalous amplitudes. For90

that, we calculate the maximum absolute raw noise amplitude of the segment and the standard deviation of the raw noise91

amplitudes of all segments. We discard waveform segments with peak amplitudes greater than 10 times the standard deviation,92

as implemented in NoisePy.93

We construct two sets of cross-correlations using the raw waveforms (Viens et al. 2017) and waveforms normalized in the94

time domain using the sign function (e.g., Bensen et al. 2007; Shen et al. 2012). We denote the two datasets as Raw NCFs and95

One-bit NCFs, respectively. To avoid spectral leakage, the short 6-hour time windows are tapered using a Tukey window with96

a cosine fraction of 0.05. We then apply a Fourier transform to the short-window segment and compute the cross-correlation in97
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the frequency domain using the following equation:98

X = F−1 (F∗(ds)F(dr)) , (1)

where X is the NCF between time series ds (virtual source) and dr (receiver), F is the Fourier transform operator, F∗ stands99

for the complex conjugate of the Fourier transform, and F−1 is the inverse Fourier transform operator.100

We show a few examples of the computed NCFs (bandpass filtered at 0.1-0.4 Hz) in Fig. 2 for both pre-processing strate-101

gies. The asymmetry of the NCF is a known effect of noise source directionality (Stehly et al. 2006). The first-order observation102

is that the individual NCFs contain incoherent noise that may overwhelm the coherent signals. The NCFs from the XZ land sta-103

tion pair all show clear ballistic phases over the entire period range of this analysis (Fig. 2c-d). For the amphibious station pair104

7D.J33A-TA.G03D, clear ballistic phases are present between 50s and 100s for most of the NCFs between October 2011 and105

April 2012, for both Raw (Fig. 2a) and One-bit (Fig. 2b) NCFs. However, the ballistic phases are almost invisible for the NCFs106

after May 2012. These ”noisy” NCFs may contaminate the linear stack of the NCFs. The simple time-domain representation in107

Fig. 2 only provides a qualitative visual assessment. We later quantify the performance using different stacking methods with108

multiple metrics.109

3 STACKING METHODS110

This section describes the algorithms beyond the arithmetic mean (or Linear stacking) for optimally stacking NCFs. Most111

of these methods are adapted from the published literature. All methods can be generalized as weighted stacking with various112

ways of computing the stacking weight, which could be either trace weight or sample weight. We express the weighted stacking113

scheme as:114

b =

N∑
i=1

widi, (2)

where b is the final stack. For trace-weighted stacking, di is the ith NCF trace, wi is the stacking weight for the ith NCF trace115

satisfying
∑

wi = 1, and N is the total number of NCF traces. For sample-weighted stacking, di is the ith sample of the116

arithmetic average or linear stack of all NCF traces, wi is the stacking weight for the ith sample satisfying
∑

wi = 1, and N is117

the total number of samples in each NCF trace. Under the stacking formulation of Equation 2, Linear stacking is a special case118

of trace-weighted stacking where all traces have the same weight (wi = 1). In the methods described in this section, the Robust119

(Section 3.1), Selective (Section 3.2), and Cluster (Section 3.3) stacking methods are all trace-weighted stacking methods. The120

phase-weighted (Section 3.4), time-frequency phase-weighted (Section 3.5), N th-root (Section 3.6), and adaptive covariance121

filter (Section 3.7) stacking methods are all sample-weighted stacking methods. In the following subsections, we describe the122

computation of the stacking weights for each method in detail.123
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3.1 Robust stacking124

Pavlis and Vernon (2010) first introduced Robust stacking to improve the accuracy of picking phase arrival times in seismo-125

grams from teleseismic earthquakes. We adapt this generic, iterative, weighted stacking method to process NCFs. The weight126

in Robust stacking is based on waveform de-coherence and penalizes the NCF that deviates too much from a reference stack.127

The weight wi of the ith NCF, di, for the jth iteration is calculated as (Pavlis and Vernon 2010):128

wj
i =

|bj · di|
||di||||ri||

, (3)

where bj is the reference stack of the jth iteration, || ∗ || is the L2-norm operator, and ri = bj − (bj · di)di is a modified129

residual quantifying the difference between the current reference stack bj and the ith NCF scaled by the dot product of the130

two time series. The weight wi penalizes twice the data that does not resemble the reference stack. The first element is the dot131

product between the NCF and the stack: bj · di|/||di||. The second is the modified residual ri: if it is high, the 1/||ri|| is small,132

and wi is low. The weights can be calculated over either the entire NCF or a specific time window that contains the seismic133

phase of interest. For the examples in this paper, we compute the weights over the entire NCF, though our software package134

allows the user to specify the time window. After computing the weights for all NCFs, we normalize them to their sum and use135

them to produce the updated stack.136

The initial reference stack b1 is chosen as the median NCF, following the observation of Pavlis and Vernon (2010) that the137

median is more representative of the concentration of data in the presence of outliers. In our implementation, the users may138

specify another trace as the initial stack, such as the Linear stack. The iterative procedure stops when a convergence criterion139

is satisfied. We adopt the criterion proposed by Pavlis and Vernon (2010):140

|bj − bj−1|
||di||M

< ϵ, (4)

where M is the number of samples in each NCF time-series and ϵ is a small number, with a default value of 10−5.141

3.2 Selective stacking142

In the presence of strong noise, it could be effective to stack only a subset of the NCF ensemble that exceeds a quality threshold143

and to ignore the low-quality NCFs. This concept, called selective stacking, has been implemented in previous studies (e.g.,144

Olivier et al. 2015; Thangraj and Pulliam 2021). The signal-to-noise ratio (SNR) or the correlation to the reference can be145

used to evaluate the quality of each NCF. Olivier et al. (2015) used the SNR around the expected S-wave arrival time to146

reconstruct S-waves in the stacked NCF. Liu et al. (2009) proposed the weighted stack of common-midpoint gather using147

the local correlation within the moving window to improve the SNR and suppress the random noise in the stacked trace. To148

enhance the coherence of the signal, we use a criterion based on the similarity, quantified as the Pearson correlation coefficient149

in our implementation, between each NCF and the reference NCF. In our implementation, by default, the reference NCF is150
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initialized as the Linear stack of the entire ensemble (similar to Liu et al. 2009). As in Robust stacking, the user can specify151

any trace, such as the median NCF, as the reference stack and the window used to estimate the similarity. Selective stacking152

sets the weights of low-similarity NCFs to zero, computed as:153

wi =

{
0, ρb,di

≤ ρt
1, ρb,di > ρt

. (5)

where ρb,di
is the Pearson correlation coefficient between the individual trace and the reference NCF and ρt is the user-defined154

threshold. Note that the criterion used in this study is equivalent to the global correlation described in Liu et al. (2009) rather155

than the local correlation for the sake of simplicity in thresholding. A similarity threshold allows us to discriminate the set of156

NCFs to keep or discard (weight is set to zero). We then compute the Linear stack over the subset of NCFs with a Pearson157

correlation coefficient above the threshold and discard the NCFs below the threshold. Similar to robust stacking, we implement158

the selective stacking method in an iterative scheme, with the same convergence criterion as in Equation 4. In our examples,159

we use a correlation coefficient threshold of 0.160

3.3 Cluster stacking161

An alternative method to ranking waveforms according to a specific similarity metric is to group them into clusters and perform162

the stack for each cluster. Viens and Iwata (2020) proposed the idea of clustering the NCFs using a dimensionality reduction163

technique (principal component analysis), as exploited by Toghramadjian et al. (2021). In our implementation, we use the164

Tslearn Python toolkit (Tavenard et al. 2020) for k-means clustering of the NCF waveforms based on the Euclidean distance.165

We impose two clusters to separate NCFs with higher quality from those with lower quality.166

After clustering the NCFs into two clusters, the final stack b is computed as a weighted stack of the two cluster centers167

b =
∑
i=1,2

wiCi, (6)

where Ci (i=1, 2) are the centers (sample averages or linear stacks) of the two clusters and wi (i=1, 2) are the weights of the168

cluster centers. The center stacking weights, wi (i=1, 2), are computed as169

wi=1,2 =


{

0, pi < max(p1, p2)
1, pi >= max(p1, p2)

, cc < h

pi/(p1 + p2), cc ≥ h
, (7)

where cc is the correlation coefficient between the two cluster centers C1 and C2, h is the similarity threshold specified by the170

user, and pi (i=1, 2) is the relative peak amplitude of the cluster center, computed as the ratio of the maximum and root-mean-171

square of the absolute amplitudes. The relative peak amplitude we use here is an equivalent measure to the signal-to-noise ratio172

of the cluster center. In our examples, p1 and p2 are computed over the entire NCF. Our implementation also allows the user to173

specify the window of interest to compute the maximum of the absolute amplitudes. According to Equation 7, the two centers174
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are weighted by the relative peak amplitude when their correlation coefficient exceeds the threshold (h=0.75 for our examples).175

Otherwise, we use the center with a higher peak amplitude as the final stack.176

3.4 Phase-weighted stacking177

Phase-weighted stacking (PWS) computes the weight for each trace by the coherency of the instantaneous phases (Schimmel178

and Paulssen 1997). Our implementation of the PWS method follows the description in Schimmel and Paulssen (1997). Readers179

are referred to Schimmel and Paulssen (1997) for detailed equations and procedures of the PWS method. The final stack is180

constructed as a non-linear weighted stack where each sample is weighted by the instantaneous phase. The key parameter for181

PWS is a harshness parameter that quantifies the fall-off of the weight of each NCF with decreasing similarity. We set the182

harshness to 2, as in Schimmel and Paulssen (1997).183

3.5 Time-frequency phase-weighted stacking184

Schimmel and Gallart (2007) and Schimmel et al. (2011) proposed an improved phase-weighted stacking method that computes185

the weight in both the time and frequency domains. This method, referred to as tf-PWS, projects each seismic trace into the186

time-frequency domain through the Stockwell transform (S-transform; Stockwell et al. 1996). Baig et al. (2009) adapted the187

stacking method based on a more efficient discrete orthogonal S-transform that is introduced by Stockwell (2007). The imple-188

mentation of tf-PWS in this study follows the description by Schimmel et al. (2011) using the original S-transform (Equations189

4-7 therein). Readers are referred to Schimmel and Gallart (2007) and Schimmel et al. (2011) for detailed formulation of190

the tf-PWS stacking method. Similar to PWS, the tf-PWS is primarily controlled by a harshness parameter that determines191

the sharpness of the transition between phase similarity and dissimilarity. We set the harshness to 2 for our examples, as in192

Schimmel et al. (2011).193

3.6 N th-root stacking194

N th-root stacking method is commonly employed in array seismology (Kanasewich et al. 1973; Millet et al. 2019; Muirhead195

1968; Rost and Thomas 2002; Rückemann 2012; Schimmel and Paulssen 1997). It is a nonlinear stacking method that takes196

the N th-root of the absolute amplitudes of each individual trace and sums them together. The summation is then raised to the197

power of N to assign the sample weight. The polarity of each sample is recovered with a sign function of the summation. Our198

implementation follows the description in Millet et al. (2019) (their equation 18) and can be summarized as:199

b = sign(r)|r|n, (8)

where b is the final stack, n is the specified order of root, r = 1
N

∑N
i=1 sign(di)|di|1/n, di is the ith NCF trace, and N is the200

total number of NCF traces. We use the square root (i.e., n=2) in our examples.201
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Figure 3. Examples of the stacked NCFs between station pairs (a-b) 7D.J33A-TA.G03D and (c-d) XZ.A02-XZ.A24, using different methods. The left panels

are the stacking results for Raw NCFs and the right panels are the stacking results for One-bit NCFs. All NCFs are filtered at 0.1-0.4 Hz after stacking. The

stacking algorithm is labeled on the left of each panel. The SNR in decibel (Equation 10) is indicated above each trace on each side of the correlations. The

thick solid and dashed lines mark the starts and ends of the signal and noise windows, respectively.

3.7 Adaptive covariance filter stacking202

Nakata et al. (2015) introduced an adaptive covariance filter (ACF) to suppress incoherent noise in seismic data based on203

the adaptive polarization filter (Du et al. 2000; Samson and Olson 1981). We implement the ACF stacking method following204

Nakata et al. (2015), which the readers are referred to for detailed formulations of the method. The final stack is the Linear205

stack after applying the ACF. We use 1 as the harshness of the filter.206

4 EVALUATION AND COMPARISON OF STACKING ALGORITHMS207

We implement the stacking algorithms described in Section 3 as a standalone Python package StackMaster (X. Yang208

et al. 2022b). The package is available as a repository on Python Package Index (PyPl). It can be installed with:209

pip install stackmaster. In this paper, we install StackMaster with the SeisGo toolbox (X. Yang et al. 2022a) under210
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Figure 4. Stacked Raw NCFs of the Cascadia amphibious array from 7D.J33A to other land receivers using different stacking methods, filtered at 0.1-0.4 Hz.

(a-h) The results using Linear, Robust, Selective, Cluster, PWS, tf-PWS, Nth-root, and ACF stacking methods, respectively. The red solid lines and the blue

dashed lines outline the positive-lag signal window and the negative-lag signal window, respectively, used to compute the SNR in Fig. 7. The signal and noise

windows are determined with the same method as in Fig. 3a-b. See Fig. 1 for station locations.

the same Anaconda environment. We apply the stacking techniques to the Amphibious and the XZ datasets. Fig. 3 shows the211

stacking results for the two station pairs in Fig. 2. Figs 4-6 and S1-S3 in the supplement are the stacking results of all station212

pairs from the virtual sources at 7D.J33A (Figs 4-5 and S1-S2) and at XZ.A02 (Figs 6 and S3).213

Figure 5. Same as Fig. 4 but for NCFs from 7D.J33A to other OBS receivers. To contain the visually identified ballistic phases from these OBS station pairs,

we use a different velocity range (0.5-1.0 km/s) here to predict the signal window of the weakly coherent signals. We extend the window for an additional 60

s after the latest predicted arrival. See Fig. 1 for locations of the OBS receivers.



12 Yang et al.

Figure 6. Stacked Raw NCFs between the XZ linear array stations from XZ.A02 to other receivers, filtered at 0.1-0.4 Hz. (a-h) The results using Linear,

Robust, Selective, Cluster, PWS, tf-PWS, Nth-root, and ACF stacking methods, respectively. The red solid lines and the blue dashed lines outline the positive

signal window and the negative signal window, respectively, used to compute the SNR in Fig. 7. The signal and noise windows are determined with the same

method as in Fig. 3c-d. See Fig. 1 for station locations.

We then evaluate and compare the performance of these stacking methods. Recognizing that NCFs are used in multiple214

applications (e.g., seismic velocity tomography, monitoring, and attenuation/ground motion analysis), we evaluate the per-215

formance of the algorithm over a range of metrics: 1) signal-to-noise ratios, 2) surface wave dispersion, 3) convergence of216

short-term stacks to the long-term stack, 4) transient phase changes, 5) peak amplitudes of ballistic phases, and 6) computa-217

tional expense. We compare the methods below according to each metric. It is worth noting that there are multiple parameters218

that can be tuned for each stacking method, though we only focus on the most commonly used or suggested parameters in this219

study. In Section 5, we discuss the choice of stacking methods for different categories of applications using NCFs.220

4.1 Signal-to-noise ratios221

We use the SNR of the ballistic phase as a proxy for the quality of the NCF stack. In this study, we define the SNR, R, as222

R =

[
rms(|Asignal|)
rms(|Anoise|)

]2
, (9)

where rms() is the root-mean-square operator, |Asignal| are the absolute amplitudes within the signal window, and |Anoise|223

are the absolute amplitudes within the noise window. For the NCFs from amphibious station pairs (Figs 3a-b, 4, and S1), the224

signal window is defined by a fast wave traveling at 4.5 km/s, a slow wave traveling at 2 km/s, and we add 100 s to the end of225

the window. For OBS station pairs (Figs 5 and S2), we use a velocity range of 0.5-1.0 km/s to predict the signal window and226

add 60 s after the latest predicted arrival time. For the XZ dataset (Figs 3c-d, 6, and S3), the signal window is defined by waves227

traveling between 2 km/s and 3.7 km/s, extending for an additional 20 s. For both datasets, the noise window has the same228
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Figure 7. Comparison between the mean signal-to-noise ratios (SNRs) for the NCFs shown in Figs 4-6 and S1-S3. (a-b) Mean SNRs for the Cascadia

amphibious array Raw and One-bit NCFs, respectively. The SNRs for the land (open circles and triangles) and OBS (dots and filled triangles) stations are

plotted separately. (c-d) Results for the XZ linear array NCFs from Raw and One-bit NCFs, respectively. The error bars show the standard deviations of the

SNRs.

length as the signal window with an offset of 30 s after the end of the signal window. Considering the relatively large dynamic229

range of the computed SNRs, we convert the ratios to decibel scales for all examples in this paper to assist the comparison and230

visualization, with231

SNR = 10log10R. (10)

It is worth noting that the SNR is unitless and the conversion in Equation (10) is mainly for scaling.232

We observe notable variations in the SNRs of the ballistic phases retrieved using different stacking methods. From the233

single-pair examples (Fig. 3), the ballistic phases are most prominent on the positive lags from all stacking results, with234

relatively weaker phases on the negative lags, shown as lower SNRs overall. For the Cascadia amphibious station pair, the235

SNRs range from 9.9 to 35.2 for the Raw NCFs and 9.1-31.7 for the One-bit NCFs (Fig. 3a-b). For the XZ station pair, the236

SNRs range from 10.9 to 25.3 for the Raw NCFs and 11.2-40.5 for the One-bit NCFs (Fig. 3c-d). For all datasets, the highest237

SNRs are achieved with the PWS method, while the ACF method produces the lowest SNRs. The stacking results using the238

N th-root method also show relatively high SNRs. The SNRs of other stacking results are at a comparable level.239

The stacking results of all station pairs from the same virtual source provide a more holistic comparison of the performance240

of different methods (Figs 4-6 and S1-S3). We use the mean SNRs across all station pairs to quantify the comparison of stacks241
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with different methods (Fig. 7). From the visual inspection of the move-out plots (time-lags vs. inter-station distances), the242

stacks of Raw (Figs 4 and 6) and One-bit (Figs S1 and S3) NCFs have comparable quality overall for both the Amphibious and243

the XZ datasets. This is also evident from the comparable mean SNR values of the two pre-processing methods (Fig. 7). For244

the Cascadia Amphibious dataset, most of the NCFs from the OBS receivers are relatively noisy (Figs 5 and S2), with mean245

SNRs lower than those from the onshore receivers (Fig. 7a-b). This may result from the contamination of tilt and compliance246

noise at most OBS stations, a well-known problem in offshore data (Tian and Ritzwoller 2017). Most of the stacked XZ NCFs247

show clear ballistic phases (Figs 6 and S3), with much higher mean SNRs than those of the Amphibious dataset (Fig. 7). In248

all examples with land receivers, the ballistic phases are dominantly visible at positive lag times, representing surface waves249

propagating away from the virtual sources, which we focus on for the following description. For all four datasets (land receivers250

only for the Amphibious NCFs), the PWS method produces the highest SNRs, while the standard deviation of the SNRs is also251

the largest. For the Cascadia Amphibious NCFs (Fig. 7a-b), N th-root stacking yields the second highest SNRs, while the SNRs252

of other stacking results are at a comparable level of 0-10 for both the Raw and One-bit NCFs. For the XZ NCFs (Fig. 7c-d),253

the lowest SNRs are observed with ACF stacking, though the ballistic phases are still clearly retrieved (Figs 6h and S3h).254

4.2 Surface wave dispersion255

Surface waves are dispersive, which means that their wavespeed depends on the frequency of the wave. Lower frequency256

(longer period) surface waves generally travel faster than higher frequency (shorter period) waves and are more sensitive to257

greater depths. This frequency-depth characteristic makes surface waves a popular choice for elastic and anelastic seismic258

tomography of the subsurface. Preserving the surface wave dispersion in the stacked NCFs is, therefore, one of the critical259

metrics to evaluate the performance of different stacking methods. We assess this performance by extracting and comparing260

the phase-velocity dispersion images. We use the Raw and One-bit NCFs from the XZ linear array between the virtual source261

at XZ.A02 and all other receivers (Fig. 6) to evaluate this metric.262

We follow the phase-shift dispersion analysis procedure described in Park et al. (1998, 1999) and Ryden et al. (2004).263

We implement the procedure in the time domain through narrow-band filters. We narrow bandpass the seismograms using a264

Butterworth filter progressively between 1 and 15 seconds period, with a moving period band of 2 seconds and a step size of265

0.1 s. We then shift the seismogram with a phase shift of r/v, where r is the inter-station distance and v is the phase velocity266

that varies between 1.5 to 5.5 km/s, with a step of 0.05 km/s. We trim the data over an adaptive window length that scales with267

the central period, computed as268

Li = aiTi, (11)

where Li is the window length for the ith period Ti. ai is the scaling factor, which is determined by269

ai = amin + (i− 1)
amax − amin

NT
, (12)
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Figure 8. Dispersion images extracted from the Raw NCFs between the virtual source at XZ.A02 and other receivers using the time-domain phase-shift

method through multichannel analysis of surface waves (e.g., Park et al. 1998, 1999; Ryden et al. 2004). (a-h) Results from the stacks using Linear, Robust,

Selective, Cluster, PWS, tf-PWS, Nth-root, and ACF stacking methods, respectively. The color scale shows the power sum normalized at each velocity value.

The NCFs are shown in Fig. 6

where amin and amax are the minimum and maximum of the scaling range and NT is the number of period steps. For our270

examples, amin = 1 and amax = 2. Finally, to extract the dispersion image, we calculate the energy (sum of squared amplitude)271

of the windowed, filtered, shifted, and stacked seismograms. The images are shown in Figs 8 and 9.272

We apply this procedure to all station pairs with the common virtual source XZ.A02, with only results from the positive273

Figure 9. Same as Fig. 8 but for stacked One-bit NCFs as shown in Fig. S3 in the supplement.
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Figure 10. Comparison of the dispersion images in Figs 8 and 9. (a) The average dispersion image of the One-bit NCF stacks in Fig. 9, which is used as the

reference for the comparison. (b) Structural Similarity Index (SSI) between individual dispersion images for Raw (dots) and One-bit (squares) NCF stacks and

the reference dispersion image as in (a). The dispersion images are shown in Figs 8 and 9.

lags of the NCFs being shown here. We only analyze the results from station pairs with inter-station distances of at least 1.5274

times the wavelength for each velocity-period pair to remain in the far-field regime.275

The dispersion images from the One-bit stacks are largely similar to each other (Fig. 9). This contrasts with the great276

variability of the dispersion images from the Raw NCF stacks (Fig. 8). We use the average dispersion image of the One-bit277

results (Fig. 10a) as a reference. We compute the Structural Similarity Index (SSI; Z. Wang et al. 2004) between the reference278

(Fig. 10a) and individual dispersion images from the NCF stacks using different methods (Figs 8 and 9). The SSI is widely279

used in the analysis of image degradation or alteration, with 1 meaning the two images are identical and 0 meaning they are280

completely different. The SSI results over the entire period range of 1-15 s for both the Raw and One-bit dispersion images are281

shown in Fig. 10b. To examine the performance of different stacking methods at different period bands, we also compute the282

frequency-dependent SSI, as shown in Fig. 11.283

Figure 11. Frequency-dependent comparison of the dispersion images with the average dispersion image of the One-bit NCF stacks (Fig. 10a). (a) Structural

Similarity Index (SSI) between individual dispersion images for Raw NCF stacks with a period bin of 2 s and a step of 0.1 s. The x-axis shows the central

period of each bin. (b) Same as (a) but for One-bit NCF stacks. The dispersion images are shown in Figs 8 and 9.
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Figure 12. Convergence to long-term stacks with the increasing number of NCFs, shown as the equivalent time span of NCFs in days. (a-b) Correlation

coefficients (CC) between the progressive stacking results and the stacks over the entire time period for Raw and One-bit NCFs between station pair 7D.J33A-

TA.G03D. The pre-stack NCFs are shown in Fig. 2a-b. We only use NCFs before 4/1/2012 for the convergence analysis to exclude the much noisier data in

later dates. All stacks are filtered at 0.1-0.4 Hz. (c-d) Same as (a) and (b) but for the XZ station pair XZ.A02-XZ.A24. The pre-stack NCFs are shown in Fig.

2c-d. We use all NCFs for this station pair.

The reference dispersion image (Fig. 10a) resembles major features of the One-bit dispersion images using different284

stacking methods (Fig. 9). Over the entire period range of 1-15 s, the dispersion images using the PWS and N th-root methods285

for One-bit NCFs differ the most from the reference, with SSI below 0.8 (Fig. 10b). All other stacking methods show higher286

SSI values. In contrast with the One-bit results, most of the dispersion images for the Raw NCFs possess relatively lower SSI287

values (< 0.6), except for the Robust stacking method, which shows a SSI of close to 0.8. The frequency-dependent results288

(Fig. 11) show that all One-bit NCF stacks (Fig. 11b) and the Robust stack of the Raw NCFs (Fig. 11a) retrieve the most289

consistent dispersion images at the period range of 4-9 s. Outside this period range, the SSI values for the PWS and N th-root290

stacks decrease dramatically. All stacking results of Raw NCFs, except for the PWS result, show SSI values of > 0.6 in a291

narrow band of 3-6 s (Fig. 11a). In summary, the Robust stacking method preserves the dispersion information the best for the292

Raw NCFs, with a dispersion image closest to the average of One-bit NCF stacks. For the One-bit NCFs, the Linear, Robust293

and tf-PWS stacks perform comparably well in preserving the dispersion information over the entire examined period range294

from 1 to 15 s.295
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4.3 Convergence of short-term stacks to the long-term stack296

In measuring the temporal changes associated with the elastic properties of the crust, we often stack a subset of the short-term297

NCFs over an intermediate time period (e.g., F. Brenguier et al. 2008; Clements and Marine A Denolle 2018; Donaldson et al.298

2019; Hadziioannou et al. 2011; Olivier et al. 2019; Seats et al. 2012; Yuan et al. 2021). The time needed to reach convergence299

limits the temporal resolution of the monitoring of the change in elastic properties. Here, we quantify the rate of convergence300

as the time duration of NCFs needed to achieve a certain threshold of the correlation coefficient between the stack of the subset301

NCFs and the reference stack of NCFs over the entire period. We compute the correlation coefficient between the reference302

stack and the stack of a progressively growing subset of NCFs ordered by date and time with an increment of 5 NCFs (Fig. 12).303

The rate of convergence varies among methods (Fig. 12). Overall, the PWS, tf-PWS, and N th-root stacking results have304

the fastest convergence to the reference stack (Fig. 12a, b, and d), except for the Raw NCFs from the XZ station pair (Fig.305

12c) where the PWS method converges the slowest. The ACF stacking result converges the slowest for the Raw NCFs of the306

Cascadia amphibious station pair (Fig. 12a). The Cluster stacking method converges the slowest for the One-bit NCFs from307

both station pairs (Fig. 12b and d), though it shows a fast convergence rate for the Raw NCFs of the XZ station par (Fig. 12c).308

The strong fluctuation of the correlation coefficient using Cluster stacking may be due to the fact that the k-means clustering309

method involves some random processes in assigning the clusters. Most stacking results achieve high (≥ 0.7) correlation310

coefficients with more than about 35 days (Fig. 12a-b). For the XZ NCFs to achieve a similar correlation coefficient, it takes311

about 50 days (Fig. 12c-d). From the results shown here, the rate of convergence depends strongly on the specific dataset and312

the quality of individual short-term NCFs.313

4.4 Transient phase changes314

Seismic monitoring using ambient noise interferometry relies on the phase difference of seismic waves measured at different315

lag times (e.g., F. Brenguier et al. 2008; Clements and Marine A Denolle 2018; Donaldson et al. 2019; Hadziioannou et al.316

2011; Olivier et al. 2019; Seats et al. 2012; Yuan et al. 2021). We analyze how these phase changes are preserved with different317

stacking methods by estimating the velocity changes (dv/v) over time. We utilize the trace stretching method (e.g., Florent318

Brenguier et al. 2008; Lobkis and Weaver 2003; A. Obermann et al. 2014; Yuan et al. 2021) to measure the dv/v between the319

two example station pairs: 7D.J33A-TA.G03D and XZ.A02-XZ.A24 (Fig. 13). The trace stretching method estimates dv/v by320

maximizing the correlation coefficient between the individual NCF coda with the reference coda through linearly stretching321

or squeezing the waveform within the specified time window. The Python function for trace stretching is built in the SeisGo322

interface (X. Yang et al. 2022a). For all results shown in Fig. 13, we measure the velocity changes in the frequency range of323

0.1-0.4 Hz. For all datasets, we use a sub-stacking window length of 96 hours (4 days). The measuring windows are 86-106 s324

for 7D.J33A-TA.G03D to capture the coda waves and 29-49 s for XZ.A02-XZ.A24 containing the ballistic phases. The dv/v325

measuring windows for both datasets are marked in Fig. 2.326
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Figure 13. Transient velocity changes (dv/v) using the trace stretching method measured from NCFs from (a) 7D.J33A-TA.G03D and (b) XZ.A02-XZ.A24.

The pre-stack short-term NCFs and the measuring windows are shown in Fig. 2. We use coda waves for the amphibious station pair (7D.J33A-TA.G03D)

and ballistic phases for the XZ station pair (XZ.A02-XZ.A24). The coda waves for the XZ station pair (both Raw and One-bit NCFs) are not coherent and

produce unstable dv/v measurements, regardless of the stacking method used. For 7D.J33A-TA.G03D, we only analyze the NCFs before 6/2/2012, during

which we have clear coda phases on most of the NCFs. We sub-stack the NCFs over 96 hours (4 days) for all station pairs. We only plot dv/v results with the

post-stretching correlation coefficient (CC) of ≥ 0.6.

For each station pair, different stacking methods produce very similar patterns of changes in dv/v over the observational327

periods (Fig. 13). An exception is the dv/v measurements from the PWS stacking result of the Raw XZ NCFs, with stronger328

variations and much lower after-stretching correlation coefficient compared to other stacking results. After applying a threshold329

of geq 0.6 for the post-stretching correlation coefficient in plotting Fig. 13, there is no PWS measurement left. For 7D.J33A-330

TA.G03D, a general increase in seismic velocity from -0.5% to 0.5% is observed from both Raw and One-bit NCFs using all331

stacking methods (Fig. 13a-b). For XZ.A02-XZ.A24, the dv/v fluctuates between -0.5% and 0.5% from June to July of 1993332

(Fig. 13c-d). From August 1993 to the end of the observational period, the dv/v varies between 0% and 1% (Fig. 13c-d). While333

we do not intend to interpret these dv/v measurements, we note the great similarity of the measurements across methods. All334

stacking methods show comparable results in preserving the phase differences for coda waves from both Raw and One-bit335

NCFs and the ballistic phases from One-bit NCFs. The PWS method fails with this metric for ballistic phases from the XZ336

Raw NCFs.337
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Figure 14. Peak absolute amplitudes of the positive lags of the XZ Raw NCFs within the predicted ballistic arrival windows computed using a velocity range

of 2-3.7 km/s and corrected by
√
D, D is the inter-station distance. In each panel, we only show the attenuation parameter, α, and its standard deviation,

σ. The exponential fit from this study is shown as the red shaded area. For reference, we also show the amplitude decay estimated based on the attenuation

parameters from Prieto et al. (2009) (P2009; α=0.0064±0.0013; gray shaded area) and Mitchell (1995) (M1995; α=0.002±0.001; blue shaded area). See Fig.

6 for the moveout plots of the stacked NCFs.

Figure 15. Same as Fig. 14 but for measurements from the XZ One-bit NCFs. See Fig. S3 in the supplement for the moveout plots of the stacked NCFs.
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4.5 Peak amplitudes of ballistic phases338

Important information about the Earth’s anelastic structure can be retrieved from the relative amplitudes of NCFsPrieto et al.339

2009. Here, we focus on the amplitude decay with distance and ignore the spatial variations in relative amplitudes that are340

subject to additional uncertainties. The NCFs chosen in this example are the same as in Fig 6 and supplementary Fig S3,341

filtered at 0.1-0.4 Hz. The NCFs at each station pair are stacked over the entire duration of data availability. We then measure342

the peak absolute amplitudes of the predicted ballistic waves for each station pair NCF stack within the time windows computed343

with a velocity range of 2-3.7 km/s (Figs 6 and S3). The XZ broadband network is an East-West trending linear array in central344

Oregon, United States (Fig. 1). It is located at the active Cascadia convergent margin, spanning from the Cascadia Volcanic Arc345

in the East to the coastal mountains in the West. Considering that noise is dominantly generated by the oceanic microseisms346

in this frequency range (e.g., Webb 1998; Y. Yang and Ritzwoller 2008), the XZ linear array provides an appropriate dataset347

for analyzing the attenuation of surface waves extracted from NCFs, minimizing the azimuthal dependence of noise sources.348

In this work, we only aim to compare the stability of the relative amplitude information with different stacking methods and349

do not intend to advocate for an estimate of attenuation, which might still depend on the distribution of noise sources (Laurent350

Stehly and Boué 2017). The microseismic noise is generated by the ocean and dominantly propagates eastward. Therefore,351

XZ.A02 is an appropriate choice for a virtual source (Fig. 1). We only measure the attenuation from the positive lags of the352

NCFs.353

Assuming that the main signals of the NCF are fundamental-mode surface waves, the maximum absolute amplitudes of354

the stacked NCFs decay with distance following the relation:355

A(D) = A0/
√
D exp(−αD), (13)

where D is the inter-station distance, A0 is a reference amplitude at the virtual source, α is a measure of ”attenuation” that356

could be attributed to intrinsic and scattering attenuation that further reduces the ground motion. To fit α, we correct for357

the geometrical spreading by scaling the amplitudes with a factor of
√
D. The peak absolute amplitudes are then fit to an358

exponential function y = e−αx. We estimate the best fit through least square linear regression of the peak amplitudes in a359

natural logarithmic space using the following steps: 1) calculate the natural log peak absolute amplitudes, 2) fit all data points360

using a least square linear regression (scipy.stats.linregress), 3) correct the data with the best fit model and measure361

misfit, 4) compute the mean and standard deviation of the misfit, 5) remove the outliers (data points that are more than one362

standard deviation away from the mean), and 6) use the remaining subset of the data to repeat step-2 to get the final linear fit363

parameters. The slope parameter in the linear regression from Step-2 is the attenuation factor α. The error in slope estimate364

given by scipy.stats.linregress is then used as the uncertainty of α, as shown in Figs 14 and 15.365

We only use subsets of the NCFs in Figs 6 and S3 that have inter-station distances between 37 km, which is the wavelength366

of a 0.1 Hz wave traveling at a velocity of 3.7 km/s, and 240 km. The exponential fit and the parameters the uncertainties are367

shown as the red shaded areas in Figs 14 and 15. For comparison, we also plot the independent attenuation measurements368
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Figure 16. Computing times spent on stacking as a function of the number of NCFs to stack in a 5-step increment for (a) Raw and (b) One-bit NCFs from

station pair 7D.J33A-TA.G03D.

from Prieto et al. (2009) (α=0.0064±0.0013), who used spectral methods to measure attenuation in the Los Angeles basin369

in southern California using ambient noise NCF filtered at 0.2 Hz, and Mitchell (1995) (α=0.002±0.001) for active tectonic370

regions measured at 0.1-0.2 Hz using a global compilation of earthquake surface waves.371

The decay coefficient α can be measured with all methods and for all pre-processing techniques. However, there is great372

variability in the model parameter among the methods (0.0023-0.02 for Raw NCFs and 0.0023-0.0168 for One-bit NCFs; Figs373

14-15). For the Raw NCFs (Fig. 14), the attenuation parameters measured from the stacking results using Linear, Robust,374

Selective, and Cluster methods are similar to the values by Mitchell (1995). The coefficients using the N th-root and ACF375

methods are comparable to that found by Prieto et al. (2009). The coefficient from the tf-PWS method falls in-between the376

values provided by Mitchell (1995) and Prieto et al. (2009). For the estimates from One-bit NCFs (Fig. 15), the result using377

the Robust method overlaps the most with the value proposed by Mitchell (1995). The Linear, Selective, Cluster, and tf-PWS378

stacking results all fall in-between the values by Mitchell (1995) and Prieto et al. (2009). The estimates of α from the N th-root379

and ACF stacks are similar to that used by Prieto et al. (2009). Compared to the attenuation measurements from the Raw NCFs,380

the attenuation measurements from the One-bit NCFs seem to be more sensitive to the choice of stacking methods, shown as381

larger variations among different methods. For both datasets, the PWS method tends to overestimate the attenuation factors, α,382

with much higher values than other methods.383

4.6 Computational expenses384

The computational efficiency of different stacking methods varies significantly among different stacking methods but does not385

change between Raw and One-bit NCFs. The compute times are estimated from a single core 3.6 GHz Intel Core i9 CPU.386

We compare the compute time spent stacking subsets of the NCFs (with an increment of 5 NCFs) using the different stacking387

methods (Fig. 16). The tf-PWS stacking method uses the most CPU time, while Linear stacking is the fastest method (Fig. 16).388

Most of the time in tf-PWS is spent on computing the Stockwell transform on individual NCFs. While our implementation389
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Table 1. Our recommendations of stacking methods for major research applications using NCFs based on the evaluation metrics in Section 4. For methods

denoted with (∗), see the appropriate sections for additional discussion.

Applications Evaluation metrics Recommendations

Velocity tomography (Sec-

tion 5.1)

Signal-to-noise ratio (Section 4.1), surface wave dispersion (Section

4.2), and computational expenses (Section 4.6)

Raw: Robust

One-bit: Linear, Robust, Selective, ACF, Clus-

ter

Monitoring (Section 5.2) Signal-to-noise ratio (Section 4.1), surface-wave dispersion (Section

4.2), convergence of short-term stacks to the long-term stack (Sec-

tion 4.3), transient phase changes (Section 4.4), and computational

expenses (Section 4.6)

Raw: Robust

One-bit: Linear, Robust, Selective, tf-PWS(∗)

Anelastic properties (Sec-

tion 5.3)

Signal-to-noise ratio (Section 4.1), surface wave dispersion (Section

4.2), peak amplitudes of ballistic phases (Section 4.5), and compu-

tational expenses (Section 4.6)

Raw: Robust

One-bit: Robust, Cluster

follows that of the original Stockwell transform, Baig et al. (2009) found a more efficient algorithm to compute the Stockwell390

transform. The total time to perform tf-PWS is about six orders of magnitudes longer than that of the Linear stacking method.391

For example, tf-PWS takes about 400 seconds to stack 300 NCFs, while Linear stacking takes 0.0005 seconds. The ACF392

stacking method is the second most expensive method in terms of computing time, with about 4 seconds to stack 300 NCFs.393

This is because the ACF method needs to compute the spectrum of each individual trace as well as the cross-spectrum in394

moving windows. The Robust, Selective, and Cluster methods take about 0.02-0.4 seconds to stack 300 NCFs. The N th-root395

method is the second fastest method following the Linear stack. These methods all scale nearly linearly with the number of396

NCFs to stack.397

5 CHOICE OF STACKING METHOD398

In this section, we discuss the choice of stacking methods for different applications that utilize NCFs. We focus on the following399

major applications: 1) tomography of velocity structures, 2) monitoring of transient velocity changes, and 3) characterization400

of anelastic properties. These three research applications extract different information from the NCFs: 1) seismic velocity401

tomography using surface waves requires the dispersion information of the ballistic surface-wave phases, 2) seismic monitoring402

requires dispersion and slight variations in phase information of the ballistic phases and/or the coda waves, and 3) the imaging403

of seismic attenuation and prediction of strong ground motion relies on relative amplitudes of the ballistic phases. Although404

the performance could vary with different datasets, we provide here the advantages and limitations of the stacking methods for405

each application in Table 1.406
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5.1 Stacking for tomography of velocity structures407

Ambient noise tomography typically requires extracting the surface wave dispersion information from the stack of all NCFs408

for each station pair (e.g., Bensen et al. 2007). The fundamental mode surface waves are most commonly visible in the data,409

though there are some studies using higher modes for imaging (e.g., Jiang and Marine A. Denolle 2022; G. Wu et al. 2020).410

Our recommendation for seismic velocity tomography is based on the following metrics: signal-to-noise ratio (Section 4.1),411

surface wave dispersion (Section 4.2), and computational expense (Section 4.6).412

Based on our examples in Section 4.1, except for the OBS-OBS station pairs, the PWS method produces stacks with the413

highest average SNRs, though with a large variance (see Figs 4-7 and S1-S3 in the supplement). The stacks using the N th-root414

method also have relatively high SNRs. Other stacking methods perform at a comparable level in terms of the SNRs of the415

ballistic phases. The phase dispersion is better recovered using the Robust method than others for Raw NCFs over the entire416

examined period of 1-15 s (Fig. 10b), especially in the period range of 4-9 s (Fig. 11b). When using One-bit NCFs, all but417

the PWS and N th-root methods perform well overall in the dispersion analysis (Figs 9, 10b, and 11b). However, the high418

computational cost of the tf-PWS method makes it impractical for processing large data sets for tomographic imaging (Fig.419

16). In summary, our recommendations for tomographic imaging are the Robust stacking for Raw NCFs and the Linear, Robust,420

Selective, Cluster, and ACF methods for One-bit NCFs.421

5.2 Stacking for monitoring of transient velocity changes422

Seismic monitoring uses ballistic or coda wave interferometry to infer small changes in the subsurface from short-time stacks423

of NCFs (e.g., F. Brenguier et al. 2008; Clements and Marine A Denolle 2018; Donaldson et al. 2019; Lobkis and Weaver424

2003; Anne Obermann and Hillers 2019). A faster convergence of the NCF would lead to a higher temporal resolution in425

seismic monitoring. The convergence is often hindered and thus limits the temporal resolution (Hadziioannou et al. 2011). It is426

therefore important to find the optimal length of data that yields a reasonable convergence of the NCF stack. Meanwhile, time-427

lapse imaging requires that the dispersion of surface waves remains stable through time (e.g., Bergamo et al. 2016). Therefore,428

our recommendation for seismic monitoring using ambient noise interferometry is based on the following additional metrics429

on top of those for tomography (Sections 4.1, 4.2, and 4.6): convergence of short-term stack to long-term stack (Section 4.3)430

and transient phase changes (Section 4.4).431

Regarding the convergence metric, all stacking methods show comparable performance (Fig. 12). The relatively large432

variability in the rate of convergence using the Cluster stacking method may lead to artifacts in monitoring. The ACF method is433

also relatively slow in converging to the long-term stack. It is worth noting again that the rate/time of convergence also depends434

on the quality of specific datasets. The dispersion analyses are most stable using the Robust method for Raw NCFs. For One-bit435

NCFs, all but the PWS and N th-root methods are appropriate choices (Figs 8-11).436

For transient phase changes, all but the PWS method perform comparably well for all of the four examined examples (Fig.437
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13). The tf-PWS method may be used to process the NCFs when long computational times are acceptable to the user, though438

its computational efficiency needs to be improved to process large datasets (Fig. 16), or when using Graphic Processing Units439

(Zeng and Thurber 2016). In summary, our recommendations for seismic monitoring are the Robust method for Raw NCFs440

and the Linear, Robust, and Selective methods for One-bit NCFs.441

5.3 Stacking for characterization of anelastic properties442

The relative amplitudes of NCFs have been used to characterize the seismic attenuation properties of the Earth’s lithosphere443

(Prieto et al. 2009) and the ground motion patterns (e.g., Marine A Denolle et al. 2013, 2014; Viens et al. 2017). Therefore,444

in addition to the metrics pertinent to tomography (Sections 4.1, 4.2, and 4.6), our recommendation for the characterization of445

anelastic properties using NCFs also evaluates the stability of peak absolute amplitudes of ballistic phases (Section 4.5).446

Mitchell (1995) measured attenuation from a compilation of global earthquake records from a variety of tectonic settings,447

including active margins, which are similar to the setting for the XZ linear array at the Cascadia margin. Because it is measured448

from earthquake surface-wave data, we argue that the attenuation parameter by Mitchell (1995) can serve as an independent449

benchmark in our evaluation. With this criterion, the Linear, Robust, Cluster, and ACF stacking methods are ranked as the top450

four among all of the methods for Raw NCFs (Fig. 14). However, the requirement of a reliable measurement of frequency-451

dependent attenuation and dispersion (Figs 8, 10a, and 11a) would narrow the choice down to Robust stacking for Raw NCFs.452

For One-bit NCFs, the Robust and Cluster stacking methods rank the best among all methods. Our recommendations for453

attenuation and ground motion studies, or any applications utilizing relative amplitudes, are the Robust method for Raw NCFs454

and the Robust and Cluster methods for One-bit NCFs.455

6 CONCLUSIONS456

NCFs are widely used in seismic velocity and attenuation imaging, monitoring, and ground motion analyses. The stacking of457

NCFs over longer time periods is needed for most applications utilizing NCFs to increase the strength of the coherent signals.458

There have been many temporal stacking methods developed to improve the stacking of NCFs. We compare eight temporal459

stacking methods, including Linear, Robust, Selective, Cluster, Phase-Weighted, time-frequency Phase-Weighted, N th-root,460

and Adaptive Covariance Filter stacking methods, to investigate their performance to enhance the quality of the stacked NCF.461

We examine the performance of these methods with six metrics, including signal-to-noise ratios, surface-wave phase velocity462

dispersion, the convergence of short-term stacks to the long-term stack, wavespeed changes, peak amplitudes, and computa-463

tional expenses. Our analyses demonstrate that although all methods are able to retrieve clear ballistic phases, their spectral464

contents and peak amplitudes vary strongly across methods. Based on multiple evaluation metrics, we recommend the Robust465

method for all three categories of applications using Raw NCFs, including velocity tomography, monitoring, and attenuation466

studies. For tomography using One-bit NCFs, all methods except for Phase-Weighted, time-frequency phase-weighted, and467
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N th-root stacking methods are good choices. For monitoring using One-bit NCFs, the Linear, Robust, and Selective stack-468

ing methods are preferred choices, with the possibility of using time-frequency Phase-Weighted stacking for processing small469

datasets. For applications utilizing One-bit NCFs to extract relative amplitude information, both the Robust and Cluster stack-470

ing methods perform well. The findings in this study provide a practical guideline for choosing the appropriate stacking method471

for major applications utilizing NCFs. This work did not address the validity and effects of pre-processing techniques on our472

various use cases, but future work might address this (e.g., Fichtner et al. 2020). The open-source computer codes produced in473

this study can also be used for general time series stacking analyses.474
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