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Introduction  

The supplementary information contains 3 supplementary texts, 3 tables and 10 figures:  

• Supplementary Text S1.  Data and methods 
• Supplementary Text S2. Discussion on the mechanisms behind TE and hind tendency 

equations 
• Supplementary Text S3. Discussion on the choice of relative SST 

 
• Suppl. Table S1. Comparison of the rTe,h_ind skill (using optimal hind_eq+sw) between various 

data and fields, filtering and ENSO indices. 
• Suppl. Table S2. Regression coefficients robustness. 
• Suppl. Table S3. 14-month lead hindcasts. 
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• Suppl. Fig. S1. Respective contributions of the rTe skill and rh_ind skill to the rTe,h_ind skill. 
• Suppl. Fig. S2. As one part of Fig. 2 but for ORAS5ext, 60-yr long period 1959-2018, 

comparing SLA, OHC and Z20. 
• Suppl. Fig. S3. ENSO asymmetrical Ekman pumping. 
• Suppl. Fig. S4. Regression maps of h(x,y,t) or hind(x,yt) onto h(t) or hind(t) indices. 
• Suppl. Fig. S5. Harmonizing the various recharge indices by using hind index.  
• Suppl. Fig. S6. Comparing a) ORAS5 SLA (with satellite SLA, and SLA, Z20 and OHC in 

ORAS5, for hind_eq+sw index (shown from 1993). 
• Suppl. Fig. S7: as Fig. 3, but for satellite SLA over its shorter available period (1993-2021).  
• Suppl. Fig. S8. As Fig. 3, but for ORAS5 Z20filt. 
• Suppl. Fig. S9. Finding the best averaging box for hind to optimize both TE and hind 

tendency equations of RO. 
• Suppl. Fig. S10. Same as S9ab for ORAS5 SLAfilt (upper) and Z20filt (lower). 

 
 
 

Supplementary Text S1.  Data and methods 
 

Here we use classical monthly datasets : Optimum Interpolation SST OISSTv2 
based on in situ observations and satellite measurements for the recent period (November 
1981-Mar2022; Reynolds et al. 2002), HadiSSTv1.1 SST (1870-Mar2022; Rayner et al. 
2003; similar results with SST from ECMWF ORAS5 oceanic reanalysis extended 
version over 1959-2018; Zuo et al. 2019) when using longer ORAS5 SLA/Z20, CMAP1 
precipitation (from 1979; Xie and Arkin 1997), and windstress from the latest ECMWF 
ERA5 atmospheric reanalysis (from 1979 also; Hersbach et al. 2020; using former ERA-
Interim reanalysis giving similar results; not shown).  

We mostly use SLA as an accurate proxy of thermocline depth/OHC anomalies 
(e.g. Rebert et al. 1985; Gasparin and Roemmich 2017; Palanisamy et al. 2015), 
measured from satellites (1993-mid2021; Copernicus product), allowing a better and 
more homogeneous spatio-temporal sampling than the usual 20ºC isotherm depth 
Z20. We also verified that the results are robust with sensitivity tests shown in 
Supplementary Tables S1, S2 and S3 and Supplementary Figures S2, S6, S7, S8 and S10. 
Results are  similar at 1st order with SLA, OHC and Z20 in ORAS5. For SLA, we 
subtract the 60°S-60°N global average at each time step to remove sea level rise global 
trend due to global warming, and we also remove any additional regional trend through a 
linear regression (results are similar without detrending). 

For the ENSO index, TE, we use the usual Niño3.4 region (170°W-120°W, 5°N-
5°S), a reasonable compromise to capture central Pacific as well as eastern Pacific ENSO 
events (e.g. Takahashi et al. 2011, Capotondi et al. 2015; the present study focusses on 
typical ENSO events and neglect 2nd order spatial diversity). We define TE as Niño3.4 
relative SST (RSST, i.e. SST minus its 20°N-20°S tropical mean), as recommended by 
Izumo et al. (2020) and Van Oldenborgh et al. (2021) because atmospheric tropical deep 
convection interannual anomalies are rather related to RSST than to SST, notably in the 
presence of external forcing  (see also Johnson and Kosaka 2016; Khodri et al. 2017; 
Izumo et al. 2018b; Williams and Patricola 2018, and Okumura 2019). The deep 
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convection threshold SST>~27-28°C (e.g. Gadgil et al. 1984) translates into 
RSST>~1°C, a threshold that remains valid with global warming  (e.g. Johnson and Xie 
2010). See Supplementary Text S3 for an extensive discussion justifying the relevance of 
RSST for RO equations. 

TE is normalized (divided by its standard deviation; STD), so that a 1-value 
represents typical ENSO amplitude. h is normalized when a regional average is done (e.g. 
usual 5°N-5°S, 120°E-80°W for heq and 5°N-5°S, 120°E-155°W for hw), but not when 
taken at each (x,y) point, so that related regression maps represent typical anomalous 
amplitudes (cm for SLA, m for Z20). Using SST instead of RSST, or Nino3 instead of 
Nino3.4 region, makes TE slightly less correlated to equatorial Pacific τx (i.e. ocean-
atmosphere coupling), confirming that Nino3.4 RSST is a relevant choice. They anyway 
lead to very similar results, with slightly weaker skills when using Nino3 (Suppl. Table 
S2 and Suppl. Text S3). 

Here we use typical statistical methods. The monthly seasonal cycle (computed by 
averaging each month of the year over the full period) is removed and intraseasonal 
variations are filtered out by a 4-month Hanning filter (3-point Hanning filter in pyferret 
software for monthly time series), so that periods lower than ~2-3 months are removed. 
For ORAS5 long analysis over its full period 1959-2018, we use in addition to the 
intraseasonnal low-pass filter a highpass Hanning filter (14-year window; i.e. 7 years cut 
on each side) to remove interdecadal variability with cutting frequency at ~10years 
(results are robust without this highpass filter, with just some increased interdecadal 
noise). Coefficients obtained from multivariate linear regression fits are shown multiplied 
by the STD of their multiplying variable (h or hind, cf. section 3), so as to represent 
typical amplitudes (STD(TE) is already 1).  

For statistical significance, we use Steigers Z-method for difference between two 
dependent correlations from a single sample (Hotelling William method giving similar 
results; https://www.quantitativeskills.com/sisa/statistics/correl.htm) and typical two-
tailed Student t-tests for 90% confidence intervals. Using formulae (30) of Bretherton et 
al. (1999), we have about one effective degree of freedom every 4 months, i.e. ~85 for 
1993-mid2021 (~140 for filtered ORAS5 data), a sufficiently large number leading 
usually to strong statistical significances of the results. 

Here we explain how to obtain hind_eq+sw in details (and give the K dependance to 
data chosen for h) : 1) average over eq+SW box SLA (using h(x,y,t) ~ SLA(x,y,t), 
detrended, smoothed, with seasonal cycle removed, cf. section 2) and then normalize, 2) 
remove its dependent part KTE: hind_eq+sw = heq+sw – Keq+sw TE , TE being Niño3.4 relative 
SST anomaly (smoothed and normalized) with regression coefficient 
Keq+sw≈0.26[0.30/0.21] for satellite SLA[ORAS5_SLA/Z20] (Keq+sw is conveniently 
already small thanks to sw addition to eq region, conversely to usual eq and w regions, for 
which Keq=+0.70[+0.68/+0.38] and Kw=-0.40[-0.36/-0.51] respectively). 
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Supplementary Text S2. Discussion on the mechanisms behind TE and hind tendency 
equations 
 

Here we explain physically and mathematically the spatial patterns of Fig. 2’s 
various panels, very robust among datasets and periods (cf. Suppl. Fig. S2). And why 
there are similarities among some of them.  

F2 map shows us how hind(x,y,t) would look like if ENSO windstress anomalies 
would blow for a long time, e.g. because of long-lasting La Niña conditions 
(mathematically because the temporal integral of dhind/dt equation (6) corresponds to the 
regression of hind(x,y,t) onto the temporal integral of TE, as ε is negligible). The slow 
recharge in the western and central equatorial Pacific is consistent with former EOF 
analyses (e.g. Meinen and McPhaden 2000, Alory and Delcroix 2002, Clarke et al. 2007,  
Clarke 2010, Kumar and Hu 2014). As mentioned in the main manuscript, this western 
and equatorial recharge is through: 1) downwelling equatorial Rossby waves to the west 
(Wyrtki 1985, Jin 1997ab), and off-equatorial ones in the southwest; 2) upwelling 
equatorial Kelvin waves to the east forcing coastal Kelvin waves propagating poleward 
along the eastern boundary and thus a leakage of negative OHC anomalies towards the 
poles along the eastern boundary (Wyrtki 1985, Izumo et al. 2018a; vice versa for El 
Nino case). The recharge has also been suggested to be through Sverdrup transport 
towards the equator (Jin 1997a,b) but this is now debated (Clarke 2010; Zhu et al. 2018; 
Izumo et al. 2018a). Whatever the mechanisms, they are all formally well represented at 
1st order by the term -F2TE. 

Concerning the recharge meridional asymmetry with a larger recharge in the 
southwest, it is caused by Ekman pumping asymmetry, but not by the western boundary 
coastline meridional asymmetry, as mentioned in the main manuscript. This asymetrical 
Ekman pumping is mainly due south of ~7°S to windstress curl related to a poleward 
shift of the SPCZ (Suppl. Fig. S3). It forces locally downwelling (in the La Niña case) 
and thus slow off-equatorial downwelling Rossby waves progressively recharging the 
southwestern Pacific (see also Alory and Delcroix 2002; Cibot et al. 2005).  

 

F1 physically represents the slow recharge mode influence on TE. F1 tends to have 
a similar pattern to F2, statistically because hind tends to co-vary in the west and 
southwest Pacific (as the spatial pattern of ENSO-related windstress remains at first order 
similar among ENSO events. Physically, the thermocline depth deepening related to a 
recharge (La Niña case) favors positive TE through the thermocline feedback in the 
central Pacific (where coupling with convection is large; Clarke et al. 2007) and eastern 
Pacific (Wyrtki 1985, Jin 1997ab). Southwest and equatorial thermocline deepening can 
also increase transport-weighted temperatures Tconv and TEUC of STCs (Shallow 
Subtropical/Tropical meridional overturning Cells) lower branches, and consequently TE: 
the meridional pycnocline convergence Tconv (knowing that pycnocline convergence is 
larger in the southwest than in the northwest) and the equatorial undercurrent (EUC) TEUC 
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(e.g. Izumo 2005, Ballester et al. 2015, 2016ab). As Tconv and TEUC anomalies are at 1st 
order proportional to h (Izumo 2005), we would have these terms in the dTE/dt equation: 

f_conv* Tconv = f_conv* c*h_eq+sw = F1_conv* h_eq+sw  = F1_conv*hind_eq+sw + KF1_conv*TE 

f_EUC* TEUC = f_EUC* c*h_eq+sw = F1_EUC* h_eq+sw  = F1_EUC*hind_eq+sw + KF1_EUC*TE 

So their influences on TE can also be formalized as a term linearly proportional to 
hind_eq+sw plus one related to TE. Thus they are implicitly included in the final term F1. 

The off-equatorial downwelling Rossby waves associated with the southwest 
Pacific recharge propagate to the western boundary coastal wave guide and then to the 
equatorial wave guide as Kelvin waves. They can also increase TE through the 
thermocline feedback and STCs transport-weighted temperatures. Whatever the relative 
contributions of these mechanisms, their influences on TE are implicitly included in F1. 

 
 
Supplementary Text S3. Discussion on the choice of relative SST 
 

Here we discuss the insensitivity of the results to our choice of using relative SST 
rather than usual SST. First of all, we have verified that the results are almost similar 
whatever the choice of SST or relative SST, with similar skill rTe,h_ind (table S1): the skill 
differences are really weak, of ~0.01, not statistically significant at a high level, and 
much weaker than the skill improvement from former usual indices to hind_eq+sw. 

If we go into details, there are some subtle 2nd order differences in the maps (not 
shown). For Nino3.4 SST, we have slightly less weight on central-eastern equatorial 
Pacific for dependent component (as compared to Fig. 1e), i.e. the fast mode is not 
removed as efficiently, being essentially forced by equatorial Pacific τx_eq, which is more 
related to RSST through atmospheric deep convection. Indeed, the correlation between TE 
and τx_eq is 0.80 (i.e. explained variance of 64%) instead of 0.75 (57%) when using 
Nino3.4 RSST instead of Nino3.4 SST (and 0.75 (56%) instead of 0.71 (51%) for Nino3 
region).  

SST is theoretically the variable directly driven by the recharge process represented 
by the term F1*h in the dTE/dt equation. Yet, the recharge process is driven by 
windstress, which is itself directly driven by atmospheric deep convection and thus by 
RSST. Therefore, Nino3.4 RSST is better than usual SST for the term F2*TE in the dh/dt 
equation. Hence, theoretically, both choices could be considered. 

Yet, in practice, RSST is what matters for ENSO global impacts through 
teleconnections and better captures coupled ocean-atmosphere anomalies related to 
ENSO (Okumura 2019; Izumo et al. 2020; Van Oldenborgh et al. 2021), especially with 
external forcing such as global warming (e.g. Vecchi and Soden 2008; Johnson and Xie 
2010) or volcanic forcing (Khodri et al. 2016; Izumo et al. 2018b). Thus RSST is the 
variable we want to diagnose and possibly forecast seasonally. This is why we have 
chosen RSST.   
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rTe,h_ind skill 
Comparing 
satellite/ORAS5 

Sat. SLA 
(1993-2021) 

Sat. SLA 
(1993-2018) 

ORAS5 SLA 
(1993-2018) 

ORAS5 Z20 
(1993-2018) 

ORAS5 OHC 
(1993-2018) 

from 1993 0.69 0.68 0.66 0.71 0.65 
      
Comparing 
SLA/Z20/OHC 
in ORAS5 

SLAfilt Z20filt SLA Z20 OHC 

from 1959  0.66 0.72 0.63 0.65 0.60 
      
Testing ENSO 
indices 

Sat. SLA 
(1993-2021) 

ORAS5 SLA ORAS5 Z20 ORAS5 
SLAfilt 

ORAS5 
Z20filt 

Nino3.4 RSST  0.69 0.64 0.67 0.66 0.72 
Nino3.4 SST  0.70 0.65 0.66 0.68 0.72 
Nino3.4 RSST  0.65 0.62 0.66 0.66 0.72 
Nino3.4 RSST  0.66 0.63 0.65 0.64 0.72 

 
Suppl. Table S1. Comparison of the rTe,h_ind skill (using optimal hind_eq+sw) between various data 
and fields, filtering and ENSO indices. Upper rows: comparison between satellite and ORAS5 
on the same period, from 1993. Central rows: skill stable over the long period 1959-2018 using 
ORAS5, with interdecadal variations filtered out (‘filt’) or not. Bottom rows:  verifying equivalence 
between ENSO indices. We have also verified the non-sensitivity to SST datasets: e.g. ORAS5 
SST leads to almost no change (here we use OISST for recent periods and HadiSST for long periods 
from 1959). 
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Comparison for 
satellite SLA 
(1993-2021) 

R  F1 F2 ε 

hw 0.06±0.04 0.15±0.04 0.15±0.04 0.06±0.04 
heq -0.18±0.05 0.25±0.05 0.25±0.05 -0.18±0.05 
heq+sw -0.05±0.03 0.18±0.03 0.18±0.04 -0.05±0.04 
     
hind_w 0.00±0.04 0.13±0.04 0.13±0.04 0.00±0.04 
hind_eq 0.00±0.04 0.16±0.04 0.17±0.04 0.00±0.04 
hind_eq+sw 0.00±0.04 0.18±0.04 0.18±0.04 0.00±0.04 
     
Comparison 
with ORAS5  
(for hind_eq+sw) 

    

ORAS5 SLA 
(1993-2018) 

0.00±0.02 0.17±0.02 0.17±0.02 0.00±0.02 

ORAS5 SLAfilt 
(1959-2018) 

0.00±0.03 0.16±0.03 0.16±0.03 0.00±0.02 

ORAS5 Z20filt 
(1959-2018) 

0.00±0.03 0.16±0.03 0.16±0.02 0.00±0.02 

 
Suppl. Table S2. Regression coefficients robustness. The sensitivity tests here show that, when 
using independent hind instead of usual h, values of the regression coefficients become stable for 
different recharge indices, data, fields (SLA and Z20) and periods: F1~F2~0.16 to 0.18 ± 0.03, 
R~ε~0.0 ± 0.03 (for normalized indices, i.e. unit in month-1). 
Note that the RO, even if theoretically undamped as R and ε are negligible, is actually still damped 
because residualT (equation 6) is not a pure red noise but includes non-linear terms neglected in 
our 1st order linear approximation. Indeed, if we add to the TE tendency equation a simple non-
linear term cTE

2 (quadratic term notably related to the non-linear response of convection to TE; e.g. 
Jin et al. 2020; see An et al. 2020 review on more complicate possibilities, e.g. a multiplicative 
noise, see e.g. Jin et al. 2007, Graham et al. 2015, their equation (23)), the fit gives c=+0.05±0.03 
and R= -0.01±0.03 month-1. R becomes weakly negative (not at 90% level but robust for longer 
ORAS5 SLA and Z20; not shown), suggesting that the oscillator is weakly damped. 
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 rTe,h_ind skill a (IOD) b (hind) c (TE) 
For satellite 
SLA (1993-
2022): 

    

hind_eq  0.50 -0.55±0.36 0.24±0.28 0.30±0.36 
hind_eq+sw 0.58 -0.48±0.34 0.39±0.26 0.26±0.34 
For ORAS5 
SLAfilt (1966-
2011):  

    

hind_eq  0.54 -0.50±0.28 0.32±0.21 0.10±0.28 
hind_eq+sw 0.60 -0.43±0.27 0.42±0.20 0.05±0.26 
For ORAS5 
Z20filt (1966-
2011):  

    

hind_eq  0.65 -0.43±0.25 0.48±0.19 0.05±0.25 
hind_eq+sw 0.68 -0.40±0.25 0.52±0.18 0.03±0.24 

 

Suppl. Table S3. 14-month lead hindcasts. 14-month lead hindcasts of TE in NDJyr1 (November 
of year 1 to January of year 2) using   a*IOD+b*h_ind+c*Te in SONyr0 (September to November 
of year 0), with coefficients a, b, c of the multivariate linear regression estimated from least-
square fit.  
Main messages of table S3 are: 
1) adding the Southwest box (5ºS-15ºS, 120ºE-170ºW) improves the skill for all datasets/periods, 

more clearly for SLA than for Z20. 
2) ORAS5 Z20 skill is better than ORAS5 SLA one, suggesting that thermocline depth metrics 

could perform better in a perfectly-observed ocean. Yet SLA has the advantage of being 
observed by satellite in near real-time, and the additional advantage of being more available in 
climate models outputs (e.g. CMIP) than Z20.   

3) we have statistically-significant contributions from hind_eq+sw and IOD, but not from TE itself 
(the IOD contribution a is always significantly negative, while the coefficient c for ENSO 
itself is never significant at 90% level). Hence this improved recharge index with updated 
datasets confirms earlier studies emphasizing the IOD influence on following year’s ENSO 
phase (Izumo et al. 2010, 2014, 2016, Dayan et al. 2014, Jourdain et al. 2016). Regression 
coefficients have qualitatively similar values among datasets/periods.  
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Suppl. Fig. S1. Respective contributions of the rTe skill and rh_ind skill to the rTe,h_ind skill. a) 
correlation skill rTe for the regression of dTE/dt onto (Te(t),hind(x,y,t)) (equation 4). b) same but for 
rh_ind for the regression of dhind/dt. They both contribute to the skill rTe,h_ind shown in Fig. 2k for the 
tendency equation of the vector (Te,hind), since we can  show that rTe,h_ind

2 ≈ (rTe
2 + rh_ind

2 )/2 for 
normalized vectors, as TE and hind are by definition uncorrelated, and as their tendencies are also 
almost uncorrelated (<0.1). Note that rTe tends to have a similar spatial pattern to rh_ind, but of 
stronger amplitude (though with also relatively larger central-equatorial values). The similarity of 
the spatial patterns, notably with the strong skill in the west and southwest Pacific, is likely because 
hind tends to vary in phase in the west-central equatorial Pacific and southwest tropical Pacific (cf. 
Supplementary Text S2). rTe tends to be of larger amplitude than rh_ind, partly because dTE(t)/dt is 
less noisy (TE being a box average) than dhind(x,y,t)/dt, which is for each (x,y) point. The pair 
(Te(t),hind(x,y,t)) can thus more easily explain dTE(t)/dt variance than dhind/dt variance. 
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Suppl. Fig. S2. Equivalent (partly) to Fig. 2 (based on 1993-2021 satellite SLA) but for ORAS5 
(60-yr long period 1959-2018), comparing SLA (left), OHC (middle) and Z20 (right). First 
upper-left panel is the skill map, as Fig. 2k. 2nd upper panel is the regression of h onto TE (the fast 
mode), as Fig. 1b. Panels of 2nd and 3rd row panels are for usual non-orthogonal (TE,h) basis, as Fig. 
2a,b,e,f. Panels of 4th and 5th rows are for orthogonal (TE,hind) basis, as Fig. 2c,d,g,h. SLA is as in 
Fig. 2 in cm. OHC is the oceanic heat content from ocean surface to bottom in J. Z20 is the 20ºC 
isotherm depth in m.  
Main messages of figure S2 are: 

1) ORAS5 SLA gives similar results to satellite SLA (we have also tested the sensitivity to 
the periods chosen: ORAS5-based maps are similar for 1959-2018 and shorter 1993-2018 
period). 

2) SLA, OHC and Z20 are qualitatively similar, with some differences in patterns and in the 
correlation between TE and h. OHC spatial patterns tend to be in between SLA and Z20 
patterns, but the skill is weaker.   Note that lag-0 correlation with TE is weaker for Z20 than 
for SLA, possibly because of 1st baroclinic mode playing more role for Z20 than for SLA, 
which will be more influenced by higher modes, notably the 2nd baroclinic mode (not 
shown). These different  baroclinic mode contributions could partly explain some 
differences in results between Izumo et al. (2018a) study, based on the LCS model that 
take into account several baroclinic modes, and Neske and McGregor (2018) study based 
on a shallow water model, which only simulates the 1st baroclinic mode. 
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Suppl. Fig. S3. ENSO asymmetrical Ekman pumping. a) Zonal wind stress τx (color, N.m-2), 
precipitation (contours, mm.day-1) and wind stress τ (vectors) regressed on TE. b) Regression of the 
150°E-140°W zonal mean of Ekman pumping (black, 10-5m/s) on TE, and Ekman pumping 
decomposition into its wind stress curl (red) and beta τx (green) terms, only defined out of the 5°N-
5°S equatorial band (shown by vertical lines).  
In the southern hemisphere, the decomposition shows that south of ~7°S, the wind stress curl term 
is the main contributor to Ekman pumping, while north of ~7°S, the beta term is also important.  
Hence, Ekman pumping asymmetry is mainly due to wind stress curl (curl itself mostly due to -
dτx/dy; not shown), with some added asymmetry from beta τx term (Yokoi et al. 2008), large 
between ~7°S and 5°S.  
Note that the western boundary coastline meridional asymmetry would conversely favor a larger 
northwest recharge, as shown by an LCS (Linear Continuously Stratified model; McCreary 1980) 
idealized experiment with a symmetric zonal wind stress forcing (Izumo et al. 2018, their Fig. 5). 
We have done a similar experiment, but with a more realistic ENSO-like asymmetric windstress 
(with easterlies shifted to the south during La Niña, plus a reversal to westerlies at ~15°S, related 
to a poleward shift of the SPCZ (vice versa for El Niño case, cf. Suppl. Fig. S3a; see also Alory 
and Delcroix 2002; Cibot et al. 2005; McGregor et al. 2013). This asymmetry indeed favours a 
larger southwest recharge (not shown). 
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Suppl. Fig. S4. Regression maps of h(x,y,t) or hind(x,yt) onto h(t) or hind(t) indices. Spatial 
patterns associated with heq (left column), hW (middle column) and heq+sw (right column) look 
significantly closer for hind (2nd and 4th rows) than for usual full h (1st and 3rd rows). I.e. hind 
harmonizes recharge metrics, making indices converge. First two rows are based on satellite SLA,  
the last two on ORAS5 Z20filt. 
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Suppl. Fig. S5. Harmonizing the various recharge indices by using hind. Indices are much better 
correlated for independent component than for full signal: 
r(hind_eq,hind_w)= 0.79 (r2=62%) instead of 0.18 (3%)  
r(hind_eq,hind_eq+sw)= 0.91 (82%) instead of 0.79 (62%) 
r(hind_w,hind_eq+sw)= 0.88 (78%) instead of 0.67 (44%) 
This confirms that using hind, i.e. removing the dependent component, helps in reconciliating and 
harmonizing the various recharge indices used in the literature. Furthermore, hind_eq+sw is close both 
to hind_eq and hind_w (results shown here for satellite SLA). 
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Suppl. Fig. S6. Comparing a) ORAS5 SLA (red) with satellite SLA (black), and b) SLA (red), 
Z20 (green) and OHC (blue) in ORAS5 (lower), for hind_eq+sw index (shown from 1993). Panel a 
validates ORAS5 SLA, highly correlated (r=0.97; r2=95%) to observed satellite SLA for hind_eq+sw 
(and also for hind_eq and hind_w; not shown; ORAS5 shown here without high-pass decadal filter here 
for comparison with satellite SLA; note that ORAS5 may not be as good before 1993 before which 
the reanalysis does not assimilate satellite sea level observations).  Panel b shows that, in ORAS5, 
SLA is highly correlated to Z20 (r=0.94; r2=88%) and OHC (r=0.96; r2=92%), i.e. SLA, Z20 and 
OHC are almost equivalent for hind_eq+sw (and also for hind_eq and hind_w ; not shown).  
Note that using hind instead of full h also harmonizes SLA-based and Z20-based metrics: e.g. 
the squared correlation between SLA-based heq and Z20-based heq is r2=81% (88%) instead of 72% 
(81%). Adding the Southwest further increases r2 to 85% (0.90) for full heq+sw and even to 88% 
(0.92%) for independent hind_eq+sw. The r2 value is given over the 1993-2019 period (in parenthesis 
if whole ORAS5 period with decadal filter applied).  
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Suppl. Fig. S7: as Fig. 3, but for satellite SLA over its shorter available period (1993-2021).  
 

 
 
Suppl. Fig. S8. As Fig. 3, but for ORAS5 Z20filt. Results are robust, with only 2nd order 
differences. E.g. extreme El Niño events cause a weaker discharge in Z20 than in SLA (and thus a 
weaker El Niño/La Niña asymmetry). Hence, bottom panels look even more circular and closer to 
ideal RO trajectories when using Z20 instead of SLA (and when removing decadal variability, done 
here). 
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Suppl. Fig. S9. Finding the best averaging box for hind to optimize both TE and hind tendency 
equations of RO. Panel a is almost similar to Fig. 2j, showing the optimization of the eastern edge 
longitude. The black line shows the skill rTe,h_ind for hind averaged over: the equatorial band (5°N-
5°S) with its western edge fixed to 120°E and its eastern edge varying, given by the x-axis. The 
black line shows that the optimal eastern edge for the equatorial band is at equatorial Pacific eastern 
boundary, 80ºW. Red line is for a two-rectangle region, this classical equatorial box (5°N-5°S, 
120°E-80°W) plus a southern 5°S-15°S box with the same western edge fixed at 120°E and its 
eastern edge varying. Its optimal is around 170ºW (indicated by a dashed black vertical line, i.e. 
eq+sw region). The green and blue lines are similar to the red line, but specifically for rTe and for 
rh_ind respectively. Panel c shows the associated lag-0 correlation between TE and h, for the same 
regions as the black and red lines in panel a. The lag-0 correlation interestingly is almost the lowest 
for the optimal eq+sw region. This is an additional interest of this region, e.g. the difference 
between hind_eq+sw and heq+sw is much weaker than between hind_eq and heq. Concerning the western 
edge longitude, the optimal is around 100ºE-120ºE, so we have kept 120ºE to stay in Pacific, as 
Meinen and McPhaden (2000) choice. Right panels are showing the optimization of the latitudinal 
edges of the hind two-rectangle averaging region. The black line is for the southern edge of the 
southwest rectangle (120ºE-170ºW, 5ºS to ysw indicated in horizontal axis, the other region being 
fixed to the classical equatorial box 5°N-5°S, 120°E-80°W). ysw optimum is around 16-12ºS (cf. 
black dashed vertical line at 14ºS), confirming that 15ºS is a good simple choice. The green line is 
for the southern edge of the equatorial band rectangle (120°E-80°W; 5ºN-yeqS, the southwest region 
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being 120ºE-170ºW, 15ºS to yeqS). The optimum is around 6-2ºS, confirming that 5ºS is a good 
simple choice. The red line is for equatorial band northern edge (120°E-80°W; 5ºS-yeqN, the 
southwest region being 120ºE-170ºW, 15ºS to 5ºS). The optimum is around 2-6ºN, confirming that 
5ºN is a good simple choice. Note that theoretically, we could even do a multivariate optimization. 
We have done some tests that confirm our choice (e.g. if ysw=14°S, yeqS=4°S and yeqN=3°N, skill is 
0.70, only slightly larger than 0.69 for 15°S, 5°S,5°N, both skills being much higher than 0.61 for 
classical heq), within the range of uncertainties (e.g. differences between satellite SLA shown here 
and ORAS5 Z20filt in next figure). All these analyses confirm that the optimal, and still simple, 
region combines the classical equatorial band (5ºS-5ºN, 120ºE-80ºW) and the southern band 15ºS-
5ºS, from 120ºE to about 170ºW, i.e. hind eq+sw. 
 
 

 
 
Suppl. Fig. S10. Same as S9ab (based on satellite SLA) but using ORAS5 SLAfilt (upper) or 
ORAS5 Z20filt (lower). Upper panels show that ORAS5 SLA results are consistent with satellite 
ones, with similar optimal longitude and latitudes (skill overall slightly weaker). Lower panels 
show that Z20 is overall consistent with SLA, with however less sharp latitudinal edges and an 
optimal eastern edge of southwest rectangle  at ~155ºW instead of ~170ºW. But the difference 
between these two longitude choices is in fine not significant anyway (almost similar skill, and 
correlation of 0.99 between the two definitions). Therefore, SLA and Z20 are almost similar for  
hind_eq+sw (correlation of 0.96, cf. Fig. S6b). 


