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Abstract24

The new generation of heterogeneous CPU/GPU computer systems offer much greater25

computational performance but are not yet widely used for climate modeling. One rea-26

son for this is that traditional climate models were written before GPUs were available27

and would require an extensive overhaul to run on these new machines. In addition, even28

conventional “high–resolution” simulations don’t provide enough parallel work to keep29

GPUs busy, so the benefits of such overhaul would be limited for the types of simula-30

tions climate scientists are accustomed to. The vision of the Simple Cloud-Resolving En-31

ergy Exascale Earth System (E3SM) Atmosphere Model (SCREAM) project is to cre-32

ate a global atmospheric model with the architecture to efficiently use GPUs and hor-33

izontal resolution sufficient to fully take advantage of GPU parallelism. After 5 yrs of34

model development, SCREAM is finally ready for use. In this paper, we describe the de-35

sign of this new code, its performance on both CPU and heterogeneous machines, and36

its ability to simulate real-world climate via a set of four 40 day simulations covering all37

4 seasons of the year.38

Plain Language Summary39

This paper describes the design and development of a 3km version of the Energy40

Exascale Earth System Model (E3SM) atmosphere model, which has been fully rewrit-41

ten in C++ using the Kokkos library for performance portability. This newly rewritten42

model is able to take advantage of the state–of–the–science high performance comput-43

ing systems which use graphical processor units (GPUs) to mitigate much of the com-44

putational expense which typically plagues high–resolution global modeling. Taking ad-45

vantage of this high–performance we are able to run four seasons of simulations at 3km46

global resolution. We discuss the biases, including the diurnal cycle, by comparing model47

results with satellite and ARM ground-based site data.48

1 Introduction49

Accurate prediction of regional climate change – particularly of extreme events –50

is essential for avoiding the worst impacts of climate change. Numerical simulations are51

our main tool for providing quantitative predictions. While regional models can add fine-52

scale detail, global models are needed for future prediction because all areas of the planet53

contribute to changes in the general circulation, which in turn affects climate change ev-54

erywhere. Weather forecasts longer than a few days also require global models because55

the impact of a weather event propagates outwards to affect far-flung regions. The need56

to capture processes spanning the range of scales from micron-scale water droplet inter-57

actions to global circulations makes weather and climate modeling among the world’s58

most computationally challenging applications.59

Climate models deal with this incredible range of scales by dividing the world into60

discrete grid cells. Processes larger than the grid scale are resolved explicitly and smaller61

processes are parameterized based on information available at the grid scale. The first62

general circulation models (GCMs) had ∼ 5◦ horizontal grid spacing and < 10 verti-63

cal levels (Hamilton, 2020; Manabe et al., 1965; D. Johnson & Arakawa, 1996). Mod-64

ern GCMs divide the atmosphere into approximately 60 vertical levels and typically use65

∼ 1◦ horizontal grid spacing (Ingram & Bushell, 2021). At this scale, convective mo-66

tions critical to the vertical transport of heat, moisture, and humidity are unresolved;67

efforts to parameterize these effects have met with limited success despite 50 yrs of ef-68

forts (Randall et al., 2003; Klein et al., 2013). The effects of topography on precipita-69

tion and winds are also sorely lacking at these scales, though some of these effects can70

be parameterized. Process interactions on scales unresolved by modern GCMs are also71

critical to capture but too numerous and complex to fully parameterize. Taken together,72
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insufficient resolution is widely understood to be a major source of predictive error in73

GCM predictions (Sanderson et al., 2008; Sherwood et al., 2014).74

In light of this, a new breed of global models is being developed. Known variously75

as global storm-resolving models (GSRMs), km- or k-scale models, or global cloud-resolving76

models, these models attempt to explicitly resolve deep convection by employing hor-77

izontal grid spacing finer than 5 km. The first GSRM was the Nonhydrostatic Icosahe-78

dral Atmospheric Model (NICAM) (Tomita & Satoh, 2004; Satoh et al., 2008), for which79

the world’s fastest supercomputer at the time – Japan’s Earth Simulator – was built. De-80

veloping GSRMs has become quite popular in recent years, with 12 models participat-81

ing in the second DYnamics of the Atmospheric general circulation Modeled On Non-82

hydrostatic Domains (DYAMOND-PhaseII) GSRM intercomparison project in 2021 (https://83

www.esiwace.eu/the-project/past-phases/dyamond-initiative/services-dyamond84

-winter). These models have been found to greatly improve spatial distribution, inten-85

sity, and diurnal characteristics of precipitation (Caldwell et al., 2021) and show great86

promise for the representation of clouds (Tomita et al., 2005). They are also able to rep-87

resent important large-scale weather events like tropical cyclones (JUDT et al., 2021),88

derechos (Liu et al., 2023), and mesoscale convective systems (Feng et al., 2018) which89

simply aren’t resolved in conventional GCMs. They still struggle with boundary-layer90

clouds, which is unsurprising since boundary-layer eddies are smaller than the GSRM91

grid scale. Convection is only partially and crudely resolved at km scales. Microphysics92

is a critical area for these new models because it will always be parameterized in weather93

and climate models. Despite these imperfections, GSRMs capture many more scales and94

processes from first principles compared to GCMs and empirically perform better than95

GCMs in many metrics. Because this is such a new area of research, further rapid im-96

provements are expected.97

GSRMs have a major shortcoming, though: on present-day computer hardware,98

they are too slow and expensive to run long enough to capture the evolution of climate,99

or to run with multiple ensemble members as needed for modern weather prediction. Stevens100

et al. (2019) report that DYAMOND1 models averaged about 6 simulated days per com-101

putational wall day (SDPD), which makes the multi-century runs needed to predict cli-102

mate change impossible. On the positive side, a lot can be learned from pairs of year-103

long idealized runs. Climate feedbacks in response to greenhouse gases can be estimated104

with relative accuracy from pairs of 1 year simulations with sea surface temperature (SST)105

prescribed at current values and uniformly raised by 4 K (Cess et al., 1989; Ringer et106

al., 2014; Qin et al., 2022). Effective radiative forcing (ERF) due to greenhouse gas in-107

creases can be assessed from short paired experiments (Hansen et al., 2005), and anthro-108

pogenic aerosol ERF can also be computed from paired simulations so long as both runs109

are nudged to follow the same series of weather events (Kooperman et al., 2012). Un-110

fortunately, short simulations are not sufficient for assessing statistical significance of changes,111

particularly related to regional behavior and extremes. This is particularly problematic112

because planning for local impacts is increasingly the focus of climate science, and that113

planning requires robust statistics. It is ironic that very fine resolution is exactly what’s114

needed to accurately simulate extremes and to capture local effects, yet it is this very115

resolution that precludes simulations long enough to adequately sample extreme events.116

Developing strategies to combine resolution and computational speed is a grand chal-117

lenge for climate science in the 2020s. A partial solution to this conundrum is to explore118

the impact of expected climate-change trends on particular historical events (Shepherd119

et al., 2018). These pseudo-global warming storyline simulations are useful for giving us120

a sense of how climate change will modify storms, but don’t tell us how the frequency121

of those storms will change.122

Breakthroughs in high-performance computing (HPC) have the potential to solve123

this grand challenge. Several modeling centers are building exascale computers now –124

computers that are capable of completing an exaflop worth of calculations per second.125
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A central feature of these machines is the use of graphics processing units (GPUs), which126

accelerate code by performing huge numbers of calculations simultaneously. Higher res-127

olution means more columns to process in parallel, so GSRMs are perfect for these new128

machines. Unfortunately, existing codes require major modification to run efficiently on129

GPUs because loop order, variable dimension order, and algorithmic strategies which were130

best on conventional CPU chips are sub-optimal on GPUs. Even worse, each GPU ven-131

dor supports a different set of programming models. Because no single programming strat-132

egy works on all major new HPC architectures, several strategies for performance porta-133

bility have been introduced (as described in 2.4).134

The Energy Exascale Earth System Model (E3SM) has a stated goal of building135

a model which runs efficiently on its world-leading exascale computers. This was accom-136

plished over the last 4.5 years by a team of ∼6 full-time employee equivalents using tem-137

plated C++ and the externally-developed Kokkos library (Trott et al., 2022) to produce138

code which runs efficiently on a wide variety of architectures. We started by extending139

version 1 of the Fortran-based E3SM Atmosphere Model to run credibly – but not ef-140

ficiently – at 3.25 km resolution. The resulting model, known as version 0 of the Sim-141

ple Cloud-Resolving E3SM Atmosphere Model (SCREAMv0 or simply v0) is described142

in (Caldwell et al., 2021) (hereafter C21). SCREAMv0 was used as a guide for rewrit-143

ing the entire model in C++. We call the resulting code the E3SM Atmosphere Model144

in C++ (EAMxx). The GSRM configuration of EAMxx is called SCREAMv1 (or v1).145

Building a slow prototype first gave us a template for C++ porting and allowed us to146

do science with the model while we were still working on our performant version.147

Our C++/Kokkos approach has proven effective. SCREAMv1 is running efficiently148

on several of the world’s fastest computers and was awarded the inaugural 2023 Gordon149

Bell Prize for Climate Modeling (M. Taylor et al., 2023; ACM Gordon Bell Prize in Cli-150

mate Modeling , 2023). It has also been critical to ensuring we can run on all of the com-151

puters available to us. Unlike other modeling centers, E3SM gets most of its comput-152

ing allocation from DOE Leadership Computing Facilities, which choose architectures153

to satisfy a wide range of DOE applications. Unlike Fortran, C++ is better suited for154

a single code base that can adapt to a variety of configurable options, via template metapro-155

gramming. A complete rewrite also allowed us to better structure and compartmental-156

ize the code, which allowed us to implement a more robust and rich unit testing frame-157

work. The rich C++ language and its extensive standard library also allows for a higher158

level code, hiding some tedious implementation details from the code, leaving a simpler159

and leaner code. Finally, freeing ourselves from decades of legacy code also allowed us160

to remove older functionality that is no longer necessary of supported that are no longer161

supported.162

Because we tested that Fortran and C++ implementations of each process were163

bit-for-bit, v0 and v1 behave very similarly. As described in Sect. 2, however, process164

coupling, aerosol implementation, and some tuning choices are different in v1 (see Sect.165

2 for details). For efficiency, we rely on C21 to describe SCREAM model climate and166

focus here on differences in behavior between model versions and on aspects of model167

climate that were not analyzed in the previous paper. In particular, this paper includes168

analysis of the seasonal cycle, which was not possible using the shorter simulation in C21.169

This paper also makes extensive use of ground-based observational data for model val-170

idation, e.g., Atmospheric Radiation Measurement (ARM) data by US Department of171

Energy (DOE). ARM provides multi-year and even multi-decadal process-focused high-172

resolution observational datasets at strategic geographic points worldwide. Because GSRM173

grid resolution closely matches the spatial extent of ARM data, GSRM-ARM evaluation174

provides a great opportunity for high-resolution model improvement.175

This paper provides an introduction to the EAMxx code and explains our software-176

engineering strategy in section 2 and highlights our computational performance in sec-177

tion 4. Our first SCREAMv1 simulation campaign and associated evaluation data are178
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described in section 2.5, followed by evaluation of weather and climate skill in Sect. 5.179

Conclusions follow in Sect. 6. In evaluating SCREAMv1, it is important to remember180

that the model is young and we have focused so far primarily on speed rather than skill.181

As we pivot now towards climate improvement, our efforts to develop a robust code val-182

idation and testing framework will be invaluable.183

2 Model Description184

2.1 Model Processes185

SCREAMv0 and SCREAMv1 have nearly an identical set of process representa-186

tions. For brevity we list them here and refer the reader to C21 for more details. Fluid187

dynamics is handled by the non-hydrostatic High Order Method Modeling Environment188

(HOMME-NH) (Dennis et al., 2005, 2012; M. A. Taylor et al., 2020; Bertagna et al., 2020).189

Clouds and turbulence are parameterized using the Simplified Higher Order Closure (SHOC)190

scheme (Bogenschutz & Krueger, 2013), while microphysics is based on the Predicted191

Particle Properties (P3) scheme of Morrison and Milbrandt (2015). For simplicity, P3192

is run using a single ice category. Gas optical properties and radiative fluxes are com-193

puted using the RTE+RRTMGP radiative transfer package (Pincus et al., 2019) which194

has been rewritten in C++ using the YAKL performance portability library (Norman195

et al., 2022) for improved performance.196

There are a few notable differences in the SCREAMv1 configuration versus SCREAMv0.197

While SCREAMv0 used a relative humidity-based ice cloud fraction scheme, SCREAMv1198

sets ice cloud fraction based on cell-average ice mass mixing ratio qi, where ice cloud frac-199

tion is set to 1 for qi > 10−14 kg kg−1 and to 0 elsewhere. Assuming the whole cell is200

filled with cloud whenever there’s even a small amount of ice present is needed in order201

for P3 ice processes to be active for falling snow. Ice clouds aren’t visible until ice mass202

becomes much larger, however, so cloud evaluation typically uses a much larger cutoff.203

We follow C21 in setting total cloud fraction to 1 whenever cloud ice or liquid mixing204

ratio is greater than 10−5 kg kg−1. Otherwise cloud fraction is set to zero. This is done205

as a post-processing step.206

Aerosol effects in SCREAMv1 are prescribed based on 5-year monthly climatolo-207

gies from an E3SMv2 AMIP-type simulation (Golaz et al., 2022) with 1◦ spatial reso-208

lution. This low-resolution climatology is interpolated to GSRM resolution during run209

time. Aerosol optical properties (single scattering albedo, asymmetry parameter, and short-210

wave/longwave optical depths) are prescribed directly. Aerosols affect microphysics through211

the cloud-condensation nuclei (CCN) amount, which is read in from the E3SMv2 clima-212

tology. Where clouds are present, the liquid droplet concentration nc at the beginning213

of microphysics is replaced by the CCN concentration wherever CCN> nc. Elsewhere214

in the code, nc is handled following the typical two-moment P3 specifications described215

in Morrison and Milbrandt (2015). Thus CCN stands in as a crude droplet activation216

scheme, making sure nc doesn’t drop below climatological values while allowing for cloud217

processing of drop number. This implementation is very similar to MACv2-SP as described218

in Stevens et al Stevens et al. (2017), but we get aerosol-relevant quantities from a model219

simulation rather than an idealized plume calculation and allow for a quasi prognostic220

nc. We refer to this scheme as Simple Prescribed Aerosols (SPA). Ice number is yet to221

be included in SPA and is handled as in Morrison and Milbrandt 2015 Morrison and Mil-222

brandt (2015).223

Several other minor changes were made to correct deficiencies in SCREAMv0. Ex-224

cessive disaggregated shallow “popcorn” convection in the deep tropics was found to be225

related to SCREAMv0’s tendency to convert cloud water to rain too quickly. We reduced226

these problems in SCREAMv1 by disabling the enhancement of collision/coalescence due227

to an assumed gamma distribution for cloud water described in C21. SCREAMv0 pro-228
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duced conspicuous low level clouds characteristic of stratocumulus where trade cumu-229

lus are often found. To help partially ameliorate this, a tuning parameter related to the230

parameterization of the third moment of vertical velocity was adjusted to prevent the231

skewness of vertical velocity from readily going negative in unstable conditions. Specif-232

ically, this is the cdiag term which was increased from 5 to 7 (Bogenschutz & Krueger,233

2013). In addition, to reduce turbulence oscillations within the boundary layer the tur-234

bulence length scale of SHOC was revised from having separate formulations for the sub-235

cloud layer and cloud layer to having one continuous formulation. The new formulation236

can be found in the appendix of Chinita et al. (2023). The impact of these changes is237

discussed in Sect. 5. Before performing simulations, we confirmed that global-average238

shortwave and longwave global imbalances were within 0.5 W m−2 of CERES-SYN for239

several 2 day simulations.240

2.2 Process Coupling241

Rewriting the model in C++ gives us the opportunity to fix shortcomings with the242

previous E3SM atmosphere model (hereafter EAMF90) which have become apparent over243

the years. This rewrite also allows us to take advantage of the flexibility provided by C++.244

Each process in EAMxx is an instance of the generic atmosphere process class. Processes245

include parameterizations (like microphysics) but also fluid dynamics solvers and sim-246

ple adjustments like nudging towards observations. Modularity makes adding, remov-247

ing, or changing the order of processes easy, enables the development of tools for use across248

all processes, and simplifies the work needed to create new processes. The default pro-249

cess order used for all EAMxx simulations discussed in this paper is250

1. import fluxes from surface components251

2. HOMME-NH252

3. SHOC253

4. SPA254

5. P3255

6. RRTMGP256

7. export fluxes for surface components257

This ordering follows best practices according to Donahue and Caldwell (2018). Unlike258

many models (including EAMF90) which split the atmosphere into a function call for259

processes before surface coupling and another function for after-surface processes, the260

EAMxx code is executed all at once, bracketed by communication from/to surface mod-261

els. This greatly improves model readability and makes component-level parallelism eas-262

ier. Splitting the atmosphere model into multiple chunks is often required in other mod-263

els in order to implicitly couple surface fluxes with atmospheric turbulence while also pass-264

ing the surface schemes the most balanced version of the atmosphere state (which typ-265

ically comes after radiation). Neither EAMxx nor EAMF90 employ this sort of tight cou-266

pling with surface fluxes. Because the place where surface components are called in EAMF90267

(before dynamics) is different from where their effects are applied (during SHOC), this268

shift in process order between EAMxx and EAMF90 is not expected to significantly af-269

fect the model solution.270

A particular design goal for EAMxx was the ability to easily switch the timestep-271

ping strategy for the whole model. Because some processes (like liquid condensation) are272

diagnostic rather than prognostic and other processes (like dynamics) need to use sophis-273

ticated timestepping schemes of their own which don’t make sense for other cruder pro-274

cesses (like microphysics), we chose to have each EAMxx process return the state after275

that process acts rather than the time tendencies due to that process. If needed (e.g.,276

for parallel splitting, or higher-order process coupling), tendencies can easily be regen-277

erated from the difference in state from after versus before a given process has acted.278
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The atmosphere process initialization and execution is handled by the atmosphere279

driver (AD). Additionally, the AD is responsible for the creation and handling of other280

infrastructure components, such as grids, I/O streams, scratch memory, and persistent281

variables. The latter are variables that need to be shared between processes, and are rep-282

resented in EAMxx by Field objects. In addition to storing the actual raw data (both283

on host and device), fields also store a variety of metadata pointers, used to identify, ma-284

nipulate, and track the field within the atmosphere timestep. Every atmosphere process285

must explicitly declare which fields it needs as inputs as well as which fields it computes286

as outputs. This allows the AD to provide only what is needed, avoiding unexpected up-287

dates to other variables. It also allows us to build a directed acyclic graph (DAG) rep-288

resenting how each variable is updated within the atmosphere timestep (see Figure 1).289

The AD uses this DAG to compile a list of variables that are needed for bit-for-bit model290

restarts. This ensures that the memory footprint of EAMxx restart files is kept at a min-291

imum. In contrast, the hard-coded list of restart variables in EAMF90 must be constantly292

maintained to avoid errors or bloating of the restart file size.293

2.3 Testing infrastructure294

Modern software practices emphasize robust unit testing and continuous integra-295

tion to ensure that new features do not break current code, to improve confidence in the296

validity of the model, and to enhance our ability to debug the code if (meaning, when)297

a buggy piece of code makes its way in the main branch. A drawback of the EAMF90298

design is that individual processes rely on a complex web of other modules and tools,299

making it difficult to isolate a single process for unit testing without a) hard–coded sup-300

pression of all other processes or b) building the entire E3SM model. This design made301

unit testing EAMF90 prohibitively difficult. In EAMxx, unit testing is made easier by302

extensively implementing the separation of concerns principle. In particular, each pro-303

cess is separated into its internal implementation and an interface layer. The former is304

intended to be completely self contained, though within EAMxx all internal process rep-305

resentations are broken into a number of smaller functions (to aid unit testing). Infor-306

mation to and from these functions are passed solely via arguments (typically Kokkos307

views and simple data structures) or (in the case of physical constants or user-specified308

settings) by data members of in-scope classes. The interface layer connects EAMxx-specific309

constructs (related to the AD) with the more generic constructs used by the actual pro-310

cess implementation. This separation of concerns allows us to individually test each at-311

mosphere process, as well as the internal functions of each package. In SCREAMv1, nu-312

merous unit tests have been written to test individual functions inside the physics parametriza-313

tion packages, as well as their interfaces. The driver and infrastructure data structures314

(including I/O) are also tested independently, meaning without the need to run a par-315

ticular configuration of the model. A testing infrastructure developed within the project316

allows us to run tests for a variety of MPI ranks and OpenMP thread counts (where ap-317

propriate). A continuous integration system automatically runs tests on a variety of HPC318

architectures, both on a nightly basis, as well as before the integration of any code up-319

date. In the latter case, to speed up the integration of new features, we run a subset of320

the tests, while in the former, we run an extensive set of tests (including in-depth mem-321

ory checks), to ensure the integrity of the code base.322

2.4 Computational strategy323

The huge computational cost of a GSRM requires efficient use of the largest HPC324

machines available. The last 10-15 years have seen an increase in diversity of chip ar-325

chitectures used in the largest HPC centers. On top of conventional CPUs, various other326

architectures have emerged, including many-core CPUs and, more importantly, GPUs.327

The latter have become a predominant choice for the largest supercomputers procured328

by the US Department of Energy.329
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Even though GPUs appear to be the dominant architecture for exascale in the com-330

ing years, performance portability (that is, the ability of a code base to run efficiently331

on different HPC architectures) is important in order to minimize disruption from pos-332

sible architecture changes in the future. Furthermore, maintaining an efficient implemen-333

tation on conventional CPUs is important because it makes debugging easier during de-334

velopment, and because CPUs are more efficient at low resolutions where opportunities335

for parallelism are limited.336

When measuring performance, common metrics such as FLOPS or memory band-337

width are often used, which compare the application efficiency with the maximum pos-338

sible efficiency on a given platform. However, the most common metric in the realm of339

climate sciences is Simulated Years Per Day (SYPD) or Simulated Days Per Day (SDPD).340

The latter is the metric we use for the evaluation of the SCREAMv1 model.341

There are currently three main approaches to achieve performance portability in342

scientific applications:343

• Compiler directives. The code is decorated with compiler directives, which pro-344

vide hints to the compiler on how to optimize and/or parallelize the code. This345

is the approach used by OpenMP (OpenMP Application Programming Interface346

Version 5.0 , 2018) or OpenACC (The OpenACC Application Programming In-347

terface Version 3.0 , 2019).348

• General purpose libraries. Architecture-specific choices are delegated to a third349

party library (TPL). The application then uses the library interfaces as a program-350

ming model, obtaining a single code base that run on all the architectures sup-351

ported by the TPL. Examples of this approach include Kokkos (Trott et al., 2022),352

YAKL (Norman et al., 2022), and Raja (Beckingsale et al., 2019).353

• Domain Specific Languages. The developer writes code in a high level language,354

which is then translated into standard source code (such as C/C++/Fortran) by355

an intermediate compiler, which takes care of making optimization to the code tar-356

geted to the particular architecture where it will be executed. Examples of this357

approach in the climate/weather domain include GridTools (Afanasyev et al., 2021),358

PSyclone (PSyclone User Guide, n.d.), and CLAW (Clement et al., 2018), the lat-359

ter sharing some similarity with the compiler directives approach.360

Each of the above approaches comes with benefits and drawbacks. Choosing the best361

approach requires consideration of several factors, including compiler support, ease of362

development, support for future architectures, stability and maturity of the approach,363

prospects for long-term support, and amount of staff time available. In EAMxx, we adopted364

the second approach, using the Kokkos library for on-node parallelism. Kokkos is a very365

mature library that has already been successfully used in a variety of large projects (most366

notably, Trilinos (Trilinos Project Team, 2020 (acccessed May 22, 2020)) and other apps367

depending on it), demonstrating that it is reliable, effective, and robust. The main fea-368

tures of Kokkos are constructs to handle on-node parallelism and device-friendly mul-369

tidimensional arrays. Kokkos exploits template metaprogramming to map abstract types370

to different concrete implementations on each architecture. For multidimensional arrays,371

it abstracts concepts such as the data type (e.g., double or int), the memory space where372

the data is located (e.g., CPU memory or GPU memory), and the layout (e.g., whether373

the rightmost index is the one that strides fastest or slowest). For parallelism, it abstracts374

concepts such as the parallel operation (e.g., a map, reduction, or scan), the threading375

device where the operation is executed (e.g., CPU or GPU), and the execution policy,376

that is, how the iterations are distributed among available threads.377

In this work, we heavily leveraged the expertise developed during the conversion378

of the HOMME dynamical core to C++, which was also done using Kokkos, as described379

in Bertagna et al. (2019) and Bertagna et al. (2020). In those efforts,the authors estab-380
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lished some solid guidelines that became the cornerstone of EAMxx, which we can sum-381

marize in the following three most important aspects.382

• Parallelism. To take advantage of the massive amount of parallelism on GPUs,383

the implementation needs to be able to expose all possible layers of parallelism384

in the algorithm and data structures. For EAMxx, this entailed using hierarchi-385

cal parallelism to allow a team of threads to share intermediate work.386

• Vectorization. In order to remain performant on CPU architectures, efficient use387

of vector instructions is necessary, as vectorization remains one of the most effec-388

tive ways to increase FLOPS per energy used. In EAMxx, this required the de-389

velopment of lightweight data structures, to enhance the ability of the compiler390

to vectorize code.391

• Memory. Codes arising from the discretization of PDEs tend to be more mem-392

ory bound than compute bound. Hence, minimizing memory movement and mem-393

ory footprint is important to keep the CPU and GPU busy. In EAMxx, this was394

done by using shared/reusable workspace data structures to compute intermedi-395

ate quantities, by minimizing the size of persistent variables, and by increasing ac-396

cess time for each thread.397

Among the above, hierarchical parallelism was the most important aspect, and there-398

fore it is helpful to illustrate with a simple example the main concept, as well as how it399

can be implemented using Kokkos. Suppose we want to normalize the rows of an M-by-400

N dense matrix X. In plain C++, this task could be written as401

for ( int m=0; m<M; ++m) {
double normSq = 0 ;
for ( int n=0; n<N; ++n) normSq += X(m, n)∗X(m, n ) ;
for ( int n=0; n<N; ++n) X(m, n) /= sq r t (normSq ) ;

}

402

assuming X has the proper overload of operator(). Note that the for loop which com-403

putes normSq for a given row must complete before any entry in that row can be nor-404

malized. Without using hierarchical parallelism, if one had T threads available (with T405

potentially large), they could choose to either parallelize only the outer loop, or divide406

the code into two sets of nested loops, the first computing the norm of all rows, and the407

second doing the normalization, at the price of requiring more storage (as well as an ex-408

tra kernel launch on GPU). Hierarchical parallelism aims to keep the original loop struc-409
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ture while parallelizing outer as well as inner loops. With Kokkos, we can use a TeamPolicy410

to allow groups of threads to cooperate and share intermediate results:411

using namespace Kokkos ;
using Pol i cy = TeamPolicy<ExecutionSpace >;
using TeamMember = typename Pol i cy : : member_type ;
auto f = KOKKOS_LAMBDA( const TeamMember& team) {

int m = team . league_rank ( ) ;
double normSq = 0 ;
auto compute_norm = [&] ( int n , double& sum){

sum += X(m, n)∗X(m, n ) ;
} ;
pa ra l l e l_reduce (TeamVectorRange ( team ,N) , compute_norm , normSq ) ;
team . team_barrier ( ) ;
auto normal ize = [& ] ( int n}{

X(m, n) /= sq r t (normSq ) ;
} ;
p a r a l l e l_ f o r (TeamVectorRange ( team ,N) , normal ize ) ;

} ;
p a r a l l e l_ f o r ( Po l i cy (M,N) , f ) ;

412

where X here is stored in a Kokkos::View (to allow accessing it from device). Each outer413

iteration is assigned to a team of threads, so that different teams handle different rows414

of X, and can therefore operate completely independently. Threads within the same team415

cooperate to compute the vector norm, which is used in the second loop to normalize416

the vector. A team synchronization barrier between the loops ensures the norm calcu-417

lation has been completed before any thread of the team attempts to use it in the sec-418

ond loop. This barrier, as the name suggests, is only local to the team, and does not af-419

fect the work of other teams. The way Kokkos parallelizes each loop depends on the un-420

derlying threading model (e.g., CUDA vs OpenMP), and on the available resources.421

2.5 Experimental Setup422

All simulations in this paper were run on a cubed-sphere grid with 1024 x 1024 spec-423

tral elements on each face and a 4x4 grid of Gauss-Lobatto-Legendre nodes defining each424

element. This results in an equatorial horizontal grid spacing of ∼3.25km. The physics425

parameterizations are solved on a uniform finite-volume 2x2 grid for each individual spec-426

tral element, following Hannah et al. (2021). The vertical structure of the grid uses a ter-427

rain following hybrid coordinate system with a model top of 40km and 128 levels with428

varying layer thickness. See section 2 of C21 for more details on the model grid. All sim-429

ulations ran with a top-level timestep of 100 seconds. Coupling with surface components430

and most atmospheric processes run at that timestep. Dynamics is CFL limited, and is431

thus substepped within the atmosphere timestep at a frequency of 12 dynamics steps per432

atmosphere timestep for a dynamics timestep of 8.33s. Conversely, radiation does not433

need to be run as frequently as the other physics parameterizations and is thus super-434

cycled so that the radiation forcing is updated every three atmosphere timesteps for a435

radiation timestep of 300s. All simulations are run with prescribed ocean SSTs and sea-436

ice extent, while sea-ice thermodynamics and land behavior is interactive. The land model437

and thermodynamic sea-ice are both as in SCREAMv0 and EAMxx is coupled to the438

rest of E3SM with the same interfaces as the other components. Custom routines were439

written to translate between the C++ data structures of EAMxx and the Fortran in-440

terface of E3SM’s coupler/driver (Craig et al., 2012)441

Model validation is conducted using 40-day simulations for each of the four sea-442

sons. These simulations have start dates of January 20, 2021 (DYAMOND2 configura-443

tion), April 1, 2013, August 1, 2016 (DYAMOND1 configuration) and October 1, 2013.444
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For the remainder of the paper we will refer to these as the Jan, Apr, Aug and Oct sim-445

ulations, respectively.446

3 Observational Data for Model Validation447

3.1 Satellite Data448

Global validation is based on a number of satellite and reanalysis data products.449

Global precipitation comparison is based on the NASA Integrated Multi-satellitE Re-450

trievals for Global Precipitation Measurement (GPM-IMERG) dataset (Huffman & coau-451

thors, 2019). Top-of-atmosphere radiative fluxes and cloud forcing are from the CERES452

Synoptic (SYN1deg) product (Doelling et al., 2013). All other variables are based on the453

European Center for Medium-Range Weather Forecasting’s ERA5 reanalysis product (Hersbach454

et al., 2020).455

3.2 ARM Data456

Ground-based US/DOE ARM observations are used to assess the performance of457

SCREAMv1 in simulating surface variables and cloud fraction. To compare with the four458

SCREAMv1 seasonal runs, the observed composite diurnal cycle is constructed based459

on the ARM Best Estimate (ARMBE, Xie et al., 2010) data, which include measurements460

from long-term fixed observatories such as South Great Plains (SGP, a mid-latitude land461

site; data from 1996 to 2020 used in this paper), Eastern North Atlantic (ENA, a mid-462

latitude marine site; data used from 2014 to 2020), North Slope of Alaska (NSA, an Arc-463

tic site; data used from 1998 to 2020) and Tropical Western Pacific (TWP) C1 at Manus464

(1996 to 2011) and C3 at Darwin (2002 to 2011); and from the ARM mobile facility dur-465

ing the field campaign of Green Ocean Amazon (GoAmazon; from 2014 to 2015). SCREAM466

data whose cell centers are within a circle of 10 km radius are averaged for comparison467

against the multi-year average observational data for each hour of the diurnal cycle in468

each season. Increasing radius size to 20 km has negligible impact on results. Surface469

heat flux measurements are not available at all the TWP sites and in Jan at GoAma-470

zon. Due to output issues, 2-meter vapor mixing ratio is not available from the SCREAMv1471

Oct run. Cloud fraction at ARM sites are based on Radar, Lidar, and Ceilometer com-472

bined retrievals called Active Remote Sensing of Clouds (ARSCL, Clothiaux et al., 2000;473

Kollias et al., 2007) and sampled every 3-hourly here to match with the frequency of SCREAMv1474

output of 3D variables. The cloud fraction variable in SCREAMv1 output was corrupted,475

so as in Caldwell et al. (2021), we assume cloud fraction is 0 or 100% wherever the sum476

of liquid and ice water content is smaller or greater than 10−5 kg/kg (respectively). These477

offline cloud-fraction calculations are performed on 3-hourly instantaneous snapshots.478

As SCREAMv1 only simulates one season each, we have considered interannual variabil-479

ity from observations, especially shown in the comparison on surface variables.480

4 Computational performance481

We distinguish between production and performance simulation configurations. The482

40 day seasonal simulations described above are considered to be production simulations.483

Production-run job submissions typically ran 20 simulated days at a time and always484

occupied 1024 nodes of the OLCF Summit system, giving 1024 vertically extruded spec-485

tral elements and 4096 physics columns to each GPU. The critical differences between486

production and performance simulations is that the latter have no output, are run for487

a variety of node counts on a number of machines, and are much shorter (typically 12488

to 48 simulated hours).489
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4.1 Computer systems490

Production and performance simulations were run on the Summit supercomputer491

at the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Lab-492

oratory (ORNL). Summit has 4608 compute nodes. Each node has two IBM Power 9 (AC493

922) CPUs with 512GB of DDR4 memory and six NVIDIA Tesla V100 GPUs with 16GB494

of HBM2 memory per GPU. Summit’s internode network is Mellanox EDR 100G Infini-495

Band. NVIDIA NVLINK connects the GPUs within a node. The software environment496

for our model runs includes GNU GCC 9.1.0, NVIDIA Cuda 11.0.3, and IBM Spectrum497

MPI 10.4.0.3.498

Performance results were also obtained on the OLCF Frontier system and the NERSC499

Perlmutter systems. Frontier has 9408 nodes. Each node has one 64-core AMD “Opti-500

mized 3rd Gen” EPYC CPU and 4 AMD Instinct MI250X GPUs. Because each GPU501

has two Graphics Compute Dies (GCD), each node effectively has eight GPUs. Each node502

has 512GB of DDR4 CPU memory and 64GB of HBM2E memory per GPU, and a peak503

performance of 53 FP64 TFLOPS per GPU. The system interconnect consists of 4 HPE504

Slingshot 11 NICs per node, providing 100 GB/s network bandwidth, while the CPU-505

GPU and GPU-GPU interconnect is AMD Infinity Fabric.506

The Perlmutter GPU partition has 1536 nodes. Each node has one 64-core AMD507

EPYC “Milan” 7763 CPU and four NVIDIA Ampere A100 GPUs, with 256GB of DDR4508

CPU memory and 40GB of HBM memory per GPU, and a peak performance of 9.7 FP64509

TFLOPS per GPU. The system interconnect has four HPE Slingshot 11 NICs per node.510

The Perlmutter CPU partition has 3072 nodes. Each node has two 64-core AMD511

EPYC “Milan” 7763 CPUs, with 512GB of DDR4 memory, and a peak performance of512

5 FP64 TFLOPS per node. The system interconnect has one HPE Slingshot 11 NIC per513

node.514

On Summit, the job runner divides a node into resource sets. In all of our simu-515

lations on Summit, we use one GPU, one MPI rank, and seven cores per resource set.516

The land and thermodynamic sea ice models, the model coupler, and I/O run on the CPU;517

the atmosphere model computations run on the GPU. The land model threads effectively518

on the CPU; thus, we provided the land model with 14 threads per resource set and, thus,519

two hyperthreads per CPU core. The atmosphere model supports MPI buffers on either520

the GPU or CPU. We sometimes experienced communication slowdown and large com-521

munication imbalances when using GPU buffers and, thus, used CPU buffers in all Sum-522

mit runs reported in this section. We estimate the performance penalty of using host buffers523

instead of GPU buffers on Summit is approximately 10% for the dynamical core and,524

thus, 5 to 7% overall. On Perlmutter and Frontier, we were able to use GPU buffers in525

all runs.526

The model configuration is similar on Frontier, just adapted to the particular num-527

bers relevant to a node: eight MPI ranks per node, with seven cores per MPI rank, pro-528

viding seven threads per rank for the land model. Similarly, on Perlmutter’s GPU par-529

tition, each node runs with four MPI ranks and eight cores and threads per rank. On530

the Perlmutter CPU partition, the simulations are configured to use one MPI rank per531

core, for 128 ranks per node. It is worth noting that the choice to use Kokkos in EAMxx532

facilitated rapid deployment on Frontier and Perlmutter.533

4.2 Results534

Figure 2 shows the results of a strong-scaling study using the performance config-535

uration, and Table 1 lists the data for each of the curves. We have collected data from536

all systems described in Sec. 4.1. The Frontier and Summit results for the full model were537

reported in M. Taylor et al. (2023), and here we add additional sub-component results538
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Machine Nodes Model Atm. Dycore DIRK CAAR Physics

Frontier 512 58.3 64.8 82.3 288.8 306.0 337.6
1024 103.7 118.3 149.9 562.0 596.0 620.5
2048 175.6 197.6 252.1 1012.0 1069.2 1043.6
4096 283.2 332.8 424.0 1760.2 1886.0 1693.5
8192 419.5 514.5 645.3 3173.7 3349.6 2911.1

Summit 1024 70.0 78.2 100.8 401.4 465.9 382.3
2048 109.4 132.9 169.4 744.1 870.9 679.3
3072 135.6 168.2 211.2 1057.1 1234.3 911.5
4096 156.4 205.0 257.3 1325.4 1565.1 1107.5
4608 159.3 216.1 266.4 1606.7 1882.8 1272.7

Perlmutter-GPU 384 39.1 44.5 52.3 175.9 181.1 360.0
512 51.0 58.7 68.8 239.8 240.1 466.3

1024 95.1 110.0 129.4 457.9 471.0 886.0
1536 132.0 160.5 190.2 677.0 697.3 1233.8

Perlmutter-CPU 1536 22.6 25.0 34.5 109.2 179.3 97.0
2048 35.3 38.4 52.3 122.2 252.4 156.4

Table 1. Data, in SDPD, corresponding to the curves in Figure 2.

as well as new CPU and GPU Perlmutter results. In the figure, the x-axis is the num-539

ber of nodes used in the model run. The y-axis is the model or subcomponent through-540

put in SDPD. The y-axis range is different in (a) and (b). The maximum time among541

all ranks is used when computing the SDPD. “Model” is the full model and uses the top-542

level model run-loop timer. It is the wallclock time a job submission takes excluding model543

initialization. To compute node-hours per simulation, one can use this throughput times544

days to simulate, plus a constant model initialization time. Subcomponents include “At-545

mosphere”, which uses the top-level atmosphere model timer; “Dycore”, for the dynam-546

ical core; “Physics”, for the combined column physics parameterizations; “Dycore::DIRK”,547

for the vertical solver in the Diagonally Implicit Runge-Kutta IMEX scheme; and “Dy-548

core::CAAR”, for “compute and apply right hand side”, the primary kernels in the dis-549

cretization’s horizontal scheme. In (a), only “Model” is fully accurate; the subcomponent550

timers time regions that contain communication but have no MPI barrier at start or fin-551

ish and, thus, are timed only approximately. The black undecorated line is the reference552

for perfect scaling.553

The Summit and Frontier curves are smooth over the range of node counts because554

a large number of submissions were run, and the time data set corresponding to the highest-555

throughput run is plotted. Far fewer submissions were made on the Perlmutter GPU and556

CPU systems. As a result, some of the curves are jagged due to system variability, par-557

ticularly the DIRK and CAAR timers at 384 and 512 nodes on the GPU partition and558

the DIRK timer at 2048 nodes on the CPU partition.559

The timers in (a) include MPI communication, while those in (b) do not. Thus,560

in (b), the subcomponents scale much better than in (a). In (b), the small loss in GPU561

scaling is due entirely to loss in parallel efficiency, which in turn is a strong function of562

the work volume per GPU kernel launch. In (a), the loss in scaling is due almost entirely563

to MPI communication. The fact that GPU scaling in (b) is much better than in (a) em-564

phasizes that the amount of work we pack onto each GPU is much less important for per-565

formance than the volume and frequency of MPI communication we do (at least for GSRMs).566

The dynamical core’s scaling almost entirely determines the atmosphere model’s scal-567

ing. The GPU curves in Figure 2a show greater falloff from perfect scaling with increas-568
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ing node count than the results from Perlmutter-CPU. This is because the on-node com-569

pute time is much smaller than for CPU-only machines, making the non-compute time570

(i.e. MPI communication) more impactful. In short, if computations are really fast, then571

communication determines scaling behavior.572

The speedup of GPU results relative to CPU in Figure 2 and Table 1 supports our573

decision to rewrite the model to allow using GPU architectures. On Perlmutter, when574

using 1536 nodes, we can compare performance when using GPU vs CPU: on average,575

using GPUs the code is 6x faster than when using CPUs, with physics running 12x faster576

on GPUs. This is a particularly useful comparison because Perlmutter’s CPUs and GPUs577

are both state of the art for 2023; Bertagna et al. (2020) (hereafter SC20) had previously578

shown GPUs to be 14.1x faster for dycore calculations on 1024 Summit nodes, but Sum-579

mit GPUs are of relatively higher quality than their CPUs. Note however, that GPU nodes580

are much more expensive and consume more energy than a CPU node. Also, we spent581

more time optimizing model performance for GPUs. These caveats notwithstanding, the582

real-world impact of our rewrite is that our SCREAMv1 production simulations ran more583

than 10x faster than SCREAMv0 runs (∼ 55 SDPD on 1024 Summit nodes versus 4–584

5 SDPD on 1536 nodes of the older Intel Knight’s Landing (KNL) Cori machine). This585

acceleration is due as much to accessing bigger and faster machines as GPU accelera-586

tion, but both of these conditions were enabled by our C++ rewrite.587

Figure 2 also demonstrates that EAMxx runs well across a wide variety of archi-588

tectures. Bertagna et al. (2019) (hereafter GMD19) expands on this finding by compar-589

ing performance of the EAMxx dycore on seven different computer architectures: two590

NVIDIA GPUs, one IBM CPU, and four Intel CPUs. In all these cases, performance is591

excellent, with particularly high performance per unit of energy on the Intel KNL and592

all GPU systems.593

Another important point about our C++ rewrite is that it is as good as – and of-594

ten better than – the original F90 model on CPUs, despite the fact that the original F90595

model had been optimized over many years of use. For brevity, we refer readers to GMD19596

and SC20 for proof of this point. In particular, GMD19 Figures 9 and 10 compare per-597

formance of the original F90 and new C++ dynamical cores at 0.25◦ resolution on NERSC’s598

Cori-KNL, Cori-HSW Intel Haswell (HSW), and Edison Intel Ivy Bridge (IB) supercom-599

puters. On the IB and HSW architectures, the C++ model is slightly faster than the600

F90 model. On the KNL architecture, the C++ model is substantially faster than the601

F90 model. Figure 6 in SC20 adds to these results with a comparison of the C++ and602

F90 models on the IBM Power9 CPUs of the Summit supercomputer; here again, the603

C++ model is slightly faster than the F90 one. These results also hold for the full at-604

mosphere model (dynamical core and physics) on newer CPUs, where M. Taylor et al.605

(2023) shows the C++ model is slightly faster than the F90 one on Perlmutter AMD EYPCs.606

A crucial part of achieving better than parity with the F90 model is using packs for ex-607

plicit vectorization on wide-vector CPUs such as the KNL architecture (as explained in608

Sect. 2.4). Thus on the CPU the new C++ model performs at least as well as the legacy,609

well-optimized F90 model.610

Figure 3 illustrates the approximate proportion of time spent in certain subcom-611

ponents in three cases of interest: performance model runs on 1024 (left bar) and 4096612

(right bar) nodes of Summit, and a production model run on 1024 nodes of Summit (mid-613

dle bar). The production simulations used for the results presented in Sec. 5 relied on614

seven 20-day model runs plus one set of fragmented model runs due to machine issues.615

The seven 20-day runs had top-level model run-loop throughputs in simulated days per616

wallclock day (SDPD) of, in increasing order, 51.8, 54.3, 54.7, 56.8, 57.8, 58.9, and 60.7617

SDPD. The production model run used in the figure has the median total run time of618

the seven available 20-day model runs (56.8 SDPD). The y-axis is normalized wallclock619

time per unit of simulated time. The production run is the reference and, thus, has a620

total proportion of 1. The subcomponents are the dynamical core, the physics param-621
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eterizations, the rest of the atmosphere model other than these (mainly output writes),622

and the model excluding the atmosphere model (primarily the land model and compo-623

nent coupler). Thus, for example, in the production run, the dynamical core takes a lit-624

tle over 57% of the total model wallclock time. The 1024-node performance run is al-625

most 20% faster than the production run because it does not write output. However, the626

dynamical core and physics blocks are about the same between the two 1024-node runs,627

as we expect. Because dynamics consumes most of the simulation time while physics is628

only ∼15% of the total cost at 1024 nodes, significant performance improvement will re-629

quire changes to the dynamical core. Since the dynamical core is the most mature and630

optimized part of the code, further substantial improvements are unlikely. Writing out-631

put in this version of the model was very expensive and has been a target for recent im-632

provements (M. Taylor et al., 2023). Switching to 4096 nodes decreases physics and dy-633

namics costs roughly proportionally (as documented in Figure 2(a)) but the non-atmosphere634

portion of run time approximately does not decrease. This is a coupler scaling problem635

which should be addressed in the future.636

5 Model Climate637

The inability to perform multi-decadal simulations poses challenges for evaluating638

climate skill in GSRMs. Climatological biases can be hidden both by model drift over639

time and by natural interannual variability. Model spin-up can also appear more biased640

then longer equilibriated simulations. Previous analyses of short hindcasts by climate641

models, however, have shown that many long-term climate biases – particularly those642

related to clouds – show up within a couple days of model initialization (Xie et al., 2012).643

These studies convince us that our 40 day simulations, as described in section 2.5, will644

provide a useful sense of climate model skill. In addition, we will show that many model645

biases and successes show up consistently across all 4 seasons and echo the conclusions646

of C21. This reassures us that our conclusions are statistically robust. Where possible,647

we also include estimates of interannual variability from the observations we compare648

the model against in order to provide a sense of whether our results reflect real model649

differences or sampling uncertainty. Finally, we include time series of model behavior across650

each simulation to reassure readers that our conclusions aren’t corrupted by model drift.651

5.1 Global Analysis652

In this section, we provide a brief summary of large-scale model climate in order653

to orient readers to model behavior. Subsequent sections dive into the physical behav-654

ior in particular climate regimes which contribute to these global features.655

Figure 4 shows time series of globally-averaged variables for all four seasons. Since656

these are free-running simulations, temporal correlation between SCREAM and ERA5657

is not expected beyond what is induced by prescribed SST and insolation. None of the658

four variables drift substantially relative to ERA5 results (which have trends due to the659

seasonal cycle and perhaps large-scale conditions). Note as well that model biases tend660

to be consistent across all seasons. This indicates that the results SCREAMv1 provides661

on 40 day timescales are likely to also hold on longer timescales. The left-hand column662

also includes output from our previous SCREAMv0 DYAMOND2 simulation. Both v0663

and v1 have surface wind speeds ∼1 m s−1 too fast and similarly large precipitation rates,664

but their near-surface temperature and water vapor paths differ, with SCREAMv1 not665

necessarily closer to ERA5. In particular, SCREAMv1 is almost 1 K too warm; SCREAMv0666

started similarly warm but matches ERA5 well by the end of the simulation. Both the667

surface warm bias and wind-speed bias are explored further in Section 5.5.668

A remarkable feature of these SCREAMv1 runs is that despite the fact that we made669

no attempt to tune v1 other than reducing the popcorn convection found in v0, the top670

of atmosphere (TOA) net-radiative fluxes in the global mean are within 1.2 Wm−2 (Fig-671
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ure 5). Overall, the top panel in Figure 5 shows that SCREAMv1 captures the north-672

south seasonal shift of peak TOA energy input as well as the latitudes of transition from673

TOA radiation being a net source to a net sink of energy. The bottom panel of Figure 5674

shows that despite the general agreement, SCREAMv1 does tend to have a negative bias675

in the TOA net radiative flux poleward of 50◦latitude in the spring and summer hemi-676

sphere and a positive bias over 5S to 30S.677

If we separate the net radiative flux into its shortwave and longwave components,678

they also agree to within 3 Wm−2 in the global mean. This result is demonstrated in Fig-679

ures 6 and 7, which again shows that global averages mask large compensating regional680

biases, particularly in the shortwave. Comparison of Figure 6 versus 7 reveals that short-681

wave biases are the principle cause of both excessive TOA emission in summertime high682

latitudes and of overly-strong absorption at low latitudes noted in Figure 5. Longwave683

radiation actually damps the tropical bias (as expected due to competing shortwave and684

longwave effects in high clouds); from this compensation and the location of local max-685

ima we conclude that SCREAM’s deep convective clouds are anemic. The tendency for686

shortwave biases to be largest in the local summertime is at least partly a response to687

larger TOA insolation in the summertime hemisphere. Figure 8 shows the contribution688

from clouds to shortwave radiation. Lack of stratocumulus decks to the west of subtrop-689

ical continents is stark and explains the positive insolation biases in these regions. Ane-690

mic stratocumulus is a common problem even in high-resolution climate models. Fig-691

ure 9 and 11 from Caldwell et al. (2021) provided a more optimistic view of stratocu-692

mulus from an earlier model version; worse results here suggest we have more work to693

do. Shortwave cloud impact is largest in the summer-hemisphere midlatitudes, though694

deep clouds in the Inter-Tropical Convergence Zone (ITCZ) also reflect a lot of radia-695

tion.696

Large temporal variability makes assessing precipitation from 40 day simulations697

more difficult. Figure 9 shows that the v1 model captures the maximum in zonal-mean698

precipitation rate and the seasonal migration of the ITCZ. In general, precipitation in699

SCREAMv1 tends to organize in an overly-narrow zonal strip and leads to precipitation700

being aggregated in a smaller area than satellite GPM IMERG estimates (Figure 9). The701

ITCZ also appears sharper, with stronger precipitation rates, consistent with what other702

models exhibit when the deep convective scheme is turned off (Wedi et al., 2020). On703

the other hand, the South Pacific Convergence Zone (SPCZ) and the Tropical West Pa-704

cific are areas where precipitation is underestimated, particularly in the boreal summer705

and October seasons. Finally, the midlatitude storms in SCREAMv1 generally tend to706

produce more precipitation than IMERG estimates, but there are no systematic shifts707

that are detectable in these 40 day simulations. Precipitation in v0 and v1 are quite sim-708

ilar both in global-mean rate and in terms of regions of large bias (not shown for v0).709

In SCREAMv0, it was noted that the rain water path exceeded the mean cloud liquid710

water path. SCREAMv1 does not suffer from the same issue (not shown).711

Finally, we assess the three-dimensional thermodynamic and dynamic structure in712

SCREAMv1 across the four seasons. The zonal-mean vertical structure of temperature713

in Figure 10 shows that warm bias is largest in the lower and upper troposphere. We also714

see in Figure 11 that dry bias in vertically-integrated water vapor comes primarily from715

a lack of moisture between 850 and 600 hPa over the tropics and subtropics. Below that716

drying signal, we also see that the boundary layer in SCREAMv1, particularly in the south-717

ern hemisphere, actually tends to be too humid. This is indicative of insufficient mix-718

ing between the boundary layer and lower free-troposphere and a lack of mid-level cloud719

detrainment. The upper troposphere, on the other hand, shows slight hints of excessive720

humidity in the model, which indicates that upper level detrainment of humidity is ad-721

equate in SCREAMv1. Further discussion about convection in the tropics is provided722

in Sect. 5.2.723

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 12 shows that the overall structure, location, and strength of the zonal winds724

are reasonable for all 4 seasons, though there are some consistent biases. First, the mid-725

latitude zonal jets tend to be shifted equatorward compared to ERA5. Second, upper-726

tropospheric equatorial winds have too much easterly momentum, particularly in Aug.727

In most instances, the sign of model biases is more or less height invariant (though mag-728

nitude increases proportionally with increased windspeed aloft). Interestingly, the ex-729

cessive wind speeds found at the surface (e.g. Figure 4) do not extend into the interior730

of the atmosphere.731

5.2 Tropics732

5.2.1 Tropical Convection733

A key advantage of GSRMs is the ability to explicitly simulate deep convection,734

which is important for understanding the vertical distribution of heat and momentum735

in the tropical atmosphere. Despite the need for parameterized convection on smaller736

scales, we expect SCREAMv1’s ability to resolve larger convective circulations will yield737

a realistic simulation of the tropical climate. Therefore the following discussion will as-738

sess how well SCREAMv1 can reproduce the observed distribution of tropical convec-739

tion.740

Figure 13a shows profiles of ice and liquid water content in the tropical western Pa-741

cific (-10◦to 10◦latitude, 160◦to 180◦east longitude) from SCREAMv1 and CloudSat ob-742

servations (2B-CWC-RO) for the 40-day period starting Oct 1, 2013. We acknowledge743

that satellite estimates of physical quantities can potentially carry large biases and un-744

certainty due to the limitations of the instrument. Thus, it is preferred to use satellite745

simulator output when comparing to satellite data to simulate these limitations and make746

for a fair comparison (Bodas-Salcedo et al., 2011). Unfortunately, the satellite simula-747

tor implementation in SCREAMv1 was not available for the simulations discussed here.748

Therefore, we will limit our discussion to a qualitative comparison between model and749

observations in recognition of the imperfections in the satellite data.750

The profile of ice cloud water in SCREAMv1 compares favorably with CloudSat,751

although the peak sits at a slightly higher altitude (Figure 13a). SCREAMv1 also pro-752

duces ice below 5km where there are no ice clouds in CloudSat data, which suggests that753

the melting of ice may be delayed in the model for condensate falling below the melt-754

ing level. It should be noted that the neither P3 microphysics nor CloudSat make dis-755

tinctions between ice and snow, thus ice is taken here to include all frozen hydromete-756

ors.757

The profile of liquid cloud water is generally underestimated in SCREAMv1, but758

there is an especially notable lack of mid-level clouds, which are responsible for the tri-759

modal distribution observed in the tropics (R. H. Johnson et al., 1999). This deficiency760

could be related to the mid-level dry bias seen in Figure 11. Note that saturation of the761

CloudSat radar means it underestimates low and mid-level clouds (Schulte et al., 2023),762

so lower liquid cloud amount in the model suggests a systematic issue with liquid clouds.763

Figure 13b shows the probability density function of total condensed water path764

compared to MODIS level 2 data (MYDO6L2) as a reference. SCREAMv1 underesti-765

mates the prevalence of mid-thickness clouds with water path of 20-600 g/m2 and over-766

estimates the prevalence of thick clouds with water path greater than 600 g/m2. This767

is a common bias in conventional general circulation models (Kay et al., 2012; Klein et768

al., 2013; Medeiros et al., 2023), and there is some evidence that it may be common to769

GSRMs as well (Kodama et al., 2012). Instrumental uncertainty prevents us from draw-770

ing conclusions regarding the prevalence of thin clouds. Currently, it is unclear how to771

address this in SCREAMv1.772
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5.2.2 Tropical ARM Sites773

Evaluating SCREAM at individual ARM sites gives us access to a treasure trove774

of high-quality observations. In this section we explore the composite diurnal cycle of775

several variables for several locations. Local features such as buildup of convective avail-776

able potential energy, solar heating, geography, and land-sea contrast can cause certain777

behaviors to manifest at particular times of day. Reproducing the composite daily tim-778

ing of observed meteorology has historically been very difficult for models, and there-779

fore is often used to gauge the realism of a model’s convective representation (Collier &780

Bowman, 2004; Pritchard & Somerville, 2009; Xie et al., 2019). Given that SCREAM’s781

major advantage is the ability to explicitly resolve convective storms, it is reasonable to782

expect the model to perform well in this context. To test this hypothesis, we explore the783

diurnal rhythm in 3 tropical sites whose location is included in Figure 8; comparing site784

locations against the seasonal cloud radiative effect climatology they are superimposed785

on is useful for understanding the behavior described below.786

SCREAM does an excellent job of reproducing the diurnal and seasonal cycles of787

cloud fraction at Darwin (Figure 14). In particular, SCREAM successfully captures the788

build-up of clouds during Darwin’s wet season in Austral summer (January) and the gen-789

erally dry conditions found during the rest of the year. Note as well the realistic portrayal790

of deepening shallow cumulus clouds during daylight hours. Unsurprisingly, good sim-791

ulation of clouds at Darwin is accompanied by realistic simulation of thermodynamic vari-792

ables though – as in the global analysis – 2m temperature and wind speed are too high793

and liquid water path and column integrated water vapor tend to be low (Figure 15).794

The diurnal cycle of near-surface water vapor mixing ratio at Darwin is also quite good,795

though its diurnal-mean value is a bit too high. Wet-season (Jan) precipitation does cap-796

ture the observed peak at 16:00 local time, but predicts little precipitation at other times,797

while observed precipitation is above 15 mm/day at all times of day.798

In the West Pacific Warm Pool, deep convection is more prevalent and small shifts799

in the position of the ITCZ can result in huge model biases. Off the north coast of In-800

donesia, Manus has substantial convective clouds year-round (Figure 16). SCREAM does801

successfully maintain deep clouds year-round in this region, but (as noted in previous802

sections) high cloud fraction is too large and mid-level cloud is missing. SCREAM also803

predicts a layer of low clouds through most of the day which are not observed. Further804

evidence of convective dysfunction is found in the diurnal cycle of precipitation, which805

peaks around sunrise in SCREAM but in the early afternoon in observations (Figure 17c).806

Because SCREAM has too much high cloud and not enough mid-level clouds, its LWP807

is far lower than observed (Figure 17d) and its ice water path is too strong (not shown).808

The diurnal cycle of near-surface temperature, moisture, and winds look completely wrong809

at Manus, but this is at least partially due to the fact that Manus is an island and a por-810

tion of the simulation data contributing to this result samples points over the ocean. Land811

surfaces warm much more than ocean during the day.812

GoAmazon is interesting because it is an inland case, but with evaporative fluxes813

from the surrounding rain forest providing fluxes a bit like the ocean. Observations on814

the right-hand side of Figure 18 show low clouds in the morning gradually growing into815

mid-level and then deep convection in the afternoon, as noted previously in Tian et al.816

(2021, 2022). As found for other regions, SCREAM does a nice job of simulating deep-817

ening boundary-layer clouds in the morning but skips the mid-level congestus step, tran-818

sitioning directly to deep convection. There are some hints that SCREAM may be tran-819

sitioning from boundary-layer to deep convective clouds too fast (particularly for Jan)820

though interestingly the timing of peak precipitation is generally correct (Figure 19). Note821

however that observed precipitation has similar peak intensity for all seasons except Aug,822

while SCREAM magnitude has more seasonal variation and is generally too weak. SCREAM823

also shows an unexpected peak in the early morning in Apr. Because both model and824

observations sample land points in GoAmazon, the diurnal cycle of near-surface temper-825

–18–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ature and other variables is more consistently reproduced. There is no significant dif-826

ference in the 10-meter wind speed during daytime. Surface latent and sensible heat fluxes827

(LHF and SHF, respectively) in the tropics are only available at the GoAmazon site. LHF828

is slightly overpredicted while SHF is far too large around midday. Interestingly, SHF829

has much stronger seasonal cycle than observed. Also, LHF is too large at night while830

SHF actually goes negative (not shown). Understanding these behaviors via surface wa-831

ter and energy budgets is future work.832

5.3 Midlatitudes833

5.3.1 Synoptic Weather834

Mid-latitude weather is often associated with synoptic scale frontal boundaries re-835

sulting from the meandering path of the jet stream. Assessing how well these systems836

are represented in the simulations presented here is challenging due to the divergence837

of simulated and observed weather patterns that complicates the comparison of individ-838

ual storms. Thus, we assess the position and intensity of zonal jets and their variabil-839

ity under the assumption that any issues in the representation of mid-latitude storms840

will be imprinted in the zonal mean jets.841

Figure 20 shows the 3-hourly variance (shading) and temporal mean (contours) of842

zonal mean zonal wind for the last 30 days of each simulation alongside the correspond-843

ing data from ERA5. In all cases the latitudinal position and altitude of westerly wind844

maxima are consistent with ERA5, however the winter hemisphere maxima are slightly845

stronger in intensity. There are several notable differences in the magnitude of the vari-846

ance zonal mean zonal wind. For instance, the variance is smaller than ERA5 in the Apr847

simulation, while it is larger than ERA5 in the Oct simulation. The Aug simulation shows848

particularly weak variance relative to ERA5 south of the southern hemisphere jet. The849

differences in the patterns make direct comparison somewhat difficult, which would likely850

be remedied by a longer record of simulation data. If any of these differences prove to851

be robust in longer simulations then this may indicate a fundamental problem in the gen-852

eration of eddy kinetic energy or the role of convective heating in baroclinic instability.853

Given the importance of expected changes to jets and storm tracks in a future warm-854

ing scenario (Barnes & Polvani, 2013) this topic may demand closer inspection in future855

work.856

Atmospheric rivers are another synoptic-scale feature of mid-latitude weather that857

can expose sensitivities in the simulated general circulation. Figure 21 shows the spa-858

tial density of atmospheric rivers (ARs) over each simulation period from SCREAMv1859

and ERA5. ARs are defined following the tracking criteria in Ullrich et al. (2021), in which860

smoothed Laplacian of the integrated vapor transport is used to check for values below861

a prescribed threshold. Although we do not expect an exact match in AR density, given862

that these simulations are conducted at weather time scales, there is considerable qual-863

itative agreement between the ARs produced by SCREAM and those from ERA5. To864

quantify some of the differences between AR objects, histograms of AR width and lengths865

are computed and shown in Figure 22, computed using the principal component method866

of Inda-Díaz et al. (2021). Under this metric, ERA5 ARs are statistically the same length867

as SCREAMv1 ARs, but are about 5% wider than SCREAMv1 ARs. This difference is868

attributed to the resolution at which ARs are detected. Given the lack of any clear sys-869

tematic difference in AR characteristics in SCREAMv1 we conclude that the model is870

adequately reproducing the salient properties of these events.871

5.3.2 Continental US Precipitation872

The central continental US is notable for the regular occurrence of strong organized873

convective systems during the spring and summer months that can produce various types874
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of severe weather hazards (Schumacher & Johnson, 2006; Hu et al., 2021; Stevenson &875

Schumacher, 2014). These systems can also contribute to nocturnal precipitation over876

certain regions. These systems have proven difficult to represent in models unless the877

resolution is sufficient to explicitly resolve convection (Feng et al., 2018; Lin et al., 2022).878

Figure 23 shows a comparison of precipitation for April 5, 2013, both as a map of879

precipitation and 500mb geopotential height at 00Z (a-b) and a Hovmoller of precipi-880

tation rate (c-d) averaged meridionally over the red box indicated in the upper panels.881

Since this is five days since initialization, weather patterns have diverged, but we can still882

make a qualitative comparison to assess the realism of SCREAMv1. Nonetheless, there883

are several similar features in both model and observations, such as widespread precip-884

itation in the Pacific Northwest, a moderately organized convective system over the cen-885

tral US, and a precipitating frontal system off the East coast. The mesoscale feature in886

the Central US appears to be associated with a synoptic wave feature indicated by the887

geopotential height field. The Hovmoller shows that this system maintains a coherent888

propagation across the entire region. All of these features are consistent with the sys-889

tem in observations, providing some confidence that the model can produce realistic con-890

vective system in this region.891

Figure 24 shows the composite diurnal cycle for select regions representing the high892

mountains, high plains, mid-plains, and low plains with IMERG (Figure 24a) and SCREAM893

(Figure 24b). The composite IMERG data shows progressively delayed peaks across the894

central United states that are well documented, especially during Boreal summer (Carbone895

et al., 2002; Carbone & Tuttle, 2008). The SCREAM model reasonably reproduces the896

delay of peak precipitation from the high mountain region to the high plains, and slightly897

so for the transition to the mid-plains, but misses the dominant nocturnal peak over the898

low-plains that is often attributable to elevated mesoscale convective systems. We spec-899

ulate that this deficiency is due to accumulated biases in the large-scale environment as900

the simulation progresses, rather than a deficiency in the model’s ability to simulate con-901

vective systems at this scale. The strong late-afternoon diurnal peak over the Southeast902

region of the United State is also well simulated.903

5.3.3 Midlatitude ARM Sites904

We now turn our attention to ARM’s two long-term mid-latitude sites: the land905

site at SGP and the marine site at ENA. The location of these sites is also included in906

Figure 8.907

Similar to the tropics, SCREAMv1 does an excellent job in simulating the diur-908

nal cycle of the surface-forced shallow cumulus observed from late morning through af-909

ternoon (Zhang & Klein, 2013; Zhang et al., 2017) at SGP, though the timing of mod-910

eled clouds slightly lags the observed evolution (Figure 25). In Apr SCREAMv1 seems911

to also be catching the primary nighttime peak both in precipitation (Figure 26) and clouds912

associated with propagating MCS as well as the secondary peak in the late afternoon913

or early evening which is associated with locally forced deep convection (Zhang & Klein,914

2010). Precipitation is less well captured in other seasons. Note that SGP is in the “low915

plains” region in Figure 24, so we’ve already seen that SCREAM misses deeper convec-916

tion during summer because propagating convection doesn’t reach that far from the Rocky917

Mountains. SCREAM does slightly better at capturing midlevel clouds at SGP than at918

tropical sites, but there is still a notable lack of clouds around 3 km in all seasons for919

most times of day. Unlike the tropics, SCREAM generally has too little high cloud in this920

region, suggesting that there is some nuance to the conditions that lead to excessive high921

clouds in the model. Though SCREAM’s cloud profiles in each season aren’t a great match922

with observations, SCREAM does largely capture the general diurnal and seasonal cy-923

cle at SGP. One glaring exception, however, is Oct. SCREAM cloudiness maximizes in924

this month when in reality there should be very little cloud at this time.925
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SCREAM’s column-integrated water vapor is within the bounds of observed inter-926

annual variations (Figure 26). SHF and LHF generally are as well, but - as for GoAma-927

zon - nighttime SHF is too negative and nighttime LHF is once again too positive. Near-928

surface temperature and wind speed tend to be too high, especially at night. These de-929

ficiencies are partially due to excessive turbulent mixing in stable nighttime boundary930

layers (see Sect. 5.5).931

SCREAM does a very good job of reproducing both the seasonal and diurnal cy-932

cle of cloudiness at ENA (Figure 27), though diurnal variations in low clouds in Aug are933

too large. This is perhaps explained by a a large spike in precipitation between 4 and934

8 AM local time (the first diurnal peak in cloudiness) for that season (Figure 28). It could935

be that Aug statistics are getting corrupted by a single large storm; 30 days is certainly936

a short averaging period for evaluating midlatitude precipitation. Other seasons also have937

peak precipitation larger than the 2σ bounds on observed interannual variations, sug-938

gesting that precipitation efficiency in this boundary-layer cloud regime might be over-939

predicted. If this was the case, then diurnal variations in Aug cloud could be explained940

by dissipation due to excessive rain out. Similar to SGP, SCREAM does very well with941

low clouds and underestimates high clouds. Like everywhere else, midlevel clouds are ane-942

mic. As we’ve seen elsewhere, near-surface wind speeds are generally too high, though943

the worst season for boundary-layer clouds - Aug - actually captures wind speed quite944

well.945

5.4 Polar Regions946

5.4.1 Cloud Phase Analysis947

Cloud phase strongly influences cloud radiative forcing. Even under extremely cold948

conditions, mixed-phase clouds are often observed in high latitudes over both the South-949

ern and Northern polar regions. Model skill in simulating the phase partitioning can have950

strong implications on simulating the strength of polar amplification in response to greenhouse-951

gas induced warming. Below, the GCM-Oriented CALIPSO Cloud Product (CALIPSO-952

GOCCP) Chepfer et al. (2010); Cesana and Chepfer (2013) is used as a reference to eval-953

uate the SCREAM-simulated cloud fraction and the phase partitioning.954

Typically CALIPSO-GOCCP is used to evaluate a model’s COSP simulator out-955

put. As instrument simulators were not available for this SCREAM simulation, model956

cloud phase partitioning is constructed offline based on the relative ratio of liquid ver-957

sus ice cloud condensate. A grid cell is considered 100% cloudy if total condensate amount958

exceeds 1e-5 kg/kg. Otherwise, it is cloud free. Among cloudy cells, if liquid condensate959

amount is at least 10 times greater than ice condensate, it is treated as liquid cloud. Sim-960

ilarly if ice condensate amount is 10 times greater or larger, it is labeled ice cloud. If nei-961

ther phase dominates, it is considered mixed-phase cloud. Note that CALIPSO-GOCCP962

does not have a mixed phase mode. The comparison with CALIPSO-GOCCP uses the963

aggregated fraction for each cloud category over 1 degree x 1 degree area over the po-964

lar cap. Because our estimate of cloud phase and the CALIPSO-GOCCP definition dif-965

fer, comparisons should be taken as approximate.966

Figures 29 and 30 compare the zonal-vertical distribution of the simulated clouds967

against CALIPSO-GOCCP cloud climatology for identical time periods. Instead of a mixed-968

phase mode for CALIPSO-GOCCP, we include a composite over all the scenes where the969

classification algorithm is unable to determine whether cloud is liquid or ice. The frac-970

tion of time when there are clouds but phase can’t be determined is significant, partic-971

ularly near the surface. Thus we also include a comparison of total cloud fraction in the972

right-hand panel.973

Over both polar regions, the presence of mixed-phase clouds can be viewed in terms974

of the ‘mixed-phase’ clouds at model native grids, and the coexistence of liquid and ice975
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phase clouds at coarsened grids. The model captures the vertical structure and general976

seasonality of cloudiness (not shown). Boundary-layer bound low clouds dominate, though977

at subpolar latitudes, the amount of middle-level and high-level clouds are also signif-978

icant. Maximum cloudiness occurs in the respective summer to fall seasons, when liq-979

uid clouds extend further poleward. The discrepancies between model and observed clouds980

are substantial, even after accounting for the uncertainty in the CALIPSO-GOCCP cloud981

phase classification. Modeled liquid-phase clouds near both poles are more confined to982

lower levels compared to CALIPSO-GOCCP. Ice cloud fractions above the boundary layer983

are clearly higher in the model than seen in the CALIPSO-GOCCP data. SCREAM also984

has stronger latitudinal gradients in cloudiness than observed.985

5.4.2 Polar ARM Sites986

ARM has one long-term monitoring site in the Arctic: NSA. See Figure 8 for lo-987

cation. As shown in Figure 31, SCREAMv1 captures the low-level stratiform clouds ex-988

tending to the surface in both Aug and Oct, though the low-cloud layer tends to be too989

thick in Aug and is largely missing in Apr. Mid-level clouds, e.g. between 3 and 6 km,990

are underestimated in all seasons except Aug, and in particular have an interesting and991

unrealistic minimum in mid-level clouds around 6 am for all seasons except Jan. In Fig-992

ure 32, surface air temperature, surface mixing ratio, and Jan precipitation rate are all993

modestly but consistently underestimated. LHF is grossly overpredicted in Oct and is994

missing the observed diurnal variability in Aug (not shown). Note that these are the sea-995

sons of minimum sea ice extent at NSA and our strategy of averaging SCREAM data996

with centers inside a circle of radius 10 km is likely to include open ocean data that is997

missing from NSA point observations. This probably also explains why SHF is too weak998

in Aug and too large in Oct (not shown).999

5.5 Process specific biases1000

The above analysis of the four seasonal SCREAMv1 simulations exposed signifi-1001

cant biases in surface winds, surface temperature and in the cloud forcing. Investigation1002

of the causes of these biases identified three configuration choices to be the most likely1003

cause. A series of shorter, days-long simulations were conducted for each season with pro-1004

posed solutions adopted. In all cases we were able to improve model accuracy. Due to1005

a lack of resources we were unable to extend these three solutions to the full seasonal cy-1006

cle. However, these fixes will be adopted in subsequent SCREAMv1 simulation campaigns.1007

In this section we discuss the impact of each solution individually.1008

5.5.1 Surface Winds Bias1009

As seen in Figure 4 there is a significant overestimation of near surface winds ob-1010

served for all four seasonal simulations. This bias is also observed in the SCREAMv01011

simulations. The wind speed is consistently too high in the global average. Further anal-1012

ysis, shown in Figure 33, points to regions with topography as having the greatest bias.1013

These results motivated us to rethink our omission of a Turbulent Mountain Stress (TMS)1014

scheme in the SCREAMv0 and SCREAMv1 physics suites. The original hypothesis was1015

that a 3km horizontal grid scale would be sufficiently fine enough for the model to nat-1016

urally represent the impact of topography on wind speed. To test this hypothesis, a set1017

of five–day simulations were conducted for each of the four seasons with a newly imple-1018

mented TMS scheme. As shown in Figure 33 the inclusion of TMS decreased the wind1019

speed over land, especially near topography, improving the overall bias in the global sim-1020

ulations. These results point to the need for some parameterized mountain stress, even1021

at the 3km grid scale.1022
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5.5.2 Warm Temperature Bias1023

The top panel of Figure 34 shows that warm bias occurs primarily over land (as1024

expected when SSTs are prescribed). Differences can be larger than 5 K over midlati-1025

tude land regions. Figure 10 shows that warm bias is largest in the lower and upper tro-1026

posphere. This bias turns out to be at least partially due to earlier attempts to prevent1027

runaway cold snaps by maintaining SHOC mixing of warm air from above even in cases1028

of strong thermal stability. Further analysis of the cold snaps after these simulations re-1029

vealed that the problem was actually due to the dycore creating new local minima in tem-1030

perature. The addition of TMS caused this problem to go away, allowing us to return1031

SHOC to more realistic behavior in stable boundary layer cases. The impact of the de-1032

fault SHOC diffusivities on near-surface temperature is illustrated in the bottom panel1033

of Figure 34. A set of six–day simulations were conducted with the original configura-1034

tion of SHOC. As seen in Figure 34 the greatest impact is over land, and in the correct1035

direction to improve the warm temperature bias. Over ocean the results are more muted,1036

which is not surprising given the prescribed SSTs.1037

5.5.3 Cloud Biases1038

Recall in Figure 6 that SCREAMv1 tends to over–predict the shortwave cloud forc-1039

ing (SWCF) in the tropics and subtropics and under–predict SWCF in the high latitiudes.1040

A similar result is shown in Figure 7 with respects to longwave cloud forcing (LWCF).1041

In order to address these biases we focused on two tuning parameters that impact clouds,1042

lambda_high in SHOC and max_total_ni in P3. The former helps reduce mixing in1043

areas of high vertical stability. Thus, higher lambda_high values will reduce the mix-1044

ing and help reduce dry air entrainment at stratocumulus top. This should in turn pro-1045

duce more abundant subtropical stratocumulus. The max_total_ni parameter imposes1046

a maximum total ice number concentration. Increasing this parameter will allow for higher1047

concentration in ice clouds, impacting cloud forcing at high-latitudes.1048

A six–day simulation was conducted for each season with lambda_high increased1049

to 0.08 from 0.04 and with max_total_ni increased to 740·103 from 500·103. Figure1050

35 reveals an overall improvement in the short– and long–wave cloud forcing biases. In1051

the tropics we observe increased solar reflection and more longwave trapping. Shortwave1052

changes are especially prevalent along Western coastal regions due to increased stratocu-1053

mulus.1054

In the high–latitudes, where the increased ice number concentration threshold is1055

expected to make the greatest impact we see the reverse pattern with less solar reflec-1056

tion and decreased longwave trapping, as desired.1057

6 Conclusions1058

It is clear that the future of high performance computing is in heterogeneous CPU/GPU1059

systems. In order to stay at the cutting edge of science global climate models need to1060

adapt to these architectures. EAMxx is a complete rewrite of the Energy Exascale Earth1061

System Model’s atmosphere component. EAMxx saw great success in the adoption of1062

a performance portable library such as Kokkos, making it possible to not only deploy1063

EAMxx on two of the fastest DOE systems, Summit and Frontier, relatively quickly, but1064

to take full advantage of the GPU architectures of these machines and accomplish greater1065

than one simulated-year-per-day throughput on a 3km global grid. Surprisingly, it only1066

took the equivalent of 6 full–time employees approximately 4.5 years to accomplish this.1067

This was facilitated by the early decision to establish a robust unit testing framework1068

that allowed the team to develop multiple features concurrently and be confident that1069

model integrity was maintained. Furthermore, a bottom up redesign of the code allowed1070

the team to abandon support for complicated and often unused legacy code. Although1071
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an imperfect metric, a comparison of total lines of Fortran code in EAM to lines of C++1072

code in EAMxx shows a reduction by a full order of magnitude. The result is the first1073

global km–scale atmosphere model to run at exascale.1074

In tandem with the software development of EAMxx, the team worked on the val-1075

idation of the SCREAM physics package using the existing F90 EAM codebase, see C211076

(Caldwell et al., 2021) for more details. Once the more performant EAMxx model was1077

ready we were able to extend the original 3km analysis of C21. Global and regional-scale1078

analysis across all four seasons revealed that SCREAMv1 captures the global net top of1079

atmosphere imbalance to within 1.2 W m−2 and represents the mean characteristics of1080

the midlatitude jets and the atmospheric rivers that are responsible for much of the pole-1081

ward vapor flux. Many of the differences between SCREAM and observational products1082

that were shown in C21 are shown here to span all four seasons, including excessively1083

warm near-surface temperatures, overly-strong surface winds, a over-predicted global mean1084

precipitation rate, and a mid-tropospheric dry bias. Despite seasonal variations, TOA1085

radiative fluxes display a consistent story of too much absorbed shortwave in the trop-1086

ics and subtropics that is balanced by too much reflected shortwave at high latitudes and1087

too much outgoing longwave radiation. We have shown that a couple of these biases can1088

be ameliorated with additional physics or changes in the tunings, including the strong1089

near-surface wind speeds, strong outgoing longwave radiation, weak reflection of the stra-1090

tocumulus, and warm near-surface temperatures over land. However, certain biases per-1091

sist. In the Tropics there is a general tendency of the precipitation patterns to organize1092

into narrow strips compared to satellite estimates. Additionally there is a dry bias in the1093

lower troposphere above the boundary layer, which coincides with a lack of mid-level clouds1094

and deep convective cloud tops, consistent with previous findings (Turbeville et al., 2022).1095

Outside of the Tropics, biases also exist in the representation of cloud height and phase1096

over both polar region, with liquid-phase clouds being more excessive and more confined1097

to lower levels while having more ice-phase clouds aloft. What further changes are needed1098

to the physics suite to address these biases is the subject of ongoing study.1099

Higher resolution simulations lend themselves well to comparison with ground-based1100

observation stations. ARM’s simultaneous co-located surface measurements and verti-1101

cal profiling of cloud fraction provide a unique perspective for understanding the con-1102

vective behaviors in responding to large scale environments and surface forcings. When1103

compared with ARM data, SCREAMv1 showed good performance in capturing the di-1104

urnal development of boundary layer clouds across all 4 seasons. SCREAMv1 was found1105

to be deficient in mid-level clouds, especially in the tropics. This is accompanied by a1106

relatively warmer and drier mid-troposphere. SCREAMv1 tends to overestimate trop-1107

ical high clouds. Both of these features might be attributed to an overly-quick transi-1108

tion from shallow to deep convection without the gradual intermediate stage of conges-1109

tus clouds. Some common biases in SCREAMv1 shared across ARM sites in different1110

seasons and different cloud regimes are: 1) significantly overestimated 10-meter wind speeds;1111

2) overestimated downward shortwave radiation (except NSA); 3) significantly under-1112

estimated column integrated liquid water path (except NSA); 4) underestimated column1113

integrated precipitable water vapor (except Jan/Oct at SGP).1114

SCREAMv1 is exciting because it allows us to perform global storm-resolving sim-1115

ulations much faster than previous efforts by taking advantage of the GPUs on the world’s1116

fastest supercomputers. We have also shown that despite approaching convection–permitting1117

spatial scales, there is still work to be done addressing persistent biases in our simula-1118

tions. This is unsurprising because the runs shown are the first ever done with SCREAMv1,1119

in contrast to the decades of development that have gone into conventional global cli-1120

mate models. In this context, the model skill shown here is a testament to the power of1121

resolving the scales of motion between 10 and 100 km. Future work will continue to in-1122

vestigate these biases as well as leverage EAMxx performance to investigate longer sim-1123

ulations.1124
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All ARM observational data is publicly available and can be found at https://portal.nersc.gov/project/capt/SCREAMv1_ARMBE/.1126

All simulation data from the SCREAMv1 simulations can be accessed from NERSC via1127

Globus (http://globus.org/) from the E3SM_SCREAMv1_4SeasonsRuns2024 Collec-1128

tion.1129

The version of the SCREAM codebase used for all full length simulations in this manuscript1130

is available via Zenodo at the following DOI: 10.5281/zenodo.107248081131

The code adjustments made to examine the impact of changing certain processes in the1132

model discussed in section 5.5 is available via Zenodo at the following DOI’s: https://doi.org/10.5281/zenodo.10724858,1133

https://doi.org/10.5281/zenodo.10724859, and https://doi.org/10.5281/zenodo.10724864.1134

Performance data, run scripts, and code for Table 1 and Figs. 2 and 3 are available at1135

https://github.com/E3SM-Project/perf-data and are archived at https://zenodo1136

.org/records/10714334. Within this repository, see screamv1-frontier-feb2023/readme1137

.txt and screamv1-summit-oct2022/readme.txt for details.1138

The GPM-IMERG dataset used in this study is Version 06B Level 3 daily 0.1 degree x1139

0.1 degree final-run gauge-calibrated data as described in Huffman and coauthors (2019)1140

and accessible via https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary.1141

The version of CERES SYN1deg data used here is Edition 4.1 with a release date of Au-1142

gust 22, 2019 and was accessed from: https://ceres-tool.larc.nasa.gov/ord-tool/1143

jsp/SYN1degEd41Selection.jsp. This study also used ERA5 hourly data on both pres-1144

sure levels (Hersbach et al., 2023a) and on single levels (Hersbach et al., 2023b) for eval-1145

uation, which can be downloaded from the Copernicus Climate Change Service (2023).1146

MODIS satellite data is available publicly at https://ladsweb.modaps.eosdis.nasa.gov/missions-1147

and-measurements/products/MYD06_L2#data-availability.1148

CALIPSO–GOCCP data was obtained from https://climserv.ipsl.polytechnique.fr/cfmip-1149

obs/Calipso_goccp.html.1150
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State from Previous Step:

  T_mid, horiz_winds, o3_volume_mix_ratio, phis, ps, 

  qv, bm, nc, ni, nr, qc, qi, qm, qr, tke, tracers,

  T_prev_micro_step, qv_prev_micro_step,

  precip_ice_surf_mass, precip_liq_surf_mass

homme

Computed Fields:

  omega,  p_dry_int,  p_dry_mid,  p_int,  p_mid,  

  pseudo_density, pseudo_density_dry

Updated Fields:

  T_mid,  horiz_winds,  o3_volume_mix_ratio,  

 phis,  ps,  qv,  tracers (group) 

p3

Computed Fields:

  precip_ice_surf_mass, precip_liq_surf_mass,

  eff_radius_qc, eff_radius_qi, micro_liq_ice_exchange, 

  micro_vap_ice_exchange, micro_vap_liq_exchange

Required Fields:

  p_dry_mid, pseudo_density_dry,

  inv_qc_relvar, cldfrac_tot, nccn, 

  precip_ice_surf_mass, precip_liq_surf_mass

Updated Fields:

  T_mid, qv, bm, nc, ni, nr, qc, qi, qm, qr,

  T_prev_micro_step, qv_prev_micro_step

shoc

Computed Fields:

  inv_qc_relvar,  pbl_height

Required Fields:

  surf_evap,  surf_mom_flux,  surf_sens_flux,  

  phis,  omega,  p_int,  p_mid, pseudo_density 

Updated Fields:

  T_mid,  horiz_winds,  qv,  qc,  tke,  cldfrac_liq,  

  eddy_diff_mom, sgs_buoy_flux, tracers (group) 

rrtmgp

Computed Fields:

  LW_clrsky_flux_dn, LW_clrsky_flux_up, LW_flux_dn, LW_flux_up, SW_clrsky_flux_dn,

  SW_clrsky_flux_dn_dir, SW_clrsky_flux_up, SW_flux_dn, SW_flux_dn_dir, SW_flux_up, ch4_volume_mix_ratio

  cldhgh, cldlow, cldmed, cldtot, co2_volume_mix_ratio, co_volume_mix_ratio, h2o_volume_mix_ratio,  

  n2_volume_mix_ratio, n2o_volume_mix_ratio, o2_volume_mix_ratio, rad_heating_pdel, sfc_flux_dif_nir,

  sfc_flux_dif_vis, sfc_flux_dir_nir, sfc_flux_dir_vis, sfc_flux_lw_dn, sfc_flux_sw_net

Required Fields:

  sfc_alb_dif_nir, sfc_alb_dif_vis, sfc_alb_dir_nir, sfc_alb_dir_vis, surf_lw_flux_up qv, p_int, p_mid, qc, qi, 

  pseudo_density, cldfrac_tot, aero_g_sw, aero_ssa_sw, aero_tau_lw, aero_tau_sw, eff_radius_qc, eff_radius_qi 

Updated Fields:

  T_mid, o3_volume_mix_ratio 

spa

Computed Fields:

  aero_g_sw, aero_ssa_sw, aero_tau_lw,

  aero_tau_sw, nccn

Required Fields:

  p_mid

State Saved for Next Step

  T_mid, horiz_winds, o3_volume_mix_ratio, phis, ps, 

  qv, bm, nc, ni, nr, qc, qi, qm, qr, tke, tracers,

  T_prev_micro_step, qv_prev_micro_step,

  precip_ice_surf_mass, precip_liq_surf_mass

SurfaceCouplingExporter

Required Fields:

  T_mid, horiz_winds, phis, qv, p_int, p_mid, 

  pseudo_density, precip_ice_surf_mass, precip_liq_surf_mass,

  sfc_flux_dif_nir, sfc_flux_dif_vis, sfc_flux_dir_nir,

  sfc_flux_dir_vis, sfc_flux_lw_dn, sfc_flux_sw_net

SurfaceCouplingImporter

Computed Fields:

  T_2m,  qv_2m,  sfc_alb_dif_nir,  sfc_alb_dif_vis,  sfc_alb_dir_nir,  

  snow_depth_land,  surf_evap,  surf_lw_flux_up,  sfc_alb_dir_vis,

  surf_mom_flux,  surf_radiative_T, surf_sens_flux,  wind_speed_10m

cld_fraction

Computed Fields:

  cldfrac_ice, cldfrac_ice_for_analysis,

  cldfrac_tot, cldfrac_tot_for_analysis

Required Fields:

  qi, cldfrac_liq

Figure 1. Directed acyclic graph (DAG) showing EAMxx processes and the variables passed
between them.

–34–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

384 512 1024 2048 4096 8192
Number of nodes

20

30

40

50

60
70
80
90

100

125

150
175
200

250

300
350
400
450
500
550
600
700

S
im

ul
at

ed
da

ys
p

er
w

al
lc

lo
ck

da
y

(S
D

P
D

)
Frontier

Summit

Perlmutter-GPU

Perlmutter-CPU

Model

Atmosphere

Dycore

384 512 1024 2048 4096 8192
Number of nodes

80
90

100

125

150
175
200

250

300
350
400
450
500

600
700
800
900

1000

1200
1400
1600
1800
2000

2500

3000
3500

S
im

ul
at

ed
da

ys
p

er
w

al
lc

lo
ck

da
y

(S
D

P
D

)

Dycore::DIRK

Dycore::CAAR

Physics

(a) (b)

Figure 2. Strong scaling of the model. (a) Total model (“Model”), atmosphere model (“At-
mosphere”), and dynamical core (“Dycore”) throughput in simulated days per wallclock day as a
function of number of Frontier nodes (solid lines), Perlmutter GPU nodes (dotted lines), Summit
nodes (dashed lines), and Perlmutter CPU nodes (dash-dot lines). The black undecorated line is
the perfect-scaling reference. (b) Physics parameterizations (“Physics”) and vertical IMEX solver
(“Dycore::DIRK”) throughput. These subcomponents have no MPI communication.
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Figure 3. Proportion of wallclock time spent in certain subcomponents, referenced to a pro-
duction run. The production run is the reference and, thus, has total wallclock time set to 1. All
data in this figure are for simulations performed on Summit.
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Figure 4. Time series of global-mean variables (listed on left side of each row) from
SCREAMv1 and ERA5 for each season (listed at bottom of each column). For Jan, results
from SCREAMv0 are also shown.

Figure 5. (top) Zonal mean net top-of-atmosphere radiative fluxes (positive downwards) in
SCREAM (solid lines) and from CERES-SYN (dashed lines) from the last 30 days of the 40 day
Jan (blue), Apr (orange), Aug (red), and Oct (purple) simulations. (bottom) The difference be-
tween SCREAMv1 and CERES-SYN.
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Figure 6. Time-mean differences in the net shortwave radiation over the last 30 days of the
simulation between SCREAMv1 and CERES-SYN daily-mean radiative flux estimates in the Jan
(a), Apr (b), Aug (c), and Oct (d) simulations. Line contours indicate mean downward fluxes in
SCREAMv1, whereas colors indicate differences with respect to CERES, where positive values
indicate more absorbed shortwave radiation in the model. Global mean differences are indicated
in the title of each simulation.
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FourSeasons_LWmean_plot.png

Figure 7. Time-mean differences in the net longwave radiation over the last 30 days of the
simulation between SCREAMv1 and CERES-SYN daily-mean radiative flux estimates in the Jan,
Apr, Aug, and Oct simulations. Contours indicate mean upward fluxes in SCREAMv1, whereas
colors indicate differences with respect to CERES, where positive values indicate more outgoing
longwave radiation in the model. Global mean differences are indicated in the title of each simu-
lation.
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Figure 8. Temporally averaged shortwave cloud forcing in SCREAMv1 from the last 30-days
of the Jan, Apr, Aug, and Oct simulations. The location of the ARM site locations (analyzed
in Sect. 5.2.2, 5.3.3, and 5.4.1) are noted by gray circles labeled with the following shorthand:
NSA=North Slope of Alaska, SGP=Southern Great Plains, ENA=Eastern North Atlantic,
MAO=Manacapuru, Nau=Nauru, MAN=Manus, and DAR=Darwin.

Figure 9. Time-mean differences in the precipitation rate in the last 30 days of the 40-day
SCREAMv1 simulations, compared to GPM-IMERG estimates. Contours indicate the time-mean
precipitation rates in SCREAMv1.
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Figure 10. Zonal cross-sections of temperature differences in SCREAMv1, relative to ERA5
estimates. Time-averaged differences from the last 30 days of the simulation are shown. Line
contours indicate zonal mean values from ERA5 in degree Celcius.

Figure 11. Zonal cross-sections of water vapor specific humidity differences in SCREAMv1,
relative to ERA5 estimates. Time-averaged differences from the last 30 days of the simulation are
shown. Line contours indicate zonal mean values from ERA5 in g kg−1.
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Figure 12. Colors indicate the zonal cross-sections of zonal wind differences in SCREAMv1,
relative to ERA5 estimates, across the four seasons. Contour lines indicate the zonal-mean winds
from ERA5. Both color and line contours show temporally averaged zonal winds from the last 30
days of the simulation.
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Figure 13. a) Liquid and ice cloud water content for SCREAMv1 (continuous lines) and
CloudSat (dashed lines) b) Probability density function of total condensed water path for
SCREAMv1 and MODIS. Both plots use data from the tropical Western Pacific for the 40 days
starting Oct 1, 2013.
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Figure 14. Composite diurnal cycle of cloud fraction (in percent) changing with height from
SCREAMv1 (left column) and ARM observation (right column) at the ARM Tropical Western
Pacific C3 (TWPC3) site at Darwin (12.4S, 130.8E) in January (top row), April (2nd row), Au-
gust (3rd row) and October (bottom row).
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Figure 15. Composite diurnal cycle of surface variables by SCREAMv1 (dashed lines) and
ARM observation (solid lines) at the ARM Tropical Western Pacific C3 (TWPC3) site at Dar-
win (12.4S, 130.8E) in January (blue), April (dark green), August (red) and October (black): a)
2-meter air temperature; b) 2-meter water vapor mixing ratio; c) precipitation rate; d) column
integrated liquid water path; e) column integrated precipitable water vapor; f) 10-meter wind
speed. The length of the vertical lines stands for two standard deviations (one on each side of
the mean diurnal cycle values at certain local time around noon), which denote the interannual
variability of the seasonal average diurnal cycles based on multi-year ARM observations.
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Figure 16. Same as in Figure 14, but for but for the ARM Tropical Western Pacific C1
(TWPC1) site at Manus (2S, 147.4E).
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Figure 17. Same as in Figure 15, but for but for the ARM Tropical Western Pacific C1
(TWPC1) site at Manus (2S, 147.4E).
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Figure 18. Same as in Figure 14, but for an ARM tropical land site during GoAmazon field
campaign (MAO) at (3.2S, 60.5W).
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Figure 19. Same as in Figure 15, but for an ARM tropical land site during GoAmazon field
campaign (MAO) at (3.2S, 60.5W).

Figure 20. 3-hourly variance (shading) and time mean (contours) zonal mean zonal wind
for SCREAM (a-d) and ERA5 (e-). Bold contours indicate values greater than 30 m/s and the
contour interval is 5 m/s.
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Figure 21. Atmospheric river density in SCREAMv1 as a fraction of time for each season
(a-d) and the difference from ERA5 (e-h).

Figure 22. Seasonal histograms of atmospheric river width (a-d) and length (e-h) for
SCREAMv1 (solid) and ERA5 (dashed).
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Figure 23. Upper panels show maps of precipitation and 500mb geopotential height from
SCREAMv1 (a) and IMERG and ERA5 (b). Lower panels show Hovmoller diagrams of precipita-
tion from SCREAMv1 (c) and IMERG (d) meridionally averaged over the red box in panels a-b.
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Figure 24. Composite of diurnal precipitation for the selected regions shown above. (a) Left-
panel for GPM-IMERG data, b() right-panel for SCREAMv1 results.
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Figure 25. Composite diurnal cycle of cloud fraction (in percent) changing with height from
SCREAMv1 (left column) and ARM observations (right column) at the Southern Great Plains
(SGP) site located at (36.6N, 97.4W) in January (top row), April (2nd row), August (3rd row)
and October (bottom row).
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Figure 26. Composite diurnal cycle of selected near-surface variables by SCREAMv1 (dashed
lines) and multi-year ARM observations (solid lines) at the Southern Great Plains (SGP) site lo-
cated at (36.6N, 97.4W) in January (blue), April (dark green), August (red) and October (black):
a) precipitation rate; b) column precipitable water vapor; c) latent heat flux; d) sensible heat
flux. Vertical lines denote two standard deviations around the the mean diurnal cycle at certain
time around local solar noon to provide a sense of the observed variability of the seasonal average
diurnal cycles based on multi-year ARM observations.
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Figure 27. Same as in Figure 25, but for the ARM Eastern North Atlantic (ENA) site lo-
cated at (39N, 28W).

–53–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 28. Composite diurnal cycle of surface variables by SCREAMv1 (dashed lines) and
ARM observation (solid lines) at the ARM Eastern North Atlantic (ENA) site located at (39N,
28W) in January (blue), April (dark green), August (red) and October (black): a) precipitation
rate; b) 10-meter wind speed. The length of the vertical lines stands for two standard deviations
(one on each side of the mean diurnal cycle values at certain local time around noon), which de-
note the interannual variability of the seasonal average diurnal cycles based on multi-year ARM
observations.
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Figure 29. Zonal mean phase-partitioned and total cloud fraction over the Northern polar
region for Aug simulation from SCREAMv1 (top) and CALIPSO-GOCCP (bottom)
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Figure 30. Same as Figure 29, but for Jan-Feb Southern polar region.
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Figure 31. Same as in Figure 25, but for an ARM Arctic site, North Slope of Alaska (NSA)
at (71.3N, 156.6W).
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Figure 32. Composite diurnal cycle of surface variables by SCREAMv1 (dashed lines) and
ARM observation (solid lines) at the ARM Arctic site, North Slope of Alaska (NSA) at (71.3N,
156.6W) in January (blue), April (dark green), August (red) and October (black): a) 2-meter air
temperature; b) 2-meter water vapor mixing ratio; c) precipitation rate; d) 10-meter wind speed.
The length of the vertical lines stands for two standard deviations (one on each side of the mean
diurnal cycle values at certain local time around noon), which denote the interannual variability
of the seasonal average diurnal cycles based on multi-year ARM observations.

Figure 33. The top panel shows the difference in 10-m wind speed between SCREAMv1 and
ERA5 estimates averaged across all four seasons. As with other differences, the last 30 days of
the 40 day simulations are used for the comparison. The bottom panel shows the impact of the
turbulent mountain stress parameterization (TMS) in the model physics. Since the simulations
with TMS only ran for five days, average differences from Day 4 and 5 are shown.
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Figure 34. The top panel shows the difference in 2-m air temperature between SCREAMv1
and ERA5 estimates averaged across all four seasons. As with other differences, the last 30 days
of the 40 day simulations are used for the comparison. The bottom panel shows the difference in
2-m air temperature between the simulation with the fix to SHOC and the default SCREAMv1
model, also averaged across all four seasons. Since the simulations with the fix only ran for five
days, average differences from Day 4 and 5 are shown.

Figure 35. Impact on long- and short–wave cloud forcing across all four seasons as a result
of tuning SHOC treatment of stable boundary layer and ice cloud threshold. Figure shows the
difference between new cloud tunings and those used for four-seasons analysis.
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