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Additional figures24

Fig. S1. Change in 1 hr daily maximum (DM) NO2 in 2020 relative to the average of 2015 to 2019 at the California Air Resources Board sites throughout the South Coast Air

Basin.

Fig. S2. Change in 8 hr daily maximum (DM) O3 in 2020 relative to the average of 2015 to 2019 at the California Air Resources Board sites throughout the South Coast Air

Basin.
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Sites are ordered by longitude (from west to east)

Fig. S3. Average derivatives of O3 response vs. temperature between May and September at California Air Resources Board sites throughout the South Cost Air Basin for

years 2015–2020. Each group of bars is one site, and are ordered by longitude (west to east).
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Fig. S4. (a) Maps of CO column abundance (XCO) in excess of the background in the Los Angeles (LA) basin averaged for the month of April. Left panel (Normal): April

noontime average for 2012-2019. Right panel (COVID-19): April 2020 during lockdown. These maps are interpolated from the 33 surface observation targets by CLARS-FTS;

(b) The histogram of difference between XCO excess measurements in (a) for all the surface observation targets. The averaged XCO excess reduction is 37.5% on average

due to the lockdown order.
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Fig. S5. Average change in gas ratios for March 2020 between a model simulation using business as usual (BAU) NOx emissions and one using emissions based on NO2

observations for March 2020 (COVID-19). The gas ratio is described in Eq. (1); a value < 1 indicates NH3 limited nitrate aerosol formation; a value > 1 indicates NOx

limited aerosol formation.
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Fig. S6. Same as Fig. S7, but for April 2020.
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Fig. S7. Same as Fig. S7, but for May 2020.

Supporting Information Text25

Methods26

Public data. All public datasets used in this study are shown in Table S1.27

Equivalent Emissions Year Calculations. For the CO2 emissions in Fig.2a, we used 2005-2018 fossil fuel emissions from the28

Global Carbon Budget 2019 (12). For 2019, we assumed a +0.1% increase from 2018 based on Supplementary Data in Le29

Quere et al (13). For 2020 we used a 7% decrease from the 2019 value with a ± 1% uncertainty, based on Le Quere et al30

(13) and Liu et al (14). The 2020 emissions are 9.29 (± 0.10) GtC/yr; this corresponds to somewhere between 2010 (9.0531

GtC/yr) and 2012 (9.50 GtC/yr). For CH4, we use the anthropogenic emissions based on the EDGARv4.3.2 and GFED4.1s32

emissions inventories as published in the Global Methane Budget 2000-2017 (15). The emissions trajectory beyond 2017 is for33

illustrative purposes only and is not based on any data. For the global NOx emission trajectory in Fig. 2 we used 2005-202034

emissions from the assimilation system described in the subsection “Global ozone production efficiency calculation” below. The35

equivalent year of 1999 ± 3.5 years was determined by applying the percent reduction between the average emissions over36

2010-2014 and the 2020 emissions as determined by the assimilation system (-15.8%) to the 2010-2014 emissions from the37

CEDS and EDGAR5.0 inventories.38

For Fig 2b, we again used the NOx emissions from the assimilation system. For countries whose emissions have been39

monotonically increasing since 2005, we calculate the prior year with the same emissions as 2020. For countries whose emissions40

decreased over all or part of the 2005-2019 period, we use the 2015-2019 rate of decline to project emissions into the future.41

Human activity metrics. The human activity metrics in Fig. 3 include the Oxford Coronavirus Government Response Index42

(1), Opensky-derived flight data (2, 16, 17), Port of LA container moves (https://www.portoflosangeles.org/business/statistics/43

container-statistics, last accessed 30 Oct 2020), Port of Oakland container moves (https://www.oaklandseaport.com/performance/44

facts-figures/, last accessed 30 Oct 2020), Caltrans PeMS daily vehicle counts (http://pems.dot.ca.gov/, last accessed 28 Oct 2020),45

Apple driving mobility data (https://covid19.apple.com/mobility, last accessed 28 Oct 2020), and U.S. Energy Information Agency46

electricity consumption (https://www.eia.gov/electricity/data/browser/#/topic/, last accessed 10 Aug 2020).47

The CAADA Python package (18) was used to preprocess the PeMS vehicle counts and Strohmeier et al. (2) flight data,48

as well as download Port of LA and Port of Oakland container moves. For the purposes of Fig. 3, “Bay Area” is defined as49

Alameda, Contra Costa, Marin, San Mateo, San Francisco, Santa Clara, and Santa Cruz counties, while “LA” is defined as Los50

Angeles, Orange, Riverside, San Bernardino, Santa Barbara, and Ventura counties. For flight data, shipping data, and traffic51

data, daily values were normalized such that 15 Jan 2020 is 100% and monthly values were normalized such that Jan 2020 was52

100%. For electricity use data, each month’s value is the 2020 use as a percentage of 2019 use in the same month.53
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Dataset Used for Link Last access Citation

Oxford Stringency Index Human activity metrics https://www.bsg.ox.ac.uk/research/research-projects/

coronavirus-government-response-tracker

11 Nov 2020 (1)

OpenSky-derived flight data Human activity metrics https://zenodo.org/record/3928564 11 Nov 2020 (2)

Port of Oakland container moves Human activity metrics https://www.oaklandseaport.com/performance/

facts-figures/

11 Nov 2020

Port of LA container moves Human activity metrics https://www.portoflosangeles.org/business/statistics/

container-statistics

11 Nov 2020

Port of Long Beach container moves Human activity metrics https://www.polb.com/business/port-statistics/

#teus-archive-1995-to-present

10 Nov 2020

Caltrans PeMS Human activity & SF emissions https://pems.dot.ca.gov/ 11 Nov 2020

Apple mobility trends Human activity metrics https://covid19.apple.com/mobility 27 Oct 2020

US EIA electricity use Human activity metrics https://www.eia.gov/electricity/data/browser/#/topic/ 10 Aug 2020

CARB air quality data LA Basin analysis https://www.arb.ca.gov/aqmis2/aqdselect.php 11 Nov 2020

OMI NO2 columns Global model assimilation (OPE) http://www.qa4ecv.eu/ecv/no2-pre/data 11 Nov 2020 (3, 4)

TROPOMI NO2 columns Global model assimilation (OPE) http://www.tropomi.eu/data-products/nitrogen-dioxide 11 Nov 2020 (5)

MOPITT CO Global model assimilation (OPE) https://www2.acom.ucar.edu/mopitt 11 Nov 2020 (6)

OMI SO2 columns Global model assimilation (OPE) https://disc.gsfc.nasa.gov/datasets/OMSO2_003/

summary

11 Nov 2020 (7, 8)

MLS O3 Global model assimilation (OPE) https://mls.jpl.nasa.gov/products/o3_product.php 11 Nov 2020 (9, 10)

MLS HNO3 Global model assimilation (OPE) https://mls.jpl.nasa.gov/products/hno3_product.php 11 Nov 2020 (9, 11)

BEACO2N CO2 data SF CO2 emissions estimates https://beacon.berkeley.edu/ 11 Nov 2020

NOAA HRRR meteorology SF CO2 emissions estimates https://rapidrefresh.noaa.gov/hrrr/ 11 Nov 2020

Table S1. Public data sources used in this paper. The “Used for” column gives the part of the analysis in which that data was used.
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TROPOMI NO2 timeseries. For our analysis we re-grid the operational TROPOMI tropospheric vertical column NO2, with native54

pixels of approximately 3.5 × 7 km2 for 2019 and 3.5 × 5.5 km2 for 2020, to a newly defined 0.01◦

× 0.01◦ grid (approximately55

1 × 1 km2) centered over each of the three cities: Los Angeles, Lima, and Shanghai. Before re-gridding, the data are filtered so56

as to use only the highest quality measurements (quality assurance flag (QA_flag) > 0.75). By restricting to this QA value, we57

are removing mostly cloudy scenes (cloud radiance fraction > 0.5) and observations over snow-ice. Once the re-gridding has58

been completed, the data is binned temporally during a 15-day rolling timeframe and spatially over the metropolitan area,59

which we loosely define as a 1◦

× 1◦ box over the city center. The rolling 75th percentile of the binned data during the first five60

months of 2019 annd 2020 are shown in top row of Figure 4. There is some evidence that the current TROPOMI operational61

NO2 product may have a low bias of 20 to 40% in polluted areas; much of this bias may be attributed to the air mass factor62

(19–21). We limit our analysis to relative trends, which reduces this uncertainty.63

LA Basin AQ analysis. The hourly ambient temperature and concentrations of PM2.5, NO2, and O3 in the South Coast Air64

Basin for the period of 1 Jan 2015 to 30 Sept 2020 were downloaded from the California Air Resources Board Air Quality Data65

Query Tool (https://www.arb.ca.gov/aqmis2/aqdselect.php). It should be noted that the 2020 data are preliminary, unvalidated,66

and subject to change. The following steps were taken for data analysis:67

1. Only the monitoring sites that had complete data between 2015 and 2020 were considered in this analysis. Near-road68

monitoring sites were not included in the analysis. Figure S8 and Table S2 show the location of the monitoring sites69

considered in this analysis and the parameters measured at each site, respectively.70

2. For every date and site, the 1hr daily maximum (DM) temperature, 24hr average PM2.5, 1hr DM NO2, and 8hr average71

DM O3 were calculated.72

3. For every date, the average of the above-mentioned parameters was calculated across all monitoring sites. 7-day moving73

averages were then calculated and presented by day of year in Figure 4 for 2020 and the average (± range) of [2015-2019].74

The background colors in Figure 4 illustrate the difference between the 7-day moving average temperature in 2020 and75

the average (±1σ) temperature in [2015-2019] by day of year.76

4. Using the data in step 2, the percent change in monthly average concentrations of 1hr DM NO2 and 8hr DM O3 between77

2020 and the average of [2015-2019] was calculated by month and site as shown in Figures S1 and S2.78

Global ozone production efficiency calculation. We evaluated the seasonal and regional changes in the global tropospheric79

ozone response to COVID-19 NOx emissions using a state-of-the-art chemical data assimilation system. Anthropogenic80

NOx emission reductions linked to the COVID-19 pandemic were estimated as the difference between 2020 emissions and81

climatological (baseline) emissions for 2010-2019 estimated from our decadal chemical reanalysis constrained by multiple82

satellite measurements. The assimilation system uses the MIROC-CHASER global chemical transport model and an ensemble83

Kalman filter technique (22). This approach allows us to capture temporal and spatial variations in transport and chemical84

reactions in the emission and concentration estimates. The results for 2020 were used previously to evaluate the air quality85

response to Chinese COVID-19 lockdown (23), and show reasonable agreements with the observed concentrations from in-situ,86

ozonesonde, and satellite ozone measurements globally for 2005-2018 (23) as well as for 2020 (Miyazaki et al., paper in prep.).87

In order to evaluate seasonal and regional differences in the ozone response, the ozone production efficiency (OPE) was88

estimated based on model sensitivity calculations using the 2020 and baseline emissions for February-July 2020. The OPE was89

calculated using the simulated global tropospheric ozone burden changes corresponding to changing NOx emissions (i.e., the90

COVID-19 emission anomaly); the analysis was performed separately for each of the selected megacities. The model simulations91

were conducted from the beginning to the end of each month for the time period February to June, 2020, using the same initial92

conditions. The simulated tropospheric ozone burden averaged over the last 5 days of each month was compared between the93

simulations using the 2020 and baseline emissions. The analysis thus provides information on monthly changes in the ozone94

response (Tg) to reduced NOx emissions (Tg per year) for each megacity separately.95

PM2.5 simulations. We used the GEOS-Chem (v9-02) model with a bi-directional NH3 flux scheme (24) at the nested resolution96

of 0.3125◦

× 0.25◦ latitude to explore the sensitivity of inorganic aerosol formation to NOx emission reductions in Los Angeles97

(118.239° W, 34.052° N) during COVID-19. Our detailed O3-NOx-VOC-aerosol simulations were driven by Goddard Earth98

Observing System (GEOS-FP 5.22.0) assimilated meteorological fields and include anthropgenic/biogenic/biomass burning99

emissions (25–27), gas-phase chemistry (28) and inorganic aerosol partitioning (29), wet/dry depositions (30–32) and transport.100

We first scaled anthropogenic NOx and SO2 emissions from HTAP v2 (25) (originally for the year 2010) to the year 2017 using101

satellite-derived SO2 and NOx emission reduction ratios (33) as our base emissions, which refer to emissions before lockdown102

during COVID-19. We scaled our base anthropogenic NOx emissions in March by BAU/COVID monthly NOx emission ratios103

from Miyazaki et al. (23) as our BAU/COVID emissions. In the COVID-19 simulations, the NOx emissions started to decrease104

on March 1st.105

We calculated the gas ratio (34) using Eq. (1):106

gas ratio =
[NH3] + [NH+

4 ] − 2[SO2−

4 ]

[HNO3] + [NO−

3 ]
[1]107
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Fig. S8. Location of South Coast Air Basin monitoring sites included in this analysis.
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Site Temperature O3 PM2.5 NO2

Anaheim X X X X

Azusa X X X

Banning airport X X X X

Central LA X X X X

Compton X X X

Crestline X X X

Fontana X X X

Glendora X X X X

La Habra X X

Lake Elsinore X X X X

LAX X X

Mira Loma X X X X

Mission Viejo X X

Pasadena X X

Perris X X

Pico Rivera X X X

Pomona X X

Redlands X

Reseda X X X

Rubidoux X X X X

San Bernadino X X X

Santa Clarita X X X X

South Long Beach X

Upland X X X X

West LA X X

Temecula X X X

Table S2. Parameters used from each South Coast Air Basin monitoring site.
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[NH3], [NH+

4 ], [SO2−

4 ], [HNO3] and [NO−

3 ] are in units of molar concentrations (mol m−3) and include both gas-phase and108

aerosol-phase. This gas ratio is an indicator of NH4NO3 production sensitivity to NOx emission change and NH3 emission109

change. Values > 1 indicate that NH4NO3 production is NOx limited; values < 1 indicate it is NH3 limited.110

SF Bay Area CO2 emissions estimates. To derive top-down emissions, Turner et al. (35) used 12 weeks of observational data111

from the BEACO2N network (36) to estimate the most likely CO2 fluxes from the San Francisco Bay Area before and during112

the shelter-in-place order (6 weeks of data before and 6 weeks of data during). Specifically, they estimated hourly fluxes at113

900-m spatial resolution over the region and solved for posterior fluxes as:114

x̂ = xa + (HB)T
(

HBH
T + R

)

−1
(y − Hxa) . [2]115

x̂ (m × 1) is the posterior emissions, xa (m × 1) is the prior emissions, y (n × 1) is the BEACO2N observations, H (n × m)116

is the matrix of footprints from HRRR-STILT, R (n × n) is the model-data mismatch error covariance matrix, and B (m × m)117

is the prior error covariance matrix.118

Turner et al. (35) used meteorological fields from the NOAA High Resolution Rapid Refresh (HRRR), to drive the Stochastic119

Time-Inverted Lagrangian Transport (STILT) model, a Lagrangian particle dispersion model. Those trajectories were then120

used to construct measurement footprints (H), representing the sensitivity of the measurement to a perturbation in emissions121

from a given location. Their prior emissions were adapted from previous work (37) with a biosphere derived from TROPOMI122

SIF observations (38). Upwind concentrations were taken from NOAA observations in the Pacific or AmeriFlux observations in123

California, depending on the endpoint of the back trajectory.124

To derive bottom-up emissions, total hourly vehicle flow and percentage of trucks were retrieved from http://pems.dot.ca.gov125

from approximately 1800 traffic counting stations hosted by the Caltrans Performance Measurement System (PeMS) for126

January to June in 2019 and 2020. These sites encompass all highway sites within the 2020 footprint of the Berkeley Air127

Quality and CO2 Network (BEACO2N), as described in Turner et al. (35). These stations count vehicle flow using magnetic128

loops imbedded in roadways and estimate truck fraction using calculated vehicle speed and assumptions about vehicle length129

(39). For hours during which fewer than 50% of measurements were reported, we fill in total vehicle flow gaps by using linear130

fits to nearest neighbor sites and gaps in truck flow using hour-of-day-specific linear fits between neighboring sites. We calculate131

both car and truck vehicle miles traveled (VMT) for each highway segment during each hour using segment lengths obtained132

from the PeMS database. VMT for highway segments within the BEACO2N footprint are summed to obtain regional highway133

truck and car VMT for every hour. VMT is then converted to CO2 using fleet estimates for fuel efficiency.134

US CO2 emissions estimates. Fuel consumption data from the U.S. Energy Information Administration (EIA) is used to135

generate weekly (Sat-Fri) estimates of FFCO2 emissions between January 2005 and the week ending September 18, 2020. The136

input data includes all petroleum fuel consumption by fuel type, natural gas consumption by sector, and coal consumption137

by sector. These are organized into six fossil fuel consumption sectors: 1) gasoline-fueled transportation; 2) commercial138

surface transportation (i.e. land and water); 3) aviation; 4) electricity generation; 5) industrial energy consumption; and 6)139

residential/commercial energy consumption. Standard CO2 emission factors are applied to the individual fuel types to achieve140

FFCO2 emissions (40). To facilitate comparison to emission values in 2020, all time-series of FFCO2 emissions are detrended.141

Comparison of weekly FFCO2 emissions in 2020 are made to the long-term (2005 to 2019) weekly detrended median values and142

their associated 15-member ensemble distribution. Statistical significance is defined by departures that exceed a) the 1st/3rd143

quartile of the weekly ensemble distributions from 2005-2019, referred to as “partly significant” and b) the maximum/minimum144

distributions of the same weekly ensembles, referred to as “significant”. The latter criteria are considered akin to a 2-sigma145

boundary for Gaussian statistics.146

Global CO2 growth rate simulations. The Goddard Earth Observing System (GEOS) is a flexible modeling and data assimilation147

system that has been widely used to study atmospheric composition and the carbon cycle (41). It includes the capability to148

simulate CO2 concentrations in near real time by extrapolating previous year’s biosphere and ocean fluxes (42). Here, we149

also include tracers that separately quantify the atmospheric impact of daily differences in fossil emissions between 2020 and150

2019 using country-level estimates from Liu et al. (14) that are spatially disaggregated to ∼10-km using information from the151

Emissions Database for Global Atmospheric Research (43).152

Global CO2 emissions estimates. We calculated the daily global fossil CO2 emissions in 2020 (updated to August 31st), as well153

as the daily sectoral emissions from power sector, industry sector, transport sector (including ground transport, aviation and154

shipping), and residential sector respectively. The estimates are based on a set of near real time dataset including hourly to daily155

electrical power generation data from national electricity operation systems of 31 countries, real-time mobility data (TomTom156

city congestion index data of 416 cities worldwide and FlightRadar24 individual flight location data), monthly industrial157

production data (calculated separately by cement production, steel production, chemical production and other industrial158

production of 27 industries) or indices (primarily Industrial Production Index) from national statistics of 62 countries/regions,159

and monthly fuel consumption data corrected for the daily population-weighted air temperature in 206 countries.160
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