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Key Points:

o Urban overheating is the exceedance of locally-defined thermal thresholds
that lead to negative impacts on people and urban systems

o Exposure, sensitivity and adaptive capacity of people and infrastructure,
and socio-political-economic factors determine overheating impacts

¢ Research and application should provide integrated solutions to mitigate
exposure, reduce sensitivity, and increase adaptive capacities.

Abstract

Urban overheating, driven by global climate change and urban development, is
a major contemporary challenge which substantially impacts urban livability
and sustainability. Overheating represents a multi-faceted threat to well-being,



performance, and health of individuals as well as the energy efficiency and econ-
omy of cities, and it is influenced by complex interactions between building,
city, and global scale climates. In recent decades, extensive discipline-specific
research has characterized urban heat and assessed its implications on human
life, including ongoing efforts to bridge neighboring disciplines. The research
horizon now encompasses complex problems involving a wide range of disci-
plines, and therefore comprehensive and integrated assessments are needed that
address such interdisciplinarity.

Here, the objective is to go beyond a review of existing literature and provide
a broad overview and future outlook for integrated assessments of urban over-
heating, defining holistic pathways for addressing the impacts on human life.
We (i) detail the characterization of heat exposure across different scales and
in various disciplines, (ii) identify individual sensitivities to urban overheating
that increase vulnerability and cause adverse impacts in different populations,
(iii) elaborate on adaptive capacities that individuals and cities can adopt, (iv)
document the impacts of urban overheating on health and energy, and (v) dis-
cuss frontiers of theoretical and applied urban climatology, built environment
design, and governance toward reduction of heat exposure and vulnerability at
various scales. The most critical challenges in future research and application
are identified, targeting both the gaps and the need for greater integration in
overheating assessments.

Plain Language Summary

Many major cities are faced with compounding effects of climate change and
rapid urbanization. One of the main challenges that results is urban overheating,
which leads to negative impacts on human life (deteriorating health, productiv-
ity, and wellbeing) and urban infrastructure. Heat exposure in cities, however,
is only the trigger and there are other factors that influence impacts. Urban
heat vulnerability exists when sensitive people and infrastructure are exposed
to extreme heat, and negative impacts ensue if there is a lack of capacity to
respond and adapt. Accordingly, to combat overheating challenges, it is criti-
cal that multi-disciplinary solutions are integrated to mitigate exposure, reduce
sensitivity, and increase adaptive capacities.

This paper provides a review of urban overheating literature, defining path-
ways for addressing the impacts on human life. We review the state-of-the-art
methods used to quantify heat exposure, detail the sensitivity of people and
infrastructure to overheating, and elaborate on the adaptive capacities that in-
dividuals and cities can undertake in response. We provide recommendations
for both researchers and policymakers that will minimise overheating impacts.
These recommendations range from modifications to urban and building design
to engaging citizens and informing urban overheating governance.



1 Introduction: Current and projected urban
overheating in the face of future urban develop-
ment and climate change

The 215 century is acknowledged to be an urban century. By 2050, an additional
2.5 billion people are expected to live in urban areas, with up to 90% of this
increase concentrated in the regions of Asia and Africa, particularly in India,
China and Nigeria where 35% of urban growth is projected to occur (United
Nations Department of Economic and Social Affairs, 2019). This urban growth
will entail considerable additions of urban infrastructure, and a larger population
of urban residents vulnerable to crises or stresses such as extreme heat (Pelling
& Garschagen, 2019).

The impact of such development leads to direct changes to city-scale climate,
most notably manifested as the urban heat island (UHI). Defined as the increase
in air and surface temperatures in settlements compared to their surroundings,
the UHI is caused by physical changes in the surface energy balance of the
pre-urban site upon which the city is built (Oke et al., 2017; Stewart, 2019),
combined with waste heat emissions from anthropogenic sources, e.g. heat-
ing/cooling in buildings, transportation, and biological metabolism (Chow et
al., 2014; Sailor, 2011). The land cover and morphology of cities further lead
to substantive intra-urban variations of air and surface temperatures (Stewart
& Oke, 2012). These absolute intra-urban temperatures are more directly rel-
evant to urban residents compared to simple urban vs. “rural” temperature
differences (e.g., UHI intensity; (Martilli et al., 2020)).

The UHI is driven by separate mechanisms than larger-scale temperature
changes linked to regional and global climate change, which arise, in particular,
from global anthropogenic emissions of greenhouse gases and regional land
cover change. Unequivocal increases in both maximum and minimum air
temperatures have been observed since the 1950s across all climate zones and
regions in which settlements are located (Stocker et al., 2013). Since 1980,
cities worldwide have also experienced significant increases in the number of
heatwaves and hot days and nights (Mishra et al., 2015).

The combined result, i.e. the interacting impacts of the local-scale UHI with
increased mean and extreme temperatures from larger-scale climate change, is
projected to exacerbate overheating in cities globally (Argiieso et al., 2014; S.
Chapman et al., 2017; Emmanuel & Loconsole, 2015; Kotharkar & Surawar,
2016; Krayenhoff et al., 2018; Roaf et al., 2013; Santamouris et al., 2015; San-
tamouris & Kolokotsa, 2015; Wouters et al., 2017). The initial use of the term
“overheating” focused on building energy consumption, ambient indoor envi-
ronmental conditions, and the health of urban residents from an architectural
or building design perspective (Santamouris et al., 2015; Taylor et al., 2014).
Here, we define “urban overheating” as the exceedance of locally-
defined thermal thresholds that correspond to negative impacts on
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people (e.g., health, comfort, productivity) and associated urban sys-
tems. These thermal thresholds depend not only on local urban climates and
associated exposure to heat, but also the sensitivity and adaptive capacity of
people and urban systems exposed to the heat, which in turn depend on socio-
political and economic factors. Figure 1 depicts the integrated framework that
describes factors involved in realizing the negative impact of overheating. Heat
exposure in cities is the trigger, but in itself does not lead to impacts. Urban heat
vulnerability exists when sensitive individuals, populations, and infrastructures
are exposed to heat. Should there be a lack of adaptive capacities to respond
(both at the individual and city level), negative overheating impacts ensue. The
multi-scale interactions that relate to urban overheating, from its causes to risks
and impacts, represent a multifaceted and multi-disciplinary challenge.

. Sensitivity of
Urba: e people and urban systems
Xposure to urban overheating
Urban Heat Individual and collective
Vulnerability adaptive capacity
Urban overheating
impact

Figure 1: Holistic framework that describes factors involved in urban overheat-
ing impact.

Without local heat mitigation and adaptation, urbanization and climate change
are projected to increase heat exposure. Global projections of future urban
temperatures up to the end of the century indicate substantial geographic vari-
ations of added warmth in cities, including maximum air temperature increases
of 0.7-7.6 °C by the end of the century (Figure 2). Urban areas sited in differ-
ent geographical contexts will require unique, site-specific adaptation options to
reduce exposure to the additional warmth.
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Figure 2: Projected seasonal urban warming between 2006-2015 and 2091-
2100 for the diurnal maximum temperature (Tmax) under the high-emissions
‘RCP8.5’ warming scenario based on the 26-member CMIP5 earth system model
ensemble in combination with an urban emulator. Stippling indicates substan-
tial change ( T 4 K) with high inter-model robustness. Adapted from (Zhao et
al., 2021).

Although our understanding of urban overheating has progressed, an integrated
outlook and perspective on this multifaceted challenge are yet to be achieved.
Previous research on urban overheating has largely focused on the UHI or cli-
mate change individually (S. Chapman et al., 2017). Moreover, assessments
that include both local and global drivers of urban heating have predominantly
focused on North American, European and Chinese cities (S. Chapman et al.,
2017), neglecting large fractions of the global urban population, and they have
rarely addressed growing urban populations (Ashley Mark Broadbent et al.,
2020) or changing demographics (Dialesandro et al., 2021; Grineski et al., 2015).
Furthermore, assessments rarely integrate outdoor and indoor exposures, with
implications for actual individual levels of heat exposure (Kuras et al., 2017;
Nazarian & Lee, 2021) and future vulnerability to urban heat (Sailor et al.,
2019). Lastly, assessments of cooling from urban heat mitigation strategies (e.g.,
green infrastructure, shade structures and cool materials) would benefit from
better integration across different scales and exposure variables (Santamouris
et al., 2017a). Accordingly, we argue for a broader, multi-disciplinary approach
that critically examines the emergent complexities of urban overheating towards
an integrative assessment. These include:
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. Quantification of heat exposure arising from urban overheating,
accounting for differences in spatial (e.g. personal- to local- to
city-wide) and temporal (e.g. diurnal, seasonal and extreme
heat event) scales.

. Assessment of the impacts of overheating on important com-
ponents of the urban environment, including physiological and
psychological effects of increased exposure to heat, and impacts
of outdoor overheating on indoor microclimates or building en-
ergy use.

. Robust projection of urban climates and associated exposures
accounting for regional and global climate changes, local urban
development, demographic changes, exposures of populations,
heat mitigation strategies, and uncertainties in key parameters
and projections.

. Provision of recommendations for both researchers and policy-
makers that account for the multidisciplinary nature of urban
overheating, ranging from modifications to urban and building
design to engaging citizens and informing urban overheating gov-
ernance, representing an integrated approach to mitigate expo-
sure, reduce sensitivity, and increase adaptive capacities.

These topics will be discussed in subsequent sections. To contribute to the
theoretical understanding of overheating, we first provide an overview of how
overheating exposure is characterized across different (human, street, and city)
scales and using different observational and numerical methodologies (Sec. 2).
We then focus on the human-scale impacts of overheating, noting several phys-
iological and psychological contributors to individual sensitivities as well as
adaptive capacities that individuals can afford in response (Sec. 3). At the
population level, we note the integrated impact of exposure with individual sen-
sitivities that lead to vulnerability to overheating, and set out to document two
key impacts, health and urban energy (Sec. 4). Lastly, we discuss the state-
of-the-art methodologies as well as future approaches and solutions in urban
planning and governance that aim to address this multi-faceted challenge and
mitigate exposure, reduce sensitivity, and increase adaptive capacities at the
individual and population levels (Sec. 5). Each section will further identify
key priorities in research (for better understanding overheating exposure and
impacts) and application (for mitigating or adapting to overheating challenges).
The information generated will be critical in informing holistic and integrated
research in the field and will provide important discussion points to develop
science-based policies for cities desiring reduction of urban overheating in the
future.



2 Characterizing urban overheating exposure at
different scales

In this section, we focus on quantifying and documenting the levels of thermal
exposure arising from urban overheating, accounting for differences in spatial
(e.g. personal- to local- to city-wide) scales. By detailing the representation
of heat in indoor and outdoor urban climates (Sec. 2.1), we set out to discuss
the key priorities of research in quantifying overheating intensity, location, and
duration in the built environment. We then address emerging methodologies in
sensing - i.e. IoT, crowdsourcing, and ubiquitous monitoring - used for infill-
ing heat sensing networks in cities and better describing the impact on urban
residents (Sec. 2.2). Lastly, we discuss numerical modeling as a powerful tool
at multiple scales for characterizing current and projected urban overheating
exposure in cities as well as evaluating the efficacy of various mitigation and
adaptation solutions proposed to address ensuing impacts. Collectively, these
sections provide a comprehensive outlook on observational and numerical meth-
ods, as well as metrics and indicators, available to characterize and quantify the
extent of overheating exposure in cities, while outlining key priorities in research
to better understand this challenge.

2.1 Environmental sensing of heat exposure in indoor and outdoor
climates

Outdoor urban heat can be characterized in multiple ways and is often quantified
by either simple temperature metrics (such as air, surface, and radiant tempera-
ture) or comprehensive indices (such as thermal comfort and heat stress indices)
that aim to quantify the impact of heat on the human body. The relevance
of these metrics highly depends on the underlying motivation for monitoring,
assessing, or modeling the urban thermal environment, as well as the scale of
analysis (Table 1).

At the city level, environmental heat has been traditionally quantified using air
temperature reported by meteorological services. However, weather stations are
sparse, stationary, often remote from human activities, and not representative
of the complex and heterogeneous conditions in urban canyons (Harlan et al.,
2006). To overcome these limitations and evaluate the microclimate variability
in the built environment, two methods are often deployed: a) establishing an
urban network of environmental sensors (examples included in Sec. 2.2) and
b) field campaigns using mobile measurements at street level (Hab, Middel, et
al., 2015; Oke et al., 2017; Seidel et al., 2016). Mobile measurements provide a
finer spatial and temporal resolution of air temperature as a heat metric, but
have often poor temporal resolution and require detailed post-processing for
interpretation (Hab, Ruddell, et al., 2015; Middel & Krayenhoff, 2019).

A well-known metric of ambient temperature measurements to describe heat in
cities is the UHI, dating back to the early 19*" century in Urban Climate re-
search (Stewart, 2019). The UHI intensity describes the temperature difference
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between urban and rural areas and therefore is less relevant than the absolute
temperature to which people are exposed (Martilli et al., 2020). Moreover, intra-
urban distributions of ambient conditions are more relevant here, as formalized
in the Local Climate Zone (LCZ) scheme (Stewart et al., 2014). Inter-LCZ
variability of air temperature (Fenner et al., 2017) represents a critical research
direction to assess urban heat vulnerability at the neighborhood scale (e.g., as
a function of urban design and socio-economic status; see Sec. 4.1), but the
local nature of the scheme renders it too coarse for human-centered heat stress
analyses at the street scale.

At larger scales, thermal remote sensing platforms (which use non-contact in-
struments to sense thermal infrared radiation) provide information on urban
heat at large spatial scales. In recent decades, land surface temperatures (LST)
from satellite remotely sensing products such as Landsat, MODIS, and ASTER
have been widely used to assess the surface UHI (SUHI) (Imhoff et al., 2010;
Voogt & Oke, 2003; D. Zhou et al., 2018), analyze the impact of urban form on
land surface temperature (Bechtel et al., 2019; X. Li et al., 2016; Yujia Zhang
et al., 2019), and find urban hot spots (Harlan et al., 2013; Huang et al., 2011).
Satellite-based observations represent a powerful tool for assessing city-scale
urban heat, but are limited by clouds and have physical tradeoffs between tem-
poral and spatial resolution (Bechtel et al., 2012). Remotely-sensed LSTs are
also subject to effective anisotropy, i.e. they vary as a function of sensor view
angle due to sun-surface-sensor geometry (Voogt, 2008).

Importantly, while remotely sensed images help illustrate intra-urban surface
temperature distributions, canopy layer air temperature, a key indicator for ur-
ban environmental health (Sec. 4.1) and energy (Sec. 4.2), cannot be directly
inferred. It is widely acknowledged that the relationship between the two tem-
perature types is complex (Roth et al., 1989; D. Zhou et al., 2018). The usability
of satellite-based LSTs at human-relevant scales is also limited. First, the re-
motely sensed temperatures are based on urban objects visible to the sensor and
do not completely represent canopy walls and ground surfaces (e.g., tree canopy
temperature vs. surface temperature under the tree; (Krayenhoff et al., 2020)).
Second, satellite-based LSTs are biased towards horizontal surfaces, and it is
questionable how useful roof temperatures are to assess pedestrian overheating.
Third, LSTs sensed by satellites cannot yet resolve thermal extremes at the sub-
meter touch-scale relevant to human health (Vanos et al., 2016), or at the scale
of individual streets relevant to personal heat exposure.

These findings indicate that at the human scale, neither air temperature nor
surface temperature is sufficient for quantifying overheating in cities. Recently,
human biometeorological research has highlighted the importance of the radia-
tive environment for accurate outdoor human thermal assessments (Hondula et
al., 2017; Johansson et al., 2014; Kantor & Unger, 2011; Middel et al., 2021;
Middel & Krayenhoft, 2019). Mean Radiant Temperature (MRT) — a synthetic
parameter that summarizes short and longwave radiation fluxes to quantify the
radiant heat load on the human body — was identified as the main meteorologi-
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cal driver of thermal comfort in the warm season in hot dry regions and under
sunny conditions (Lin et al., 2010; Middel et al., 2018). MRT observations ap-
ply different instruments with varying levels of accuracy and complexity (Hoppe,
1992; Thorsson et al., 2007).

Further acknowledging the complex interaction of various environmental pa-
rameters with individual thermal comfort and heat stress response (Sec. 3), the
scientific community has developed indices to better capture individual ther-
mal sensation and provide a single integrated value that represents a more
comprehensive assessment of environmental heat stress than air or radiant tem-
perature alone (Fiala & Havenith, 2015). Potchter et al. (2018) identified
over 165 thermal comfort indices developed over the past 60 years that link
human thermal responses and perceptions to atmospheric conditions. Five ther-
mal indices identified as most widely used (also see B.3) were the Physiologically
Equivalent Temperature (Hoppe, 1999; Mayer & Hoppe, 1987), Predicted Mean
Vote (Fanger, 1973; Gagge et al., 1986), Universal Thermal Climate Index (Jen-
dritzky et al., 2012; Jendritzky & Tinz, 2009), Standard Effective Temperature
(Gagge et al., 1986; Gonzalez et al., 1974) and its outdoor variant (Pickup et
al., 2000), and Wet Bulb Globe Temperature (Yaglou & Minard, 1957). While
these indices account for the radiative environment — as opposed to merely
temperature-humidity metrics — they all make assumptions related to clothing,
activity speed, and metabolic rate. Accordingly, the ability to assess human
overheating using these indices is critically limited, particularly for working
populations where metabolic rate during activity is the most critical factor in
predicting core temperature (Cramer & Jay, 2015). The generic assumptions
of these models — often, an “average” human male, low activity, and static con-
ditions — present a critical challenge for accurately predicting heat exposure of
different individuals and populations, as detailed in Secs. 3.1 and 4.1. More
efforts are needed to update these indices to account for the duration of heat
exposure as well as varied physical activities (for instance, for outdoor workers),
as detailed in (Brode et al., 2016). Finally, most thermal indices do not work
equally well in dry and humid conditions since the neutral or “no-stress” range
varies greatly for different climate zones (Heng & Chow, 2019; Potchter et al.,
2018). Therefore, indices need to be calibrated to quantify heat exposure in the
context of local thermal adaptation, behavior, and differences in climatic zones
(Sec. 3.2).

Table 1. summarizing the key metrics, motivations, and methods for sensing
and representing urban overheating across different scales.

@ >p(-8) * >p(-8) * >p(-8) * >p(-8) * >p(- 8) * @ Scale & Relevant
Metrics & Motives & Methods & Reviews & examples
City &

. Land Surface Temperature
o 2-m air temperature
o Intra-urban temperature variability
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e Urban energy efficiency

e Urban environmental health
e Urban heat mitigation

¢ Climate-responsive design

e Urban emission mitigation

&
. Remote sensing
. Mobile sensing
. Climate modeling (Sec. 2.3)

& (D. Zhou et al., 2018)
(Voogt & Oke, 2003)

Street &
. Canopy air temperature
o Mean radiant temperature
. Outdoor thermal comfort/Heat stress indices
o Outdoor thermal comfort autonomy maps
&

o District energy efficiency
o Canopy heat mitigation

o Promoting healthy urban lifestyle

&
. Fixed and mobile weather stations
o Net radiometer or globe thermometers
. Urban climate informatics using data sources (such as Google
street view) for MRT monitoring
. Microscale climate modeling (Sec. 2.3)

& (Potchter et al., 2018)
(Middel & Krayenhoff, 2019)

(Nazarian et al., 2019)
Building &

o Indoor air temperature
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o Indoor thermal comfort indices

¢ Building energy efficiency
¢ Indoor environmental quality
e Work productivity

e Human comfort, health & wellbeing

. Smart WiFi thermostat
. Conventional or IoT environmental sensor network (Sec. 2.2)

& (Rodriguez & D’Alessandro, 2019)
Human &

. Indoor/Outdoor thermal comfort/Heat stress indices

. Individually-experienced temperature

e Human comfort, health, and wellbeing

o Human performance (cognitive and physical)

. Personalized heat monitoring devices (Sec. 3.1) such as wearable
Sensors

. Personal comfort/heat stress modeling
& (Kuras et al., 2017)
(Nazarian & Lee, 2021)

Indoor characterization of heat exposure uses similar methods and metrics as
those identified outdoors, such as monitoring microclimate parameters and cal-
culating thermal comfort indices. However, most studies assume low wind
speeds and radiant heat transfer indoors, and therefore, consider air temperature
and humidity as key indicators for indoor thermal environments - a limiting as-
sumption for naturally-ventilated buildings with large window-to-wall fractions.
More importantly, most studies are focused on office buildings instead of resi-
dential heat exposure (Nazarian & Lee, 2021; Rodriguez & D’Alessandro, 2019),
and a fraction of those focused on vulnerable populations detailed in Sec. 4
(White-Newsome et al., 2012). These factors - in addition to the complex and
heterogeneous human behavior and adaptive capacities indoors - represent a sig-
nificant gap in providing a holistic characterization of heat exposure in different
cities and climates, as well as the impact on human health and energy (Sec. 4).
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Despite recent advances in the development and application of methods to
characterize heat exposure across different scales, several considerations persist.
First, quantification of urban heat generally does not capture individual dura-
tion of thermal exposure and therefore cannot describe the cumulative effects of
heat. Additionally, due to limitations in sensing methods, little is known about
the real-time thermal discomfort and strain people experience as they go about
their daily lives (Kuras et al., 2017; Nazarian & Lee, 2021), limiting the realistic
datasets that can inform dynamic and unsteady index development. These lim-
itations further motivate more investment in novel sensing methodologies that
provide ubiquitous, real-time, and human-centric monitoring of heat exposure
(Sec. 2.2).

2.2 Infilling the climate networks with ubiquitous sensing, IoT, and
crowdsourced monitoring

With recent advancements in low-cost sensor solutions, Internet-of-Things (IoT),
and Big Data, an innovative approach has emerged to comprehensively charac-
terize urban heat exposure. Over the last decade, ubiquitous sensing (i.e. dis-
tributed, real-time, and spatial data collection) and crowdsourcing (in which
a community is leveraging sensing devices to collectively share data) have pre-
sented a paradigm shift in heat exposure assessments (L. Chapman et al., 2017),
presenting several key advantages in characterizing urban heat exposure. First,
compared to traditional sensing units, a network of sensors is able to cover
higher spatial and temporal resolutions at a lower cost and with less centralized
effort. This further enables us to a) assess inter- and intra-urban overheating
patterns (Fenner et al., 2017; Meier et al., 2017) and b) address local-scale urban
effects and their spatial and temporal variation, which traditional climate sta-
tion networks overlook (Oke, 2006). Second, given that sensors are distributed
or carried with individuals, ubiquitous sensing provides unprecedented and dy-
namic information regarding the population impact of urban overheating. This
advantage permits human-centric assessment of heat exposure (Kuras et al.,
2017; Nazarian & Lee, 2021), in which we combine information regarding the
thermal environment with a) corresponding physiological responses (Buller et
al., 2018; Liu et al., 2019; Nazarian et al., 2021), b) objective and subjective mo-
mentary feedback (Jayathissa et al., 2019), and c) detailed human activity, via
portable sensors or smartphones and smartwatch applications. Consequently,
deeper insight into human bioclimatic impact in a real-world experiment can be
obtained. Lastly, real-time and high-resolution data collection provide valuable
information for developing emergency responses in the face of extreme events as
well as informing and validating climate and weather modeling at various scales
(Sec. 2.3).

Several successful examples of emerging methods for characterizing heat expo-
sure can be noted. Pioneering crowdsourcing studies using Netatmo citizen
weather stations (CWS) were able to characterize intra-urban air temperature
variability in several European cities (Fenner et al., 2017; Meier et al., 2017;
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Varentsov et al., 2020; L. de Vos et al., 2020) and Oceania (Potgieter et al.,
2021) at a higher resolution than otherwise achieved with traditional sensing.
Other work exploited daily temperature signals from phone battery tempera-
tures (Droste et al., 2020) and further combined them with Machine Learning
algorithms (Trivedi et al., 2021) to predict ambient air temperature within 2°C
accuracy. Wearable weather stations were also proposed and deployed to predict
the impact of heat exposure on heat stress and perceived activity level (Nazarian
et al., 2021).

Despite this significant growth, however, it appears that IoT measurements have
heavily emphasized the monitoring of air temperature and humidity as proxies
for the thermal environment, neglecting key environmental and personal fac-
tors that holistically link overheating to the health, wellbeing, and lifestyle (Sec.
3.1-2). This is mainly due to the fact that measurements of radiation and wind
speed, as well as the physiological response of individuals to urban heat, are
harder to achieve through existing low-cost and non-intrusive sensing solutions.
Moreover, a fundamental question raised by (Muller et al., 2013) and (L. Chap-
man et al., 2017) is still far from being answered: how can crowdsourced data
provide an acceptable level of accuracy, certainty, and reliability, particularly
in dynamic and realistic conditions of our cities? One of the critical gaps in IoT
environmental sensing arguably pertains to the quality of the sensors and the
collected data, as a universally accepted set of procedures, standards, or guide-
lines for standardization and quality control is yet to be developed. In general,
low-cost sensors tend to be less accurate than scientific and operational instru-
ments, usually lack proper calibration, and are subject to sensor drift over time.
In addition, they have errors due to inadequate or missing radiation shielding
and sensor ventilation and may be sensitive to changing user context. The latter
is particularly the case for sensors in smartphones and wearable devices, which
fluently change between indoor and outdoor settings, pocket and palm, and are
also influenced by the phone’s CPU load or display intensity (Martilli et al.,
2017). Moreover, the sensors usually react slowly and thus integrate over previ-
ous settings and contexts spatially and temporally. In addition to these errors,
ubiquitous sensors exhibit greater variation due to realistic microclimatic effects
resulting from differences in observation height, proximity to buildings, or lo-
cal ventilation. In summary, there are both statistical and systematic errors,
but also challenges with realistic spatio-temporal representativeness that can
be considered a feature. All types are difficult to detect, distinguish, and most
of all to correct. Nonetheless, more recent studies demonstrate the potential
of crowdsourcing by combining various sensing methods and data layers over a
wider range of meteorological parameters (including rainfall, solar radiation, air
pressure, and humidity), which will pave the way towards assessment of thermal
comfort (L. de Vos et al., 2020).

In addition to technological and scientific limitations of state-of-the-art IoT
sensing, crowdsourcing methods face challenges in scientific communities as well
as the general public. There is still a lack of acceptance in scientific communities
for adopting commercially available low-cost sensors for research applications.
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As a result, many solutions go untested in application, creating more questions
than answers regarding the capability of IoT sensing in addressing urban heat
challenges. Additionally, there are concerns regarding the digital divide across
age groups, income levels, and geographic location. So far, no analysis has
been done to understand what percentage of IoT (or conventional) sensing for
urban heat is covering low-income versus affluent neighborhoods, which can
further influence the governance and policy implications of urban overheating
(Sec. 5.3). Finally, justified concerns related to privacy hinder the penetration
and availability of collected data. For instance, useful sensor data from mobile
devices always has to record the exact position and thus can likewise be used
to derive environmental information and to track individuals over days and
months.

Future research should focus on merging crowdsourced and IoT environmental
sensing with behavioral and mobility data, helping us better understand and
characterize heat exposure and the ensuing impacts in cities. The innovations
thus need to be technological, scientific, and societal. Rapid progress has been
made in the past years in the development of small and low-cost sensors (mostly
driven by private companies) that can similarly contribute to more comprehen-
sive monitoring of heat exposure in the future. More importantly, critical and
highly innovative research questions for inter- and trans-disciplinary work are
present, which together constitute a joint agenda for science, citizens, and the
public sector for at least a decade:

. Merging crowdsourced thermal environment data with behav-
ioral and mobility data to more accurately characterize overheat-
ing exposure, vulnerability levels, and ensuing impacts. This
further assists future research in quantifying how urban heating
impacts people’s interaction with the built environment (Sec.
3.2).

. Quality assessment to derive useful urban heat exposure infor-
mation from mass data and integration of data from various
sources and devices into a joint analysis system. This can in-
clude combining air temperature observations with other param-
eters that influence human thermal comfort.

. Further research that distinguishes errors in data (bug) from
realistic microclimatic variation (feature).

. More comprehensive characterization of heat exposure both out-
door and indoor (where people spend most of their time) and
better understand the relations of both (Sec. 5.2).

. Use the data for personal recommendation systems in appli-
cation to enable more adaptive capacities for individuals, i.e.
avoiding the heat by different routes or travel times.
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2.3 Multi-scale urban climate modeling

Process-based numerical models of urban climate are generally more cost-
effective and provide greater spatial and temporal coverage of potential heat
exposure relative to measurements. Critically, they can be applied to evaluate
future urban overheating or infrastructure-based heat adaptation scenarios
(Sec. 5.1), and associated uncertainties, informing decision-makers about
potential overheating exposure and adaptive responses well ahead of potential
consequences (Krayenhoff et al., 2018; Martilli, 2014; Wouters et al., 2017; Zhao
et al., 2017, 2021). However, numerical models rely on imperfect abstractions
of the urban structure and atmosphere, and they must be appropriately
tested if they are to have such utility (Krayenhoff et al., 2021). Moreover,
models capable of simulating urban climates currently have varying abilities
to represent actual human exposures to urban heat, which depend on multiple
environmental variables (Sec. 2.1).

Numerical assessment of urban overheating must focus on the climate in the
urban canopy layer (UCL), the atmosphere below the mean building height,
where most of the world population spends their lives. We classify existing
models that aim to capture the range of scales of phenomena relevant to UCL
climates as follows:

1. Microscale models reproduce circulations at the scale of streets and build-
ings (wakes, flow blocking, channeling, etc.) and/or the complex pat-
terns of shading and radiation exchange resulting from individual build-
ings. These phenomena influence heat and radiation exchanges between
the atmosphere, buildings, streets, trees, and pedestrians.

2. Mesoscale models are built to represent the state of the atmosphere within
and above the city (i.e., the urban boundary layer), which is characterized
by phenomena at scales of tens to hundreds of kilometers, such as land/sea
breezes and mountain/valley winds, directly simulating regional impacts
on neighbourhood-scale climate.

3. Global-scale models simulate larger space and time scales associated with
climate change and provide the context for future meso- and microscale
urban climate phenomena, including overheating.

This diversity of modelling scales arises from current limitations of computa-
tional power, which render impossible the simulation of microscale features
relevant to urban heat across numerical domains large enough to account for
mesoscale processes. Similarly, mesoscale processes are typically not captured by
global climate models, although adaptive grid-scale approaches may soon permit
them to do so for selected cities. Microscale models, by virtue of their explicit
representation of buildings and other urban elements, can address human-scale
variability of wind and radiation (e.g., sun/shade) that is critical for personal
heat exposure, whereas meso to global scale models have so far been focused
more extensively on air temperature and humidity (to a lesser extent), whose
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spatial variation is smoother.

At broad scales, the urban overheating burden is exacerbated by two inter-
acting effects: land cover and land use changes driven by urbanization, and
global-scale climate change and associated increases to heatwave severity. Nu-
merous meso-global scale modelling studies have quantified the substantial ur-
ban scale overheating risk from unmitigated global climate warming, including
4 K mean summer temperature increases globally (Zhao et al., 2021) and 10-
fold increases in extreme heat day frequency in select regions (Krayenhoff et al.,
2018), accounting for uncertainty related to greenhouse gas emissions pathways
and climate model variability. Urban development includes both expansion of
urban areas, and densification of existing urban areas. Urban construction on
land that was previously cropland or forest, for example, generates large warm-
ing locally, especially at night, and additionally contributes smaller warming to
existing urban areas downwind (Doan & Kusaka, 2018). Numerical evidence
suggests that seasonal-scale urban-induced warming may either be unstable or
static as a result of larger scale warming (Doan & Kusaka, 2018; Oleson, 2012);
at shorter times scales, observations and modelling suggest that the UHI and
heat waves are synergistic and controlled by multiple factors (Ao et al., 2019; D.
Li & Bou-Zeid, 2013), in particular, the variable responses of non-urban lands
to heat waves (P. Wang et al., 2019).

Meso- and global-scale models have also been widely applied to study potential
reductions of air temperature in cities from the widespread implementation of
heat mitigation strategies, for example, green and cool roofs, street trees, and
shorter vegetation (Krayenhoff et al., 2021; Santamouris et al., 2017a), as well as
their ability to offset climate change warming (Krayenhoff et al., 2018). While
meso-global scale modelling can help reveal potential overheating risks based
on air temperature changes and the associated cooling efficacy of infrastructure-
based heat adaptation, microscale modelling more often addresses the complete
heat exposure of individuals, including microscale variations of solar and long-
wave radiation and wind and turbulence. In particular, models at this scale
have been used to assess the impacts of street-neighbourhood scale design on
individual thermal exposure, using metrics that go beyond air temperature and
account for radiation and wind, for example (Aminipouri et al., 2019; H. Lee
et al., 2016; Tan et al., 2016); see Sec. 2.1). Here, detailed configurations of
buildings, trees, shade devices, as well as the radiative and thermal effects of
construction materials, can be considered in terms of their radiative impacts.
Microscale computational fluid dynamics models are additionally used to eval-
uate wind flow and associated effects on pedestrian thermal comfort (Chew et
al., 2017; Nazarian et al., 2017). However, microscale models require bound-
ary conditions that provide information about the larger-scale meteorological
conditions in which their domain is embedded. Moreover, both microscale and
mesoscale modelling would benefit from better accounting for the actual or op-
timal locations of people who may be exposed to urban heat (Middel et al.,
2017; Jiachuan Yang et al., 2019). Nevertheless, the need for careful assessment
of microscale radiative and flow-based heat mitigation strategies is emphasized
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given the aforementioned imbalance between potential climate change warming
and air temperature cooling achievable from the aggressive implementation of
heat mitigation strategies (Krayenhoff et al., 2018).

The long-term goal of performing simulations that can fully resolve both meso-
global scale and microscale phenomena is likely several decades away. In the
meantime, paths forward should involve increasing interaction between these
modeling scales, and closer attention to the complete thermal exposure of in-
dividuals within the urban environment. These new developments must be
“fit-for-purpose”, e.g., tailored for assessment and mitigation of the impacts of
urban overheating. In particular, we define the following medium- and short-
term objectives.

As medium-term objectives, we should aim to develop high resolution (hundreds
of meters) mesoscale models in which to two-way nest highly parameterized
and fast microscale models. The main challenges for this task will be to 1)
develop new multi-scale boundary-layer closures to be used in mesoscale models,
and 2) identify the most relevant phenomena to be introduced in the highly
parameterized microscale models.

As short-term objectives, key priorities for future research are as follows. At the
mesoscale, of paramount importance is improvement in the accuracy of model
predictions of environmental variables relevant to the estimation of indoor and
outdoor biometeorological stresses (Secs. 2.1, C.2, D.1), and building energy con-
sumption (Sec. 4.2). Models of urban canopy processes embedded in mesoscale
models must be improved based on microscale simulations, in particular repre-
sentations of radiation and convection fluxes in the canopy. Simplified parame-
terizations for evaluation of mean radiant temperature and wind speed, and their
spatial variability within urban grid squares in mesoscale models, are needed.
Moreover, better quantification of key parameters that characterize urban neigh-
bourhoods are crucial requirements to take advantage of improved model physics
(Ching et al., 2018). At the microscale, there is a need for new techniques to
accurately use mesoscale model outputs to force microscale simulations (and in
this way account for boundary-layer scale processes on microscale phenomena in
the urban canopy layer). Moreover, it is critical that we improve surface energy
and radiation budgets with detailed flow prediction. At all scales, future model
development should include better representation of indoor-outdoor exchanges
and improve the capability of the models to account for climate impacts of exist-
ing and future heat mitigation strategies (vegetation, albedo, high-performance
materials, etc; see Sec. 5.1), with a specific focus on the evaluation of the
sub-models introduced to represent these strategies (Krayenhoff et al., 2021).
Accurate assessment of infrastructure-based adaptation effectiveness is critical
for the provision of appropriate guidance to planners and policymakers tasked
with addressing urban overheating. Critically, applied research based on numer-
ical simulations should make increasing efforts to quantify and communicate
uncertainty related to greenhouse gas emissions and urban development scenar-
ios, global climate model ensemble, and modelling assumptions, with a specific
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focus on uncertainties related to the intensity, duration and frequency of future
extreme heat and the efficacy of urban heat mitigation. Initiatives that enhance
communication between urban climate scientists and municipal decision-makers
are crucial to better integrate scientific knowledge in decision making, and also
better target urban climate modelling to practical needs. Furthermore, linkages
between climate and agent-based models can help determine probable human
heat exposure based on individual agency and decision-making in addition to
urban meteorological variability.

The short- and medium-term objectives mentioned above must involve rigorous
and standardized model evaluation procedures that focus more on particular
physical processes and less on output variables that result from multiple physical
processes (e.g., air or surface temperature) where compensating errors obscure
issues with model representation of processes.

3 Understanding individual sensitivity and adap-
tive capacity to urban heat

The following sections discuss some of the most pressing research and applied
questions related to development of an integrated view of thermo-physiology,
human behavior, and psychology in response to heat, such that we better un-
derstand the impact of heat exposure on individuals in the built environment.
Here, we aim to extend the discussion of urban heat exposure (Sec. 2) to detail
individual sensitivities that modulate the ensuing impacts of overheating. Un-
derstanding individual sensitivities - caused by physiological stress and strain
(Sec. 3.1) as well as subjective, perceptive, and psychological responses to heat
(Sec. 3.2) - is also critical for understanding available adaptive capacities at an
individual scale.

3.1 Biometeorological strain and physiological responses to heat ex-
posure

Heat stress refers to the combination of environmental conditions, metabolic
heat production and clothing characteristics that alter human heat balance and
ultimately contribute to the accumulation of heat energy inside the human body.
Heat strain refers to the resultant physiological responses from heat stress, such
as the rise in thermal strain, cardiovascular strain, and dehydration (Fig. 3)
(Sawka et al., 2014). Accurate risk assessment of human heat strain requires
a comprehensive and in-situ representation of all four parameters that define
a thermal environment, namely air temperature, mean radiant temperature,
absolute humidity and wind speed. Often these parameters are integrated into
a single thermal comfort or heat stress index (Sec. 2.1). However, environmental
determinants alone are insufficient to understand the implications of urban heat
exposure; physiological responses must also be assessed to fully understand the
impact of overheating on individuals and populations. Figure 3 outlines the
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environmental drivers of heat exposures across different scales (Sec. 2.1) with
human behavioral and physiological responses that lead to individual sensitivity
to heat exposure and ensuing impacts.
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Figure 3. Physical, physiological, and behavioral mechanisms in response to heat.

Human core temperature is tightly regulated at around 37 °C, despite varia-
tions in environmental conditions (Parsons, 2014). The maintenance of thermal
homeostasis is achieved through both physiological and behavioral responses
(Flouris, 2019). During heat exposure, increases in deep and peripheral tissue
temperatures are sensed by thermoreceptors and integrated in the hypothala-
mus to activate heat loss (mainly cutaneous vasodilation and sweating (Fig. 3).
Behavioral thermoregulation reduces the need for autonomic thermoregulation
as humans consciously engage in actions (e.g., moving to the shade, removing
or putting on more clothing) to maintain thermal equilibrium, based on per-
ceptions of thermal comfort and sensation (Schlader & Vargas, 2019). (Sec.
3.2). This suggests that our behavioral responses are triggered by sensations of
thermal discomfort (Schlader et al., 2010).

~—

There is robust epidemiological evidence demonstrating the negative health ef-
fects of hot weather and heat extremes (Bi et al., 2011; Kovats & Hajat, 2008;
Luber & McGeehin, 2008; Semenza et al., 1996). These impacts are predomi-
nantly concentrated within specific clinical and socio-economic sub-groups (Sec.
4.1). Focusing on individual health, people with cardiovascular or renal diseases
are at an elevated risk of heat-related mortality /morbidity during heat extremes
(Hansson et al., 2020), while people who do not own or cannot afford to operate
air-conditioning have a significantly higher chance of heat-related illness dur-
ing heatwave (35-times higher risk of heat-related illness reported during the
1999 heatwave in Cincinnati, Ohio (Kaiser et al., 2001)). Extreme heat is often
reported to acutely worsen these diseases, so understanding the specific physio-
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logical pathways for the increased heat sensitivity of people with specific diseases
is essential for identifying the optimal heat mitigation strategy. For example,
people with cardiovascular disease may not be able to tolerate the increased car-
diovascular strain associated with the elevated skin blood flow required for heat
dissipation, thus increasing their risk of cardiovascular collapse (Ebi, Vanos, et
al., 2021). In this scenario, an intervention or a drug that increases skin blood
flow to promote heat loss may be counter-protective as it may inadvertently
exacerbate cardiovascular strain; instead, skin cooling strategies that reduce
skin blood flow requirements may be a more suitable heat mitigation strategy,
regardless of its efficacy in reducing core temperature (Jay et al., 2021).

Besides heat-related illnesses, urban heat stress can also exacerbate underlying
health conditions and adversely impact fertility (Grace, 2017), work productiv-
ity (Kjellstrom et al., 2016), work-related accidents (Morabito et al., 2006), and
decision-making (C.-H. Chang et al., 2017; Obradovich et al., 2018). Under-
standing the biophysical aspects of heat exchange between the human and sur-
rounding environment is essential for determining the efficacy of various cooling
strategies under different environmental conditions, thus informing evidence-
based heat-health advisories. For example, many public health authorities cur-
rently recommend against the use of electric fans when ambient temperature
exceeds 35° C (skin temperature), as it would increase convective heat gain
(Hajat, O’Connor, et al., 2010). However, this does not consider humidity and
a person’s ability to sweat, which influence the rate of evaporative heat loss
(Jay et al., 2015; Morris et al., 2021). Research has demonstrated the cooling
benefits of electric fan use at ambient temperatures of 42°C with 50% relative
humidity in healthy, young males with intact sweating responses (Ravanelli et
al., 2015). However, fan use under similar ambient conditions may not benefit
individuals with reduced sweating ability (e.g., elderly, people taking anticholin-
ergic medications) (Gagnon et al., 2017; Morris et al., 2021). Therefore, advice
concerning fan use during heat exposure (particular in indoor spaces as detailed
in Sec. 5.2) should be specific to the population and humidity levels (Jay et al.,
2015; Morris et al., 2021).

Furthermore, strategies designed to alleviate physiological strain (mainly by al-
tering core temperature) associated with exertional heat stress can potentially
be adapted to combat urban heat stress. Individuals performing physical activ-
ity (e.g., occupational work, exercise) are at an increased risk of heat illnesses
as heat stress from the environment is compounded by increased metabolic heat
production (J. K. W. Lee et al., 2010). A common behavioral adjustment is
the use of work-rest cycles (alternating periods of work and rest) to prevent
excessive body heat storage (J. K. W. Lee et al., 2013). This strategy is particu-
larly relevant for outdoor workers who are specifically vulnerable to urban heat
challenges but are underrepresented in research (Nazarian & Lee, 2021). Physi-
ological strategies such as improving aerobic fitness (Alhadad et al., 2019), heat
acclimatisation (J. K. W. Lee et al., 2012), pre-exercise cooling (J. K. W. Lee et
al., 2012, 2015) and fluid ingestion (Luippold et al., 2018) are also often used to
optimise work productivity and performance in the heat (Fig. 4). However, it is
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important to note that the most appropriate strategy for combating urban heat
stress must be tailored according to context and needs, particularly in extend-
ing their efficacy in vulnerable populations. For example, aside from questions
regarding the sustainability of air conditioning use, being sedentary indoors for
prolonged periods will potentially degrade habitants’ aerobic fitness and heat
acclimatisation status, therefore reducing their heat tolerance. These factors
are currently neglected in heat-health advisories and should be considered to
increase the population’s resilience to urban overheating.

Fluid ingestion+ —
Pre-event cooling ——
Heat acclimation/acclimatization ——
Aerobic fitness+ —— @
¢ S ¢ & & & |

Combined Hedges’' g weighted averages of heat mitigation strategies.
CYCLES

Figure 4. Overall efficacy of physiological strategies to reduce heat strain and
augment work productivity and performance, based on a meta-analysis of 118
studies (Alhadad et al., 2019). Figure shows the overall effect sizes (Hedges’ g)
of each strategy in altering body core temperature during exertional heat stress.
Values are interpreted as trivial (<0.20), small (0.21-0.49), moderate (0.50-0.79)
and large ( 0.80) effects, respectively. Diagram adapted from (Alhadad et al.,
2019).

To reiterate, heat-health advisories that are solely based on climatic conditions
have limited efficacy. Given the subjectivity of thermal comfort, future re-
search should focus on the development and implementation of personalized
heat mitigation guidelines that are tailored according to an individual’s health,
environment and adaptive capacity. This can be achieved by coupling climatic
data with biophysical inputs and known influencing factors of heat illnesses (e.g.,
sex, age, body size, aerobic fitness). With emerging IoT and wearable devices
(Sec. 4.2), this is becoming increasingly feasible. Besides personalization, the
physiological capacity of the population of interest must also be considered, to
improve the accuracy of future projections of work capacity and heat-related
health outcomes (Byrne & Lee, 2019). For example, (Cramer & Jay, 2015)
and (Notley et al., 2019; Vanos et al., 2020) noted that several inter- and intra-
individual factors (e.g., age, sex, aerobic fitness, hydration status) that influence
a person’s physiological strain (thus, risk of heat-related illness) for a given level
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of heat stress are neglected in current heat exposure limits for exertional set-
tings. Consequently, the current “one size fits all” approach may induce unnec-
essary productivity losses for heat-tolerant individuals while under-protecting
heat-intolerant workers who may suffer heat injury under moderate heat stress.
This further underscores the importance of developing personalized heat miti-
gation strategies to optimise human health, well-being and productivity in the
face of urban overheating. However, to do so effectively, further research is
warranted in several areas, including (but not limited to) potential interactions
among the various individual factors on heat strain and the relative importance
of each factor in determining heat illness risk (Notley et al., 2019).

3.2 Biometeorological stress and psychological response in the face of
urban overheating

In addition to environmental heat exposure and physiological responses, be-
havioral and psychological determinants are critical components of urban over-
heating. From the perceptual point of view, the individual sensitivity to urban
overheating is related to the difference between the thermal environmental condi-
tions at hand, and those normally expected of the city in question. For example,
typical urban meteorological conditions in Shanghai during summer are readily
accepted by the residents of that city who have no difficulty going about their
day-to-day routines under those conditions. But were the same climatic condi-
tions to occur in say, London UK, they would greatly exceed expectations of
Londoners who would rate them ‘off the chart’ and deem them unacceptable,
if not debilitating. This relativity in thermal perception is the phenomenon
known as adaptive thermal comfort in which there are no absolutes, and com-
fort perceptions are benchmarked against climatic expectations (Brager & de
Dear, 1998). The empirical evidence for adaptive comfort has largely evolved in
indoor settings (De Dear et al., 2020; Nicol & Humphreys, 2002), but the under-
lying principles are equally relevant at the urban scale and recent field studies
in outdoor settings confirm this generalization in the literature (Jendritzky et
al., 2012; Lin et al., 2011). The adaptive model of thermal perception indi-
cates that the psychological response to thermal exposure as well as the zones
of “no heat stress” for thermal comfort indices (Sec. 2.1) should be explored
and calibrated in cities with different climates to reflect local thermal adapta-
tion strategies, behavioral patterns, and differences in climatic zones (Heng &
Chow, 2019; Potchter et al., 2018). Such adaptive considerations of heat ex-
posure are yet to be quantified and documented for all climate classes in both
northern and southern hemisphere, and in developing countries susceptible to
heat-health impacts (Baker & Standeven, 1996).

Additionally, it is critical to recall that thermal comfort of individuals is defined
as “the condition of mind that expresses satisfaction with the thermal environ-
ment and is assessed by subjective evaluation” (Standard 55, 2017). Various
studies have confirmed that approximately 50% of a person’s thermal sensa-
tion can be explained through environmental factors, while the other 50% are
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induced by personal, psychological, and physiological characteristics. These
components can only be assessed through mixed methods combining subjective
and objective evaluation (Chen & Ng, 2012; Johansson et al., 2014; Middel et
al., 2016; Nikolopoulou et al., 2001) or personalized assessments that monitor
physiological and behavioral responses of individuals, as detailed in Secs. 2.2
and C.1 (Kuras et al., 2017; Nazarian & Lee, 2021).

Furthermore, people’s perceptions of heat and their psychological responses
drive their behavior, which then modulates the indirect and direct impacts of
urban overheating (Sec. 4). In the absence of outdoor adaptation and mitiga-
tion strategies for heat exposure, the default behavioral response to perceived
urban heat discomfort is often the minimization of exposure, i.e. reduced time
outdoors and correspondingly increased time indoors and an increasingly seden-
tary lifestyle (Nazarian et al., 2021). This further results in over-reliance on air-
conditioned indoor comfort and preference for private vehicles over the active
modes of transport, particularly in developed countries, with life-style-related
health impacts ensuing (i.e. cardiovascular, obesity, and diabetes). This hy-
pothesis of obesogenic cities, and the deleterious impacts of urban overheating
on walkability of the city, raises important multidisciplinary research questions
that are yet to be addressed. Empirical verification of causal links between ur-
ban heat and residents’ behavior, their sedentariness, and heat-health impacts
at the individual and population levels are essential directions for future re-
search such that evidence-based urban planning and policy can be effective in
a warming urban world.

Implementing this knowledge in practice, adaptive opportunities that individ-
uals can afford to reduce heat exposure require more explicit consideration.
Adaptive options for an individual to control their local environment (Baker &
Standeven, 1996) are circumscribed by the built environment (Baker 1996). For
instance, in the humid tropics, the key urban adaptive opportunities relate to
wind resources available at the pedestrian level to enhance the body’s convective
and evaporative heat losses (Ng & Cheng, 2012), and in the hot-dry climatic
setting, pedestrian thermal comfort relies primarily on solar shade opportuni-
ties afforded by the urban geometry, street furniture, verandas and overhangs,
and trees (Hwang et al., 2011). Additionally, greening of streetscapes, precincts,
and facets of individual buildings - which can also reduce canopy-level ambient
air temperature in hot-dry climates - can create thermally pleasant conditions
in adjacent residential and commercial precincts if implemented at sufficient
scale (C.-R. Chang & Li, 2014). Green infrastructure integrated in design fur-
ther improves the walkability of urban precincts and increases the likelihood of
outdoor spaces being used by residents. Enhanced city walkability and livabil-
ity promotes higher levels of outdoor activities that, in turn, facilitate deeper
thermal adaptation and acclimatization through a variety of physiological, psy-
chological, and behavioral interactions which ultimately reduces heat strain risks
in individuals (Sec. 3.1).

Beyond the passive urban design approaches described above are the active en-
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gineering solutions, such as mechanical ventilation to enhance convective and
evaporative cooling of pedestrians, misting to enhance evaporative cooling of air
in outdoor urban settings, and even energy-intensive air-conditioning of semi-
outdoor urban spaces. For example, in Qatar where the average outdoor dry
bulb temperature is 34°C, an outdoor air-conditioning system was designed and
installed into the perimeter of a football field. The system projected conditioned
air at 14°C into a vast, open space occupied by about seven thousand attendees
at a live-streamed FIFA World Cup match (Ghani et al., 2021). As effective
as these brute-force design strategies for urban thermal comfort may be, they
carry considerable financial and environmental costs that need to be carefully
weighed before being implemented in workplaces (such as construction sites) as
well as on precinct and urban scales. A more parsimonious and environmen-
tally responsible approach to the design and implementation of active outdoor
comfort conditioning may be to think of it as temporary thermal respite such
that outdoor activities are encouraged despite higher heat exposure projected
in cities.

To better utilize outdoor spaces, urban planning solutions (Sec. 5) could also
be developed by incorporating adaptive behaviors in addition to environmental
determinants (such as MRT and wind speed) responding to urban morphology
and local climate (Nazarian et al., 2019; Ng et al., 2011). Further examples
of strategies that can promote climatically adaptive comfort behaviors at the
individual scale include pedestrian routing recommendation engines to maximize
exposure to shade resources (Deilami et al., 2020), development of cool street
furniture (high thermal mass, low surface temperature, with vegetated awnings
or shading), and active engagement in water-based recreation. Accordingly, in
addition to city-scale urban heat mitigation efforts, localized cool oases in hot
environments, or cool refuges, are needed to tap into adaptive opportunities in
the built environment.

4 Assessing the impacts of overheating on popu-
lations

Understanding the key sensitivities to urban heat at the human scale (Sec. 3.1-2)
is fundamental to characterizing and addressing population-level vulnerability
and impacts in the face of extreme heats. To further clarify the negative im-
pacts of heat, this section details the ways in which the impacts are realized at
the population and city level, particularly with regards to urban environmental
health and energy. Here, we focus on urban dwellers - 55% of the global pop-
ulation now and 67% by 2050 (Ritchie & Roser, 2018) - exposed to and often
negatively affected by extreme or chronic urban heat (i.e., urban overheating).

4.1 Urban Environmental Health

Urban Environmental Health € Heat Epidemiology
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Urban environmental health focuses on the health of people as it relates to
environmental conditions in cities (e.g., water and air pollution, greenspace,
hazards such as flooding or heat). Recent definitions of “health” focus on a
state of complete physical, mental, and social well-being, and not merely the
absence of disease (World Health Organization, 2021). Despite this definition,
extreme heat impacts have generally been studied as either the presence or
absence of a heat illness or heat death as opposed to assessing well-being and
liveability. In recent years, worker productivity and economic losses related
to heat exposure have been used to quantify the intermediate impacts of heat
(Lucas et al., 2015; Vanos et al., 2019; Zander et al., 2015), with a focus on
developed countries in the northern hemisphere. Yet globally, reduced well-
being and death from heat stress are common, and the associated vulnerabilities
are often poorly documented in the research (Ebi, Capon, et al., 2021).

Epidemiology applies various methodologies for quantifying the contribution
of extreme heat to human health outcomes at a population-scale across cities
or counties, both directly and indirectly. At finer scales (e.g., neighborhoods),
studies apply vulnerability indices that can explicitly assess social vulnerabil-
ity, thus focusing on those demographic and socioeconomic factors that may
increase or attenuate the hazards (such as heat) on a local population (Tierney
et al., 2002). Common country-, city-, or neighborhood-level methods to quan-
tify direct heat-health impacts are listed in Table 2. The literature strongly
demonstrates positive associations between heat and mortality or morbidity in
large cities (Gasparrini et al., 2015; Guo et al., 2017), regardless of climate zone
or country income level (H. Green et al., 2019). Heat vulnerability studies at
census tract or neighborhood scales are better able to ascertain location-specific
factors such as income, poverty, social isolation, education, race/ethnicity, age
(elderly) and vegetation as important predictors of heat death or illness during
locally-defined heat events (Harlan et al., 2006; Reid et al., 2009), resulting in
the creation of numerous city-specific heat vulnerability indices (HVIs) (Harlan
et al., 2013; Rey et al., 2009; Wolf & McGregor, 2013).

Table 2: Common methods used to quantify the contribution of extreme heat
to human health across spatial and temporal scales, often with historical data.

@ >p(-4) * >p(-4) * >p(- 4) * Q@ Methods & Description & Examples
(citations)
Years of Life Lost (YLL) &

A measure of premature mortality, in this case, due to heat mortality.

&
(Sewe et al., 2018)
(Yunquan Zhang et al., 2018)

Heat Vulnerability Indices &
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Summarize the key socioeconomic and physical factors that may in-
crease or attenuate the effects of heat. The weighting (importance)
of different factors will differ by location. Often mapped across spa-
tial scales, such as zip code or neighborhood.

(Reid et al., 2009)
(Harlan et al., 2013)
(Conlon et al., 2020)

Time-series Epidemiological Approaches &

Used to estimate temporal changes in relative risk (RR) of short-
term mortality associated with increased temperatures (e.g., min,
mean, max, range); account for confounding of effect modifiers; as-
sess lagged and/or cumulative effects; often at city- or county-scale.
Also used to assess change in RR over time (years), evaluate heat
warning systems, and applied in climate projections.

(Bobb, Obermeyer, et al., 2014)
(Petkova et al., 2014)
(Gasparrini et al., 2015)
(Benmarhnia et al., 2016)

UHI Attribution &

Assess heat-related impacts with and without UHI impacts caused
by urban development (see Sec. 5.1).

(Dang et al., 2018)
(Heaviside et al., 2017)

Climate Change Attribution Studies &

Determines whether climate change has contributed to observed
changes in a given outcome (e.g., the number of deaths with or
without a change in climate)
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(D. Stone et al., 2013)
(Vicedo-Cabrera et al., 2021)
(Ebi et al., 2017)

Heat-related health issues are better understood in high-income countries due
to data availability and more advanced health systems (H. Green et al., 2019),
and thus greater challenges to heat adaptation exist in low- and middle-income
countries (LMICs). Within developed countries (e.g., Australia, Italy, Czech
Republic, South Korea, United States, Sweden) heat-related mortality has been
steadily declining in large cities over the last 30+ years (Bobb, Peng, et al.,
2014; Coates et al., 2014; J. Ha & Kim, 2013; Kysely & Plavcova, 2012; Petkova
et al., 2014; Schifano et al., 2012) while the rate of decline varies regionally
and across different population groups (Sheridan et al., 2021). Reasons for
the recent decline in developed countries may include increasing adaptive ca-
pacity, such as heat warning systems, air conditioning prevalence, education,
and behavioural modifications. Nonetheless, many heat-related mortality pro-
jections for the coming century point to substantial increases (Hondula et al.,
2015). Whether or not declining trends will continue in high-income countries
depends on continuing and advancing these adaptation strategies, population
demographics, migration, urbanization rates (Heaviside et al., 2017), climate
change mitigation, and heat adaptation strategies, all of which must be consid-
ered in future pathways to project heat related mortality (Gosling et al., 2017).
However, a recent study shows that 37.0% (range 20.5-76.3%) of warm-season
heat-related deaths across 43 countries (many high-income) globally from 1991-
2018 can be attributed to climate change (Vicedo-Cabrera et al., 2021); hence,
even with adaptive capacity increases, 1/3 of lives lost may not have occurred
without climate change. Such trends, both past, current, and future, are largely
unknown for LMICs.

While population-level epidemiological studies in urban areas are a critical start-
ing point, they can only provide a broad overview of potential individual-level
challenges outlined in C.1 (i.e., thermal discomfort, physiological strain). There
are well-known physiological limits related to heat strain and sensitivities to
heat (discussed in C.1) that can substantially increase vulnerability even at
lower heat exposures and that should be considered in heat projections (Vanos
et al., 2020).

Direct and Indirect Health Impacts of Urban Heat on Humans

In addition to the direct physiological impacts of heat exposure (Sec. 3.1),
numerous indirect impacts (e.g., cardiovascular events, respiratory distress, and
inhibition of sleep, learning, mood, and behaviour) are linked to extreme heat
(see review by (Jay et al., 2021)). Each case of heat illness or death is highly
individualized and context specific, based on a person’s activities and “pathway”
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to heat exposure, as discussed in Sec. 2.

The patterns of personal heat exposure can vary considerably between individu-
als and between urban versus rural locations. Certain advantages may be present
within urban versus rural environments, specifically a greater access and ability
to find cooling centers; a higher presence of shading in some instances (e.g.,
desert regions); greater access to clean water; more access to transportation;
proximity to hospitals and emergency personal; and closer social ties, among
others, that directly or indirectly affect heat vulnerability.

Vulnerable Sub-Groups within Cities

Population sub-groups that are more physiologically or psychologically vulnera-
ble and more likely to experience heightened levels of heat include children and
infants, athletes, outdoor workers, warfighters, those with pre-existing illnesses
and/or on medication, homeless, and the elderly (Ebi, Capon, et al., 2021).
While many urban amenities (shade, water, cooling) help support the homeless
population, they can be at higher risk because of challenges including barriers to
accessing sufficient healthcare and community cooling centers, or compromised
physical and/or mental health, making them one of the most at-risk populations
to heat deaths (Nicolay et al., 2016).

Athletes and outdoor workers are more likely to experience exertional heat stroke
(EHS), which typically strikes active and young athletes and workers when cou-
pled with high metabolic loads and clothing/equipment that impair heat loss
(Hosokawa et al., 2019). Within these groups, those at the highest risk of exer-
tional heat injury are already compromised by illness, large body type, recent
illness, and/or medication (Hosokawa et al., 2019).

Children’s activity patterns and access to (or use of) heat adaptive strategies
within urban environments are important factors in their personal heat exposure
and thus health outcomes. At the population-level, studies in children point to
a higher risk of heat morbidity rather than mortality (Bartlett, 2008; Knowlton
et al., 2009; Kravchenko et al., 2013). Within many contemporary playgrounds,
extreme surface temperatures may cause thermal burns (e.g., from sun-exposed
plastic, rubber, metal; (Pfautsch et al., 2020; Vanos et al., 2016)). Infants and
children face the greatest risk to the dangers of pediatric heat stroke (PHS)
in overheated vehicles, which is an ever-present, critical concern: in U.S. cities
alone, 888 children died of PHS since 1998 (Null, 2021; Vanos et al., 2016).

Finally, excessive heat exposure to pregnant women during the later stages
of pregnancy is associated with increased risk for still- and premature-births
(Chersich et al., 2020; S. Ha et al., 2017), yet moderate bouts of exercise in
the second and third trimester was recently shown to not pose a greater risk to
pregnant women in their second and third trimesters (Smallcombe et al., 2021).

Challenges and recommendations

Studies must also address adaptive capacity, which is strongly associated with
heat-related illness and death, rather than rising temperatures alone, in order to
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improve the ability to predict individual or population-level health detriments
deriving from overheating in cities. The following recommendations in research
and application are suggested:

. Collect appropriate data (health and weather) to conduct re-
search into heat-health associations in LMICs and lower SES
communities.

o Develop and validate more rigorous approaches to account for

adaptive capacity and demographic change in projecting future
heat-health impacts.

. Research indirect effects of heat and include well-being more
broadly.
o Create city-specific early warning and response systems for heat

extremes that are supported by heat vulnerability maps and
that are more tailored to specific individuals; evaluate all such
systems.

o Develop and implement passive (i.e., sustainable) cooling strate-
gies to support heat mitigation in cities and in homes (Sec. 5.2),
as the cost of AC often leaves the most vulnerable without power
((Jay et al., 2021), and as detailed in Sec. 4.2).

o Improve resources, policies, public health messaging, and tech-
nologies that are needed for the most vulnerable populations to
respond appropriately to heat (e.g., to prevent PHS or isolated
heat deaths in elderly populations), leveraging spaces, tools, and
resources already present in urban areas.

4.2 Urban Energy

Urban energy systems both impact and are impacted by urban overheating.
Urban overheating results in higher cooling energy needs, while urban energy
systems release anthropogenic sensible heat and moisture into the urban at-
mosphere, increasing urban temperature. High urban temperatures further
decrease the performance of photovoltaic modules and air conditioning (AC).
Thus, urban energy systems represent a cascade of integrated systems, where
the consequences of design and planning decisions and inefficiencies rapidly prop-
agate, pushing socio-economically-disadvantaged urban populations into energy
poverty. With the term “urban energy systems”, we refer to the interconnected
components of energy generation, distribution, and end uses in the built environ-
ment, together with buildings and human users. Here, we discuss the challenges
in addressing these cascading systems in relation to urban overheating.

In the context of urban overheating, urban energy systems should also be crit-
ically assessed when they fail to provide the indoor thermal comfort they were
designed to offer (Sec. 5.2). For increasing fractions of the urban population,
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the failure arises from transient or permanent exclusion from the energy sys-
tem itself, and thus increased exposure to heat-related health outcomes. This
is the condition faced by the energy poor, who are defined as having energy
expenditures that exceed 10% of their household income (Moore, 2012).

Urban energy systems often reach a critical state at the occurrence of extreme
heat events that act in synergy with local contributions to overheating, both
inland (Zhao et al., 2018) and in coastal areas (Khan et al., 2020). Under stress
conditions, thermally-inefficient buildings are subject to inadequate indoor con-
ditions, even in developed countries (Thomson et al., 2019). Another relevant
risk comes from food safety, when inadequate temperatures during transport
and storage lead to the biological proliferation of mycotoxins or pathogenic
bacteria in food (Miraglia et al., 2009), while exposure to hotter temperatures
reduces food safety inspections (Obradovich et al., 2018). This risk is especially
increased during heatwaves for the energy poor, whose dwellings show high in-
door air temperatures, impacting the performance of refrigerators, even in the
absence of black or brownouts. Chillers and condensing units of air condition-
ers see their performance decrease with increasing temperature and humidity
(Kabeel et al., 2017), and the same dynamic applies to photovoltaic solar pan-
els (Skoplaki & Palyvos, 2009). Therefore, building-integrated PV may decrease
the electricity output during heatwaves, thus resulting in increased demand from
the power grid. As less solar radiation is converted into electricity, more is dissi-
pated as heat, thus worsening the contribution of photovoltaic panels to urban
overheating, as documented at utility scale (Ashley M. Broadbent et al., 2019).

The last of these highly non-linear dynamics relates to anthropogenic sensible
heat and moisture, which is released into the built environment contributing to
increases of the ambient air temperature and humidity (Sailor, 2011). Mesoscale
climate modelling coupled to building models estimate an increase of the ambi-
ent temperature by 1-2 °C in peak conditions in most cities driven by exhaust
heat from condensing units (Sailor, 2011; Salamanca et al., 2014). Instead, evap-
orative cooling towers can decrease urban temperatures, even by 1.5 °C in the
evening, although with a substantial increase in specific humidity, which then
may worsen thermal comfort and increase the energy needs for dehumidifica-
tion (Y. Wang et al., 2018). During heatwaves, the release of anthropogenic
heat from buildings may increase by more than 20%, of which more than 85%
is contributed by air-conditioners (Luo et al., 2020), due to reduced efficiency
and increased demand. Also, during heatwaves, air conditioners fail to provide
comfort conditions or may not operate because of blackouts (B. Stone et al.,
2021).

To design and manage building stocks for resiliency in the context of worsening
urban overheating, it is necessary to manage them as connected systems rather
than individual buildings. This vision, among other technological advancements,
requires granular energy utility data to better understand and quantify inter-
connected impacts of urban energy systems. However, often utility datasets are
neither easily accessible nor include appropriate and consistent contextualized
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metadata in non-smart grids (Nagasawa et al., 2013; Yu et al., 2015). Con-
sequently, the development of district-scale electricity demand models capable
of high-resolution assessments in different boundary conditions is complicated.
Moreover, the uncertainty in the definition of the population in small areas is an
intrinsic issue (Tayman, 2011), which prevents a detailed understanding of the
semi-hourly demand, area by area (Bhattarai et al., 2019), without a widespread
implementation of smart metering.

Realistic representation of the complex meteorological boundary conditions for
building simulation has been addressed with increasingly convergent efforts by
the building simulation and urban climatology communities (Ferrando et al.,
2020). Still, practitioners consider shadowing by nearby buildings at most, with
a deterministic input in response to a probabilistic problem, and use typical
weather data from airports that exclude climate anomalies. Further, while heat-
ing energy needs can be robustly estimated with typical weather years, cooling
energy needs are strongly affected by heatwaves, therefore resulting in a signif-
icant bias (Paolini et al., 2017). Practitioners also model individual buildings,
despite the growing opportunities for urban energy modelling (Hong, Chen, et
al., 2020). The availability of reliable 3-D stock models, now limited to a few
cities (Evans et al., 2017), may overcome the limitations of archetypes (i.e.,
typical buildings) to represent the whole building stock (Ferrando et al., 2020).
Additionally, urban energy codes could offer a pathway towards collaborative
energy design of buildings, no longer treating buildings as stand-alone entities.

Perhaps the most significant gaps in model assessment of urban overheating
impacts on urban energy (and vice versa) concern the interconnections of ur-
ban energy systems, especially at the neighbourhood scale. First, disentangling
the connections between the layers of urban energy systems entails addressing
a problem affected by high uncertainty, and focusing on the links between the
different parts (Pappaccogli et al., 2020). Notably, the quantification of anthro-
pogenic heat and moisture emissions is one of the terms in the urban energy
balance showing the greatest variability depending on the model and assumption
(Sailor, 2011; Y. Wang et al., 2018). Specifically, even very detailed bottom-up
models (Hong, Ferrando, et al., 2020) do not take into consideration the thermal
dissipation from different components of the electrical grids (e.g., transformers),
which requires attention in the future.

On the other hand, the synergies between urban overheating and heatwaves
have been investigated (Zhao et al., 2018), but the current framework does not
support the quantification of the chain of effects involving the electrical grid,
buildings, and air conditioning, which can lead to reduced energy performance
and energy poverty. In fact, only a limited number of studies have addressed
this frontier (Luo et al., 2020) despite its critical impact on health outcomes of
overheating.

The second cluster of gaps relates to the fragmentation of the study of
energy transformation and uses, social inequality, and spatial differentiation
(Bouzarovski & Thomson, 2018). High cooling energy consumption in wealthy
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areas drives demand and energy prices, harshening energy poverty in less
affluent and denser suburbs (Simshauser et al., 2011), where the vulnerable
population is confined to thermally unsafe and inefficient buildings. Further,
to achieve net-zero energy cities, net-zero energy users and constant metering
are needed (Yan Zhang et al., 2018), motivating further research on citizen
engagement together with technological advancements. Furthermore, climate
extremes, and consequent blackout and brownout models need to inform the
design process of urban energy systems, with a balanced approach to energy
curtailment, and enforcement of maximum cooling set points during extreme
heat events. Other possible solutions include heatwave shelters and energy
sharing during non-extreme conditions, which can mitigate inequalities (Salvia
& Morello, 2020), with people’s affiliation networks driving remarkable energy
savings at building scale (Xu et al., 2012), especially in plug loads.

In conclusion, the urban energy problem should be reframed to support human
health, in addition to reduction of energy use. Otherwise, there is a risk of fur-
ther polarisation and increasing energy poverty (Santamouris, 2020), with only
the wealthy dwelling in net-zero energy buildings equipped with on-site renew-
ables. Cities should be designed and managed as complex systems, and while the
single components have been developed, the response of the integrated model
is not known. Therefore, to develop new knowledge, first, a new integrated
energy space has to be developed so that new applied research can find novel
opportunities and solutions to the energy problem.

5 Multidisciplinary solutions to address urban
overheating

This section discusses the state-of-the-art methodologies and solutions for miti-
gating heat exposure, reducing sensitivity, and increasing adaptive capacities at
the individual and city levels. We focus on cooling strategies that can be imple-
mented in urban design (Sec. 5.1) or indoor spaces (Sec. 5.2) as well as urban
heat governance (Sec. 5.3) needed to mitigate or adapt to this multi-faceted
challenge.

5.1 Heat mitigation strategies integrated in urban design

Urban design and architecture have traditionally been developed to enhance
immediate thermal environments of individuals, a design process that has since
been obscured due to the prevalent use of air-conditioning and cheap fuel (Pearl-
mutter, 2007), exacerbating urban heat challenges in cities (Sec. 4.2). Inspired
by traditional interventions and novel technologies, various heat mitigation
methodologies have been developed over the last three or more decades (Ak-
bari & Kolokotsa, 2016; Rosenfeld et al., 1995), aiming to decrease the local
ambient temperature using solar control, reflective and green roofs (D. Li et
al., 2014; Santamouris, 2014), urban greenery (Santamouris et al., 2018), water
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and irrigation (Coutts et al., 2013) and the use of light color materials for urban
facades and pavements (Santamouris, 2013). Apart from these traditional meth-
ods, several new and eflicient mitigation technologies presenting a high cooling
capacity are developed and used in large scale urban projects. Most of the newly
presented technologies deal with the development of advanced materials for the
urban fabric and building envelope, as well as with scientific developments to
enhance the cooling potential of urban greenery (Akbari et al., 2015). In paral-
lel, significant new knowledge has been generated on the optimum use of water
and evaporation systems in cities (Gao & Santamouris, 2019).

A combination of advanced and traditional mitigation technologies and systems
can be considered in urban design, selected based on the urban morphology,
local climate class, water availability, and seasonal climate variability. On av-
erage, it is feasible to decrease the peak air temperature of cities up to 2.5-3
°C (Feng et al., 2021; Santamouris et al., 2017a, 2020). Addition of green in-
frastructure often represents a re-integration of landscape elements better able
to store precipitation and fuel evapotranspiration and reduce temperatures dur-
ing hot spells. Examples include green roofs and green building facades, trees,
and ground-level vegetation such as parks, lawns, and gardens (Bowler et al.,
2010). Street trees not only evapotranspire, but provide shade to pedestrians,
buildings, and heat-absorbing ground-level infrastructure, dramatically reduc-
ing radiation and consequently overall daytime heat exposure and nighttime
heat release (Coutts et al., 2016; Oke, 1989). However, trees can warm tempera-
tures at night (Gillner et al., 2015; Krayenhoff et al., 2020) and slow winds and
prevent dispersion of pollutants emitted at ground level (Santiago et al., 2017;
P. E. J. Vos et al., 2013), such as those from vehicle tailpipes, and interfere
with subsurface infrastructure. Surface and air temperature cooling from green
roofs and low vegetation, and to a lesser extent, trees, is critically dependent on
adequate soil moisture, either from precipitation or irrigation (Heusinger et al.,
2018; Krayenhoff et al., 2021). Nevertheless, to date there is evidence that urban
trees are most effective for pedestrian-level cooling, followed by ground level veg-
etation, and finally by green roofs (Krayenhoff et al., 2021; Santamouris et al.,
2017b; Shashua-Bar et al., 2009); however, green roofs can have greater impacts
on building energy and/or internal thermal environments (Sailor et al., 2012).
Reviews of vegetation cooling effectiveness suggest about 0.1-0.3°C of cooling
per 0.1 plan area increase in vegetation area (Bowler et al., 2010; Krayenhoff
et al., 2021). Recent observational results suggest that trees may reduce air
temperature much more effectively as total canopy cover increases (Ziter et
al., 2019). Critically, each urban vegetation strategy has copious non-climatic
benefits and, in some cases, select drawbacks, related to aesthetics, function,
hydrology, health, historical context, etc, that will differ with local context
(Krayenhoff et al., 2021; Santamouris et al., 2018). There is opportunity to
better optimize urban vegetation combinations and arrangements accounting
for all impacts, including adaptation to urban overheating.

However, the intensity of contemporary and especially projected urban overheat-
ing exceeds the potential of existing heat mitigation technologies, especially at
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night when the canopy urban heat island is maximized, and when heat miti-
gation approaches that rely on solar radiation (e.g., increased albedo or evapo-
transpiration) are less effective (Krayenhoff et al., 2018). This requires that we
consider more efficient mitigation technologies with a considerably higher cool-
ing capability. Therefore, achievements in the field of heat mitigating materials
are the focus of the remaining discussion in this section.

Materials used in the urban fabric and building envelope absorb solar radiation,
absorb and emit infrared radiation, store and release heat via conduction, and
exchange heat with the air through convective processes. Materials that exhibit
high radiation absorptivity have a high surface temperature during daytime,
heating the ambient air, emitting large amounts of longwave radiation, and
deteriorating thermal comfort. To decrease the materials’ surface temperatures
several principles are used separately or in a combined way:

. Increase the reflectivity of the materials in the visible, infrared
or both parts of the solar radiation spectrum,

. Increase the thermal inertia of the materials (however, doing so
warms evening and nighttime periods),

o Exploit fluorescent materials to enhance their thermal losses,

o Exploit chromic materials to adjust their reflectivity according
to the climatic conditions,

. Increase the emissivity of the materials in the whole infrared
spectrum, or

. Increase the emissivity of the materials in the so-called atmo-
spheric window.

White artificial materials of extremely high reflectivity in the visible solar spec-
trum may present up to 6°C lower surface temperature than white natural
materials like marble (Synnefa et al., 2006). However, reflectivity decreases
considerably over time because of the deposition of dust and other atmospheric
constituents and the effects of UV radiation. Near-infrared reflective colored
materials present a much higher broadband solar reflectivity than conventional
materials of the same color, increasing broadband reflectivity by up to four times
(Levinson et al., 2005), and lowering surface (air) temperature by as much as
10°C (1.5°C) compared to conventional surfaces of the same color (Santamouris,
2016; Synnefa et al., 2007). Ageing and deposition of dust are issues that can
potentially be mitigated by self-cleaning IR reflecting coatings (Kyriakodis &
Santamouris, 2018).

The addition of phase change materials (PCM) in the mass of reflecting coatings,
which store latent heat, can increase material thermal storage and consequently
decrease the release of sensible and longwave heat, and reduce material surface
temperature by up to 2.5°C (Karlessi et al., 2011). Use of thermochromic ma-
terials, which change color and reflectivity as a function of surface temperature,
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may be an excellent mitigation solution for temperate climates. Leuko dye-based
thermochromic materials (Ma et al., 2001) are found to yield surface tempera-
tures up to 22°C lower than conventional surfaces of the same color (Karlessi
et al., 2009), however the use of optical filters is required to protect them when
exposed to the sun (Karlessi & Santamouris, 2015). Modern chromic materials
appear to provide a high potential for efficient deployment for cooling in cities
(Garshasbi & Santamouris, 2019). Fluorescent materials absorb solar radiation
and re-emit photons at longer wavelengths, enhancing thermal losses. Materi-
als based on ruby fluorescent crystals, for example, showed surface temperature
about 6.5°C lower than conventional samples (Berdahl et al., 2016). Preliminary
testing of mitigation materials based on quantum dots, another chromic mate-
rial, showed spectacular cooling effectiveness, however several problems with
their ageing are yet to be solved (Garshasbi & Santamouris, 2019).

Daytime radiative cooling materials presenting an extremely high reflectivity to
solar radiation and a very high emissivity in the atmospheric window can reach
sub-ambient surface temperatures while sunlit (Zhai et al., 2017). Metamate-
rials, photonic, and plasmonic materials, when used to form active or passive
daytime radiative cooling coatings and components, may present surface tem-
peratures up to 17°C below ambient (Santamouris & Feng, 2018). Overcooling
of surfaces during the winter period and reduced performance in humid climates
seem to be the main limitations of this technology. The use of variable emissiv-
ity materials like PCMs to control the temporal variation of the emissivity of
radiative coolers (Ono et al., 2018) may be an efficient way to overcome these
problems.

Future Research Priorities

The emerging energy and environmental problems in cities that arise from re-
gional and global climate change require optimal application of existing climate
moderation strategies such as urban vegetation, combined with development
and implementation of advanced technologies able to further enhance urban
cooling.

Development of innovative mitigation technologies. Current mitigation tech-
nologies may decrease the peak ambient air temperature by up to 2.5 — 3.0°C
Given the projected magnitude of urban overheating, research efforts should
concentrate towards the development of more efficient mitigation technologies
able to decrease peak ambient temperatures by up to 5°C. The main research
priorities and developments should target the following areas:

. Development of sub-ambient temperature materials. Photonic
and plasmonic technologies used for daytime radiative cooling
exhibit large potential for functional improvement and technol-
ogy simplification. Passive radiative cooling technologies in the
form of paints, sprays or simple coatings may decrease the sur-
face temperature of roofs and pavements up to 10°C below the
ambient temperature. In parallel, the development of photonic
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shading devices can reduce surface temperatures (and associ-
ated mean radiant temperature; see Sec. 2.1) in open spaces,
reduce the ambient temperature, and improve outdoor thermal

comfort.

o Further development of fluorescent materials combined with
thermochromic or photonic substrates may yield high cooling
potential.

o Development of alternatives to leuco dyes thermochromic mate-

rials may be a high research priority. Recent research demon-
strated that thermochromic quantum dots, plasmonics, pho-
tonic crystals, conjugated polymers, Schiff bases and liquid crys-
tals offer fascinating and impressive mitigation characteristics
and potential.

. More integrated analyses of plant ecology together with urban
climate measurements and modeling, such that we understand
the desired traits and locations of green infrastructures for rele-
vant city climate and resources (such as access to water).

. Continued re-integration of vegetation into urban landscapes, in-
cluding tree planting, green roofs, and added ground-level veg-
etation, particularly when it provides co-benefits (e.g., recre-
ational greenspace, urban agriculture, etc).

. Continued research into effective methods for cooling cities dur-
ing evening and nighttime.

Large scale urban projects demonstrating the use of efficient technologies may
further enhance our knowledge and understanding of the best way to implement
these new technologies for improved heat resilience. Additionally, the specific
impact and the potential improvements achieved through the implementation
of efficient mitigation technologies have to be assessed through well defined
evaluation protocols to better understand their impact.

5.2 Indoor thermal environment and innovative cooling strategies

In addition to mitigating overheating outdoors, it is important to quantify and
address indoor thermal exposure to minimize the negative impacts on humans.
In the United States, for example, people spend 90% of their time indoors, on
average (US Environmental Protection Agency, 1989). Even in moderate heat
periods, people may experience elevated indoor temperatures in both workplace
and residential buildings (Kjellstrom & Crowe, 2011; Uejio et al., 2016; White-
Newsome et al., 2012), which could lead to significant impacts on people’s health,
safety, finances, and well-being (Sec. 4).

Raising outdoor air temperature increases the indoor air temperature and/or
the energy demand for cooling. The relationship between outdoor and indoor
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temperatures is influenced by many factors, such as building design and oper-
ation (e.g., full glass building vs well insulated building with external shading
device) and cooling strategy (e.g., air-conditioned vs naturally ventilated build-
ings). The ASHRAE Global Thermal Comfort Database II (Foldvary Licina et
al., 2018) is largest thermal comfort field survey database that can provide in-
sight on how the outdoor air temperature (T,) is related to the indoor air tem-
perature (T,) in both air conditioned and naturally ventilated buildings (Fig.
5). From simple weighted linear regressions, we find an increment of 0.1 °C and
0.4 °C, respectively for air conditioned and naturally ventilated buildings, for
every degree Celsius increment in outdoor temperature. It is clear that indoor
temperature can be regulated through heating and cooling in air-conditioned
buildings regardless of the outdoor environments; but a slope of ~0.4 in natu-
rally ventilated buildings suggests that the indoor temperature does not follow
exactly the outdoor conditions. We observe with concern that in some natu-
rally ventilated buildings (above the yellow dotted line in Fig. 5), the indoor
temperature is higher than the outdoor temperature, which itself is elevated.
This indicates that outdoor temperature may in some cases underestimate the
overheating exposure and that there exist other heat sources that are yet to be
characterized.

Indoor temperature is increased by heat gains via conduction from the build-
ing envelope, convection from outdoor hot air, direct or indirect solar radiation
through windows and openings, and heat released from occupants and equip-
ment within the space. Indoor overheating challenges, particularly for vulnera-
ble and socio-economically-disadvantaged urban populations, are more likely to
occur in thermally-inefficient buildings (Sect 4.1). Thermal exposure perceived
by humans, however, does not only link to air temperature, it also relates to
mean radiant temperature, relative humidity, airspeed, and occupant’s clothing
insulation and activity level (Fanger, 1970; Standard 55, 2017). Moreover, as
noted in Sec. 4.2, it is important to assess the ability of a building to provide
passive survivability during extended power outages in peak summer conditions
(LEED BD+C, 2021).
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Figure 5. Indoor and outdoor air temperature relationships in air conditioned

and naturally ventilated buildings obtained from the ASHRAE Global Thermal Comfort Database I1
(Foldvéary Licina et al., 2018). The yellow dotted line indicates the hypothetical

line where T,=T,. n indicates the number of measurements.

Indoor heat exposure can be minimized by two major strategies: Reduce heat
gains and actively remove indoor thermal load. Heat gains can be reduced by
building design and effective operation with established strategies, for example:
avoid direct solar heat by altering building orientation (Axaopoulos et al., 2014),
block solar radiation by installing outside shading (Cheung et al., 2005; Chua
& Chou, 2010), reduce heat gain by applying insulation in the building fagade
(Fang et al., 2014; Schiavoni et al., 2016) and install cool roofs or green roofs
(Junjing Yang et al., 2018), use high performance glazing (Karlsson & Roos,
2001), and maximize natural ventilation to remove indoor heat by advanced
building design and control (Etheridge, 2011). There are also more innovative
solutions not yet ready for implementation, such as terrestrial radiative cooling
(X. Yin et al., 2020; M. Zhou et al., 2021) and cooling textiles (Hsu et al., 2017;
Zeng et al., 2021).

Air conditioning is most effective in removing indoor heat load and regulating
the indoor environment, but its applicability is limited by financial and resource
constraints, especially for mid- and low-income communities, and by the pos-
sibility of power outages during heat waves. Moreover, air conditioning has a
high negative environmental impact. It is energy intensive, and it releases heat
to the outdoors, increasing temperature at different scales (Sect 4.2). It also
increases pollution from refrigerants, and if the space is not ventilated, it leads
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to high indoor CO2 levels if people close windows to save energy (Dahl, 2013;
Gall et al., 2016).

In practice, there are several energy efficient strategies that can reduce cool-
ing loads and relieve occupants’ thermal discomfort in buildings, for example:
thermal mass and storage (Faraj et al., 2020; Yau & Rismanchi, 2012), evapo-
rative cooling (Y. Yang et al., 2019), free cooling at night (Solgi et al., 2018),
and water- / air-side economizers (Habibi Khalaj & Halgamuge, 2017; Ham et
al., 2015). Among all potential strategies, an affordable, effective, scalable and
market-ready solution is to increase air movement in built environments with
fans in both indoor and outdoor areas (Jay et al., 2019). Subjective thermal
discomfort under a high temperature environment can be offset by an elevated
air speed due to the fan-generated cooling effect (Arens et al., 1998; Schiavon &
Melikov, 2009; Tanabe et al., 1993). The increased air movement is perceived as
pleasant and is aligned with the physiological principle of alliesthesia (Cabanac,
1971; Parkinson & de Dear, 2015). The main advantage of this solution is that
the energy used to increase air speed is much lower than the energy used to
lower the temperature while maintaining an equivalent thermal comfort condi-
tion (Hoyt et al., 2015; Rim et al., 2015; Schiavon & Melikov, 2008). It may also
potentially provide better air quality (Pantelic et al., 2020). In addition, this so-
lution can be easily adapted to different ventilation types (i.e., air-conditioning,
natural ventilation or mixed mode) in both new and existing buildings. Ev-
idence from the literature suggested occupants were thermally more satisfied
in a condition of higher indoor air temperature (e.g. 26 °C) with fans than a
condition of lower air temperature (e.g. 23 °C) without fan, in both a climatic
chamber experiment (Schiavon et al., 2017) and a field study (Lipczynska et al.,
2018).

Despite the energy saving benefits and increased occupant satisfaction, we find
that the implementation of this higher temperature cooling with elevated air
movement strategy is not common in commercial buildings, while it is in residen-
tial buildings. Possible barriers could relate to air-conditioning being perceived
to be of a higher quality than fans (Chappells & Shove, 2005; Lorch & Cole,
2003), the aesthetic concerns related to having an object spinning in the space,
the reduced effectiveness of convection for occupants with formal office dress
(e.g. long sleeve and trousers) (Holmér et al., 1999) the lack of open source
guidelines to inform adequate elevated airspeed system design, and operation
and maintenance concerns (noise, dust and wobbling) (Present et al., 2019).
To address the benefit of fan usage, more research regarding elevated airspeed
cooling strategies in different building types and climate zones are needed to
demonstrate their efficacy with respect to energy efficiency and indoor thermal
comfort improvement. In addition, practical guidelines should be developed to
encourage system deployment in actual buildings and facilitate building practi-
tioners’ needs.
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5.3 Addressing sensitivity and adaptive capacity: Governance, policy,
and citizen engagement

The wide suite of impacts of overheating on urban systems, as well as the array
of tools and solutions for understanding and reducing adverse impacts, raises
important questions related to governance and community engagement. Among
them: Which actors and institutions are responsible for the governance of urban
overheating? How do they interact with each other, and with the public at large?
What is the contemporary state of urban overheating governance, and what may
be in store for the future?

Conceptually, governance of urban overheating can be framed as an extension
of—or perhaps even an explicit component of—climate change governance more
broadly defined (Frohlich & Knieling, 2013). In the case of urban overheating,
the drivers and impacts of climate change occur at local and regional scales,
rather than global, which alters the magnitude of collective action challenges
posed for global climate change mitigation and adaptation (Georgescu, 2015;
Georgescu et al., 2014; Jay et al., 2021). However, many other governance
challenges for urban overheating closely parallel those framed for global climate
change, including those related to geographic scale and boundaries, participa-
tion and needs of a wide range of sectors and stakeholders, time horizons for
decision-making, and uncertainty (Frohlich & Knieling, 2013). Urban overheat-
ing governance can also be framed as an aspect of climate adaptation, for which
a rich suite of definitions, conceptual models, and theories have been proposed
(Keith et al., 2021; Moser & Ekstrom, 2010).

Within climate adaptation literature, scholars are increasingly examining barri-
ers to effective adaptation. Among the barriers particularly relevant to urban
heating are those related to authority, responsibility, agreement, resources, and
path dependency (following (Moser & Ekstrom, 2010)). While public sector
leaders are in many cases detecting problems related to urban overheating, and
indicating that those problems are crossing thresholds for concern and response
needs, tackling urban overheating remains a relatively new challenge for tra-
ditional governance actors. As such, ambiguity regarding responsibility and
accountability structures, access to financial, human, and regulatory resources,
and a legacy of institutional non-attention to problems associated with urban
overheating, are hindrances to successful implementation that many actors have
yet to overcome (Keith et al., 2019). While preferred models for urban over-
heating governance have not yet been clearly articulated, it is clear that any
contemporary models are relatively immature compared with those established
for other chronic environmental hazards, including air pollution (e.g., strong na-
tional to local regulatory structures, financial incentives, and explicitly named
responsible governance institutions) (Keith et al., 2021), and noise (e.g., local
regulatory structures, workplace protections).

Contemporary examples of urban overheating governance reflect attention to
two key impact domains —health and energy. At the international scale, the
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World Health Organization and World Meteorological Organization have collab-
oratively authored guidance for implementation of heat-health warning systems,
which aim to lessen the public health burden of heat events even beyond the
urban context (McGregor et al., 2015). There is widespread evidence of local
implementation of such systems (Casanueva et al., 2019; Hajat, Sheridan, et al.,
2010; Hess & Ebi, 2016). National governments and non-governmental organiza-
tions have also offered a wide range of guidance documents and technical assis-
tance related to management of various aspects of urban overheating, including
implementation of urban heat countermeasures and health-protective resources
(as detailed in several use cases compiled by (Global Heat Health Information
Network, 2020)). At the local scale, some jurisdictions have produced different
types of planning documents and strategies for tackling aspects of urban over-
heating, and in some cases these documents are approved by a local commission
or council, with varying degrees of regulatory authority (e.g., (Ahmedabad Heat
Action Plan, 2016; The Nature Conservancy, n.d.). In other cases, regulations
and ordinances related to urban overheating appear in a more ad hoc nature in
local policy, and elsewhere, measures related to urban overheating are included
as components of broader plans, including general plans, sustainability plans,
and/or resilience plans (Gabbe et al., 2021). Yet it is also clear in examina-
tion of local efforts to govern urban overheating that tensions and barriers arise
that are consistent with those identified in the climate change governance and
adaptation literature. Among them, (Mees et al., 2015) and (Guyer et al., 2019)
report disagreement and ambiguity in practitioners’ understanding of their roles
and responsibilities with respect to urban climate governance. (Mahlkow et al.,
2016) suggest challenges with respect to authority of urban development in the
context of urban overheating and the ability of governance actors to influence
those processes. (Birkmann et al., 2010) further posit that these tensions and
barriers may be particularly impactful in the context of developing countries,
where rapid population and infrastructure growth create even greater challenges
for coordinated and comprehensive governance.

While literature continues to accumulate related to how urban overheating gov-
ernance is functioning today, there are many examples of historical analyses,
modeling studies, and visioning and scenario exercises from which recommenda-
tions can be drawn regarding how urban overheating governance could evolve
in the future. There is now relatively widespread acknowledgement that urban
overheating is another lens by which inequities in urban systems are revealed.
Governance actors must recognize that contemporary conditions are products
of legacies of planning and investment that did not sufficiently prepare cities for
challenges they currently face with respect to urban overheating, especially for
historically marginalized communities (Grineski et al., 2015; Harlan et al., 2007;
Wilson, 2020). In some cases, actors working today to reduce the challenges of
urban overheating must reverse the legacy effects of intentional practices that
placed certain populations at greater risk of harm from heat and other environ-
mental hazards (Harlan et al., 2019; Wilson, 2020). Beyond acknowledging and
reducing the total and inequitable distribution of harms associated with urban
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overheating, public leaders are also challenged to improve engagement strategies
in the pursuit of participatory justice (Baldwin, 2020; Chu & Cannon, 2021).
Residents who have been excluded from decision-making processes in the past
can and should meaningfully contribute to the planning and implementation of
urban overheating solutions moving forward, bringing critical domain expertise
from their lived experience (Guardaro et al., 2020; Marschiitz et al., 2020). Sce-
nario planning and visioning workshops have shown promise as a tool for both
engagement and shaping governance strategies related to the future of urban
climates (Iwaniec et al., 2020). Participation of the private sector and private
landowners in the implementation of urban overheating countermeasures will be
critical, owing to the relatively limited spatial extent of land owned by govern-
mental agencies in many urban settings. Public-private partnerships, financing
and incentive mechanisms, and other tools that accelerate collaboration may all
accelerate the timeline for realizing solutions to urban overheating. The role
of technology, specifically concerning ubiquitous sensing and Internet-of-Things
connectivity will need to be carefully balanced (Sec. 2.3). Governance actors
can benefit from access to increasingly precise data about urban climates and ur-
ban systems that influence and are influenced by the urban climate (Hamstead
et al., 2020; Hondula et al., 2015; Y. Yin et al., 2020), but widespread sens-
ing raises potential social and legal challenges concerning privacy and security,
institutionalization of bias, and more. Given the complexities and interrelation-
ships of the challenges associated with urban overheating, adaptive governance
may be the most promising model for localities to adopt as they move forward.
Adaptive governance embraces principles of iteration, flexibility, and learning,
and has been advocated as an appropriate model in the context of urban heat
(Hess et al., 2012) and other urban environmental domains including ecology
(O. Green et al., 2016) and water (Bettini et al., 2013; Larson et al., 2015).
Finally, as jurisdictions continue to evolve their approaches to governing urban
overheating, we encourage attention to the “five Ws” for urban resilience posed
by (Meerow & Newell, 2019). Efforts to address urban overheating cannot be
detached from the underlying socio-political structures and processes that shape
cities. As such, all involved in efforts to address urban overheating must consider
for whom, what, when, where, and why those efforts are being directed.

6 Conclusions and key ways forward

We provide the first integrated outlook for characterizing, evaluating, and ad-
dressing overheating in existing and future cities. We discuss how overheating
exposure is characterized using different observational and numerical methodolo-
gies across different scales (ranging from human to street and city scales). At the
human scale, we then detail several physiological and psychological pathways
that lead to individual sensitivities to overheating, as well as adaptive capacities
that can be promoted to reduce sensitivity or exposure. At the population level,
the key impacts of overheating on health and urban energy are documented for
vulnerable groups. Lastly, we discuss state-of-the-art methodologies as well as
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future approaches and solutions in urban planning and governance that aim to
address this multi-faceted challenge by mitigating exposure, reducing sensitivity,
and increasing adaptive capacities at the individual and city levels.

Key priorities to better assess overheating impacts as well as potential solutions
can be condensed into seven multidisciplinary research directions:

1. Develop a new paradigm for heat exposure characteri-
zation: More comprehensive characterization of heat exposure
in cities is an ongoing focus in research. While both measure-
ments and modeling practices need to quantify overheating at
higher spatial and temporal resolutions, it is critical that expo-
sure is better characterized focused on where people are located,
encompassing more diverse and targeted indoor and outdoor
spaces. Additionally, metrics and indicators that fully charac-
terize heat exposure (including relevant meteorological factors
such as wind and radiation, as well as duration and intensity
of exposure) should be integrated into sensing and modeling of
thermal environments based on fit-for-purpose evaluations.

2. Determine adaptive capacities at the individual level to
reduce exposure and sensitivity: Future research should
provide a more expansive and inclusive knowledge of the physi-
ological and psychological/behavioral pathways that lead to in-
creased sensitivity and exposure of individuals and populations.
This knowledge can then inform the evaluation of adaptive ca-
pacities that can be afforded at the individual level to reduce
either sensitivity or exposure. Inclusive evaluations include con-
sideration of different clusters of personal or professional profiles
(covering different professions, health conditions, and socioeco-
nomic status) that may be more vulnerable to heat exposure.

3. Prioritize personal heat exposure assessment over one-
size-fits-all approaches: More human-centric assessment of
heat exposure, i.e. personal heat exposure, is a key priority in
several subfields. A ‘receptor-oriented’ approach to heat is sug-
gested, in contrast with existing ‘source-oriented’ assessments,
to quantify the heat exposure in the immediate environment
of humans as well as the impacts on human comfort, perfor-
mance, well-being, and health. Future research in personal heat
exposure requires not only targeted spatial coverage in data col-
lection and modeling, but also better integration of knowledge
and datasets that detail behavioral patterns and individual sen-
sitivities in response to heat.

4. Quantify the indirect health and wellbeing outcomes of
overheating: More human-centric assessment of heat exposure
permits quantification of the links between heat exposure and
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indirect health and wellbeing outcomes. Empirical verification
of causal links between urban heat and residents’ behavior, their
sedentariness, and heat-health impacts at the level of the indi-
vidual and the urban population at large are essential directions
for future research, such that evidence-based urban planning
and policy can be more broadly effective at maintaining and
enhancing well-being in a warming urban world.

Develop equitable urban energy systems for human
health and wellbeing: For a more integrated assessment of
overheating and urban energy, future research should consider
the non-linear interactions between overheating and urban
energy systems - involving electrical grids, buildings, equipment,
energy production (e.g., photovoltaics), and air conditioning -
that lead to reduced energy performance and energy poverty
with adverse effects on heat exposure indoors. In other words,
urban energy research should be framed to better support
human health, particularly in vulnerable populations, moving
beyond the focus on building-level energy computation or
city-level CO2 emissions.

Develop guidelines for heat mitigation and adaptation
strategies: In addition to the continued development of
novel materials and strategies with greater cooling potential,
future research should focus on the development of regionally-
and climatically-adaptive guidelines that optimally combine
infrastructure-based heat mitigation strategies (e.g., green
infrastructure, cool materials) and heat adaptation strategies
(e.g., cooling centers), considering multi-faceted impacts of
urban canopy air temperature, wind, humidity, and radiation
on buildings, pedestrians and air quality. The efficacy of these
guidelines should be evaluated in the context of contemporary
and future extreme heat, and additionally with respect to
their performance in cooler seasons. Further development of
infrastructure-based approaches for evening and nighttime
cooling are also important.

Expand time and space horizons in overheating analy-
ses: In many research directions noted above, there is a need
to consider global assessments of municipal-level temperatures
and extreme heat levels (beyond air temperature) under differ-
ent global climate change and urban development scenarios dur-
ing the period 2030-2080. Furthermore, future research should
focus on areas with high (current and projected) urbanization in
developing countries as well as informal settlements that have
traditionally been neglected in the urban climate literature. An
estimated 25% of the world’s urban population live in informal
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Additionally, further advancements in research tools and methods

settlements and slums (UN-Habitat, 2013) with distinct urban
climate characteristics, design, and sensitivity profiles to heat
that have not been documented before. This calls for urgent
attention in future research, further contributing to global envi-
ronmental justice with regards to heat.

needed to achieve the emerging research directions, including;:

1.

Evaluate and advance smart technologies for heat expo-
sure assessments: The emerging IoT/ubiquitous sensing field
can overcome the limitations of conventional methods to provide
real-time and high-resolution/personalized heat exposure data,
but still requires more focus on combining different sources of
data (particularly on human behavior, activity, response) to
holistically quantify exposure and health outcomes. To do this,
we need technological, scientific, and societal advancements as
well as open-access datasets, algorithms,and analytics that en-
sure not only data quality and completeness, but also digital
inclusion and privacy.

Develop high fidelity climate models suitable for inte-
grated system analyses: Overall, climate models should fo-
cus more on the multidisciplinarity of heat exposure, integrating
existing knowledge from urban climatology, plant ecology, en-
ergy system analyses, and behavioral modeling to better uncover
synergies, co-benefits and tradeoffs in drivers of overheating and
associated adaptive responses. Furthermore, better numerical
representation of infrastructure-based heat mitigation strategies
is needed to inform urban and building design in practice. Fi-
nally, simulation studies should make increased efforts to quan-
tify uncertainties in projected overheating and heat mitigation
effectiveness.

are

Furthermore, we summarize existing priorities for policymakers, planners,
and government managers, such that we address, mitigate, or adapt to
overheating challenges in current and future cities:

1.

Implement strategies for climate change mitigation: It
is critical that we continue to reduce greenhouse gas emissions
(from transportation, building, and other sectors), plant trees,
and undertake related climate mitigation strategies locally and
abroad, to help reduce long-term global climate warming and
the intensity, frequency, and duration of future extreme heat
events.

Implement strategies to cool the built environment:
In addition to large-scale climate change mitigation strategies,
implementing street- to city-scale cooling strategies (including
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green and blue infrastructure and advanced materials) in har-
mony with local climate and resources are critical for mitigating
the intensity of urban overheating, particularly in ways that
target heat where vulnerable populations reside and work and
that are developed collaboratively with local residents.

Provide behavioral options for reducing exposure: Adap-
tive opportunities should be considered in urban design such
that individuals can reduce their heat exposure as they go about
their lives in the city. In this context, strategies should focus
on changing the environment to provide behavioral op-
tions for reducing heat exposure in addition to cooling
the built environment. These options range from local design
elements such as cool furniture or green and blue infrastructures
to building cool refuges for reducing the duration of heat expo-
sure. These strategies should be implemented in collaboration
with local residents and initially focus on neighborhoods with
the highest densities of heat-vulnerable individuals.

Provide evidence-based personalized heat-health ad-
visories: Building on personal heat exposure assessments,
evidence-based heat-health advisories can be developed that
are suitable for identifying optimal personalized heat risk
mitigation strategies for sensitive individuals, as opposed to
taking a one-size-fits-all approach. This can further lead
to city-specific early-warning and response systems for heat
extremes that are supported by heat vulnerability maps and
more tailored to specific individuals.

Provide personal recommendation systems to reduce
heat exposure: Human-centric data collection in the built en-
vironment can further promote personalized recommendation
systems to enable more adaptive capacities for individuals, i.e.
avoiding the heat by different routes or adjusting activity level
to overheating intensity.

Promote and incentivize the use of sustainable heat
adaptation solutions: While promoting cooling strategies in
cities, it is also critical to overcome the barriers related to the use
of more energy-efficient and sustainable adaptation solutions,
such as fans for indoor cooling or shading for outdoor cooling.
These barriers may relate to various aspects ranging from per-
ceived effectiveness to aesthetic concerns that can be overcome
through more public engagement and education.

Future directions for policy and governance: Develop-
ing urban overheating governance, in combination with climate
change governance and policy across different scales, is one of
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the most critical pathways for reducing negative impacts of over-
heating on human life. These governance frameworks should em-
brace principles of iteration, flexibility, and learning, i.e., adap-
tive governance, and integrate engagement strategies in the pur-
suit of participatory justice, allowing residents to bring critical
domain expertise from their lived experience. Moreover, legacy
effects of practices that placed certain populations at greater
risk of harm from heat and other environmental hazards must
be identified and rectified.

The present work describes a multidisciplinary outlook on urban overheating
research and application, while detailing several existing gaps that are yet to
be addressed. In addition to knowledge gaps detailed here, it’s critical to note
that economic assessments of urban overheating (covering a holistic calculation
of economic burden of impacts as well as cost-benefit analyses of various over-
heating countermeasures) are yet to be fully determined and have not been
addressed here.

Furthermore, the primary focus of this contribution has been on understand-
ing and responding to overheating challenges, depicting cities as the epicentre
of the developing situation. While this view accurately reflects contemporary
and projected urban climates in the context of ongoing climate change and ur-
banization, alternative perspectives should not be overlooked. Responding to
increasing temperatures, cities can potentially be envisioned as places of refuge
from overheating and extreme events, where more thermally acceptable condi-
tions can be achieved through climate-sensitive design and planning. Cities have
the opportunity to cool built environments more than surrounding rural areas
especially during afternoon periods when potential heat exposure is maximum
(for instance, taking advantage of urban shading and ventilation that have long
been embedded in traditional architecture), and in doing so, can influence a
larger number of inhabitants due to higher population densities. Urban areas
may also provide opportunities to host outdoor workers (for instance, in urban
agriculture) that can benefit from cooling mitigation and adaptation strategies
otherwise not afforded in non-urban areas. Accordingly, further research and
implementation measures are needed to assess the opportunities embedded in
cities to expose fewer people to projected overheating and climate extremes.
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