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Abstract42

Urban Land Surface Models (ULSMs) simulate energy and water exchanges between the43

urban surface and atmosphere. When part of numerical weather prediction, ULSMs pro-44

vide a lower boundary for the atmosphere and improve the applicability of model results45

in the urban environment compared with non-urban land surface models. However, ear-46

lier systematic ULSM comparison projects assessed the energy balance but ignored the47

water balance which is coupled to the energy balance. Here, we analyze the water bal-48

ance representation in 19 ULSMs participating in the Urban-PLUMBER project using49

results for 20 sites spread across a range of climates and urban form characteristics. As50

observations for most water fluxes are unavailable, we examine the water balance clo-51

sure, flux timing, and magnitude with a score derived from seven indicators. We find that52

the water budget is only closed in 57% of the model-site combinations assuming closure53

when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of54

the outgoing (all other) fluxes. Results show the timing is better captured than mag-55

nitude. No ULSM has passed all good water balance indicators for any site. Our results56

indicate models could be improved by explicitly verifying water balance closure and re-57

vising runoff parameterizations. By expanding ULSM evaluation to the water balance58

and related to latent heat flux performance, we demonstrate the benefits of evaluating59

processes with direct feedback mechanisms to the processes of interest.60

Plain Language Summary61

Urban environments have their own local climates including typically higher noc-62

turnal temperatures compared with rural areas. Ideally, modeling cities should capture63

their influences on the atmosphere above them. As the energy and water balances are64

linked by evaporation, a good water balance representation will support a good energy65

balance simulation. Focusing on the water balance, we find the water balance in mod-66

els could be improved by paying attention to closure and runoff.67

1 Introduction68

The impact of urbanization on the local climate and hydrology has sparked scien-69

tists’ interest and inspired research for centuries (e.g. Howard, 1833; Oke, 1982; Fletcher70

et al., 2013; Hamdi et al., 2020). With the increasing population in cities (United Na-71

tions, 2018) more people are impacted by increased heat stress and flooding (Heaviside72

et al., 2016; Gasparrini et al., 2017; Zhou et al., 2019; Botzen et al., 2020). Spatial mor-73

phological heterogeneity and human interactions make understanding the urban climate74

challenging (Kotthaus & Grimmond, 2014a; Sun et al., 2018; Koopmans et al., 2020; De-75

muzere et al., 2022), but weather and climate models need to include the effects of ur-76

ban areas, as they locally exacerbate extreme events (Oleson et al., 2008; Ronda et al.,77

2017; Hertwig et al., 2020). Examples are increased flooding due to high impervious frac-78

tions (Zhou et al., 2019) and increased heat stress during heat waves resulting from the79

high heat storage capacity (Lemonsu et al., 2015). Therefore, models need to capture80

the impact of urban areas on their climate.81

Researchers have developed, evaluated, and improved Urban Land Surface Mod-82

els (ULSMs) simulating the interaction of the urban surface with the atmosphere. Cou-83

pled with a numerical weather prediction or climate model, ULSMs serve as a lower bound-84

ary condition and improve the model performance for urban environments (Tewari et85

al., 2007). ULSMs make different simplifying assumptions regarding urban geometry:86

a single homogeneous, impervious slab; multiple, individually homogeneous slabs; two-87

dimensional canyons; or 3D streets with individual buildings (Grimmond et al., 2009).88

These models also differ in whether and how they include physical processes like anthro-89

pogenic heat, irrigation, and snow processes (Lipson et al., 2023a). To evaluate their per-90

formance, these models are compared with observations (e.g. Ross & Oke, 1988; Grim-91

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

mond & Oke, 2002; Hamdi & Schayes, 2007; Krayenhoff & Voogt, 2007; Porson et al.,92

2010). Although these individual evaluations were sometimes based on the same obser-93

vations (Grimmond et al., 2009), the lack of a systematic approach prevented consistent94

comparison of the schemes. To compare the wide variety of models, two successive com-95

parison projects applied a systematic approach. The first systematic comparison of ULSMs96

generally followed the PILPS protocol (project for intercomparison of land surface pa-97

rameterization schemes, Henderson-Sellers et al. (1996)), hence PILPS-Urban (Grimmond98

et al., 2010, 2011). Individual modelers received meteorological input and surface char-99

acteristics to enable them to run their models. In total, 32 models completed simulations100

for a site in Vancouver and one in Melbourne. Grimmond et al. (2011) concluded that101

increased model complexity did not necessarily benefit model performance.102

The second intercomparison, Urban-PLUMBER (Lipson et al., 2023a), assesses 30103

models initially at the PILPS-Urban Melbourne site and adopts benchmarks following104

the PLUMBER project (Best et al., 2015). Benchmarks serve as a relative reference, to105

which models are compared to assess whether a cohort performs better (or not) than the106

benchmark and if input information is utilized effectively. Urban-PLUMBER is extended107

to the 20 sites presented by Lipson et al. (2022a) in the second phase (Lipson et al., 2023b).108

The Urban-PLUMBER models outperform the PILPS-Urban ones for the sensible and109

latent heat flux. Some models representing two-dimensional canyons now perform nearly110

as well as one and two-tile models after efforts to improve hydrology and vegetation rep-111

resentation. However, models with complex urban geometry often still have relatively112

simple hydrology and vegetation and perform less well overall (Lipson et al., 2023a). Sug-113

gesting the representation of hydrology and vegetation requires more attention (Lipson114

et al., 2023a).115

Although PILPS-Urban and Urban-PLUMBER conclude vegetation and hydrology116

are important for model performance, neither project evaluates the water balance ex-117

plicitly. The water balance satisfies the conservation of mass (Lavoisier, 1789) in the same118

way the energy balance satisfies the conservation of energy (Châtelet, 1740). The con-119

servation of energy is forced in many ULSMs to prevent the energetic state of the model120

from drifting and the consequential, long-term bias in the modeled surface fluxes (Grimmond121

et al., 2010). Closure is achieved by either updating the surface temperatures based on122

the residual energy or restricting the turbulent heat flows to the available energy (Grimmond123

et al., 2010). Both PILPS-Urban and Urban-PLUMBER test whether models close the124

energy balance, but have not verified the numerical closure of the water balance. Sim-125

ilar to the energy balance, an unclosed water balance can result in model biases and con-126

sequential drifting. These biases may in turn affect the energy balance, as the energy and127

water balance are linked through evapotranspiration (ET ), the mass counterpart of the128

latent heat flux (QE). This direct link implies errors and/or biases in one balance will129

affect the model’s skill for the other balance. Recently, Yu et al. (2022) showed the hydrology130

in a coupled ULSM has the potential to improve the QE , humidity, and air temperature131

with impacts up into the boundary layer (∼1 km). ET/QE has been amongst the most132

challenging fluxes for ULSMs from the first assessment (Ross & Oke, 1988) until now (Grimmond133

et al., 2011). Given the link to the energy balance, closing the water balance may im-134

prove model performance for the energy balance fluxes.135

However, the water balance cannot be directly assessed because of a lack of obser-136

vations at the appropriate spatiotemporal scales at this time. While precipitation is mea-137

sured routinely in many urban locations with rain gauges and rain radars, runoff, irri-138

gation, and changes in water storage are not. QE (ET ) observations from eddy-covariance139

systems have substantial gaps introduced in the quality control process (Feigenwinter140

et al., 2012) that rejects more data close to rain events (Grimmond, 2006). Runoff is oc-141

casionally measured in urban catchments (Berthier et al., 1999; Walsh et al., 2005), but142

a challenge is posed by the difference in the source area of observations for runoff and143

eddy-covariance techniques (Grimmond & Oke, 1986, 1991; Hellsten et al., 2015). Ex-144
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ternal water use, often irrigation, further complicates the water balance in cities, as it145

mainly occurs at the micro-scale (e.g. garden irrigation). This scale can only be inferred146

from neighborhood piped water supply observations and water use surveys or estimated147

from weather, vegetation, and soil type (Grimmond & Oke, 1986; Mitchell et al., 2001;148

Zeisl et al., 2018; Kokkonen et al., 2018). Tree roots penetrate (sewer) pipes causing dam-149

age (Randrup et al., 2001) and simultaneously taking out water, which is an unobserved150

term. Lastly, measuring the water storage change is logistically difficult, as this requires151

the state of each individual element contributing to water storage in the city, such as soil152

moisture, interception, groundwater, and surface water. Thus, a direct comparison of a153

full set of water balance observations is extremely challenging and an alternative approach154

is needed.155

Here, we develop an alternative approach to evaluate the representation and dy-156

namics of the water balance in ULSMs. To examine the water balance closure, we pro-157

pose an UWBR (urban water balance representation) score. The score combines seven158

indicators assessing: water balance closure (1 indicator), ET (2), water storage dynam-159

ics (2), and surface runoff (2). The UWBR score is applied, given a lack of observations,160

to rank models’ capability to accurately capture different aspects of the water balance.161

Assessing the score of 19 Urban-PLUMBER ULSMs with a complete water balance rep-162

resentation helps to identify model improvement possibilities. The water balance rep-163

resentation is compared with the turbulent heat fluxes model skill since we expect a bet-164

ter water balance representation should improve simulated latent heat fluxes.165

2 Methods166

2.1 Urban water balance representation (UWBR) score167

The UWBR score is a linear sum of seven indicators of a good water balance, which168

are assigned a value of 1 if a specified threshold is passed (Table 1), except the IS,m in-169

dicator, for which both sub-metrics are assigned 0.5 if passed. No weights are assigned,170

as these cannot be determined objectively. The UWBR score is compared with the model171

performance for the latent heat flux assessed with metrics capturing different character-172

istics (Willmott, 1982) that are not entirely independent:173

• Absolute mean bias error (|MBE|) assesses the bias providing insight into how well174

the quantities of the latent heat flux are modeled.175

• Coefficient of determination (R2) captures the consistency of the timing as R2 de-176

creases with a shift in a quasiperiodic signal like the latent heat flux.177

• Normalized standard deviation (σnorm, σmodel divided by σobservations) compares178

the variability, which is dominated by the daily cycle in the case of the latent heat179

flux.180

• Systematic Mean Absolute Error (MAEs) indicates the average error. The sys-181

tematic error is separated from the unsystematic error similarly to the approach182

presented by Willmott (1982) for the root mean square error. This separation al-183

lows us to distinguish between systematic and random errors.184

• Unsystematic Mean Absolute Error (MAEu) assesses how well the erratic behaviour185

is captured.186

Before the individual indicators are introduced, we define two ways to calculate wa-187

ter storage from the model output based on either the water storage term or the other188

terms of the water balance combined. Assuming that the net change in water stored in189

a ”catchment” or a model grid (∆S) can be derived from the difference between the in-190

coming and outgoing water fluxes, then:191

∆S = P + I − (R + ET ) (1)192
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where P is precipitation, I irrigation, and R runoff. R represents both the surface (Rs)193

and the subsurface (Rsub) runoff. When ∆S is calculated from the fluxes on the right-194

hand side of Eq. 1, we refer to this as the net water flux. Following the urban water bal-195

ance (Grimmond & Oke, 1986), the net storage change (∆S) should account for the wa-196

ter storage change above and below ground, such as the interception, water bodies, and197

groundwater. The components actually included depend on the model conceptualization.198

Here, we refer to the storage represented in the model as the water storage (∆Smodel):199

∆Smodel = ∆Ssoil + ∆Sintercept + ∆Ssnow (2)200

where ∆Ssoil is storage change in the soil moisture, ∆Sintercept storage change in201

the interception storage, and ∆Ssnow storage change in the snow cover. When we refer202

to annual timescales, the analysis is performed on all time intervals of a year in the time203

series, i.e. a new annual period starts at every timestep, after which a full year of data204

is available (e.g. NL-Amsterdam: 2018-05-01 19:00 - 2019-05-01 19:00, 2018-05-01 20:00205

- 2019-05-01 20:00, etc.). This method maximizes the use of available data and elimi-206

nates the influence of choosing a specific annual period like the calendar or hydrologi-207

cal year.208

2.1.1 Water balance closure209

Water balance closure assumes that all fluxes add up to zero for the time and space210

under consideration (here ∼ 1 km2 and one year):211

P + I − (R + ET + ∆S) = 0 (3)212

where ∆S corresponds to the water storage in the model (Eq. 2) to prevent closure re-213

sulting from calculating the storage change based on the fluxes. Three models (8, 16, and214

17) model groundwater interaction, which is not included in the model output. We ex-215

amine the annual water balance closure with the annual total fluxes normalized by an-216

nual precipitation plus irrigation to enable comparison between sites with a range of pre-217

cipitation regimes.218

The water balance closure indicator (IA, Table 1) assesses if the total sum of all219

fluxes (including storage) is less than 3% from P + I. The 3% threshold allows for non-220

closure due to unsaved interception storage data not being provided in the model out-221

put, errors arising in latent heat flux unit conversion, or numerical model errors. Inter-222

ception storage is represented in all 19 models analyzed here, but only three model out-223

puts provided the values. According to the literature, this may explain a non-closure of224

up to 0.5%(Klaassen et al., 1998; Wouters et al., 2015; Carlyle-Moses et al., 2020). Con-225

version of latent heat flux to ET can vary by up to 2% depending on temperature and226

snow effects (Bringfelt, 1986; Petrucci et al., 2010). Not all models correct for these ef-227

fects. To account for numerical model errors arising from discretization and time step-228

ping (MacKay et al., 2022), we allow deviations of up to 0.5%.229

2.1.2 Evapotranspiration (ET)230

The two ET indicators address the magnitude and timing. Given gaps in ET ob-231

servations prevent direct comparison of total modeled ET (ETmodel) over a model pe-232

riod, we use one of the Lipson et al. (2023a) benchmark models. This allows a total ET233

to be obtained without gaps. The Lipson et al. (2023a) benchmark model (ETbench) is234

derived using multivariate ordinary least squares regressions with a K-means clustering235

approach. The K-means clustering approach is trained in-sample using 81 clusters on236

four variables: incoming shortwave radiation, air temperature, relative humidity, and wind237

speed (KM4-IS-SWdown-Tair-RH-Wind in Lipson et al., 2023a). To reduce the hourly238

MBE, wind speed is omitted at both Helsinki sites. At all sites, the MBE is below 1 W m−2
239

and at most sites below 0.1 W m−2 evaluated against available data.240
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Table 1. Overview of the seven indicators that are linearly combined in the UWBR score,

which is used to evaluate the urban water balance representation in ULSMs. The criterion indi-

cates what needs to be achieved to assign a value of 1 to the indicator or 0.5 per test in the case

of IS,m. The uncertainty criteria (*) are discussed in sections 2.1.2 and 2.1.4. The notation in the

equations is defined in the corresponding subsections of section 2.1. The details on all indicators

can be found in section 2.1.

Water
balance
flux

Indicator Description Criterion Equation

All IA

Closure of the annual water
balance assessed relative to the
precipitation plus irrigation

< 0.03
∣∣∣P+I−(R+ET+∆S)

P+I

∣∣∣

ET IET,m

Modeled cumulative ET
normalized by the benchmark
ET (ETbench) over the
whole model period

Within
benchmark
uncertainty*

ETmodel

ETbench

IET,t

Similarity of ET recession
timescale distribution between
model and observations
from the whole model run

p < 0.05
Kolmogorov-Smirnov test
(Chakravarti et al., 1967)

∆S IS,m

Range over the whole model run
in stored water derived from the
modeled water storage and
the net water flux compared to
water storage capacity

< (50% of
soil volume
+ 3 mm
interception)

Range in cumulative
∆Smodel (Eq. 2) and
∆S (Eq. 1)

IS,t

Coefficient of determination
(R2) between changes in
modeled water storage and
the net water flux over
the whole model period

>0.9

R2 of changes in
∆Smodel (Eq. 2)
and changes in
∆S (Eq. 1)

Rs IR,m

Curve number (CN) from
modeled runoff events
and from site characteristics

Within CN
uncertainty*

CN method
(section 2.1.4)

IR,t

Mean lag (hours) between
center of mass from
precipitation and surface
runoff of all events

< 1 hour Rs,centroid − Pcentroid
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Therefore, ETbench is assumed to provide a reasonable estimate of the total ET flux241

over the model run for the IET,m indicator (Table 1). We compare in QE units rather242

than ET , eliminating unit conversions and calculate the cumulative ET flux uncertainty243

from the benchmark based on (1) the benchmark MBE multiplied by the run duration,244

and (2) lack of energy balance closure associated with eddy-covariance observations (Franssen245

et al., 2010; Foken et al., 2012; Mauder et al., 2020). The lack of energy closure is cal-246

culated by the net all-wave radiation minus the sum of the turbulent heat fluxes. If a247

lack of closure occurs, the unexplained energy is split between QE and Qh on the Bowen248

ratio (Twine et al., 2000; Hirschi et al., 2017; Mauder et al., 2020). The QE share is com-249

bined with the MBE multiplied by the run duration to form the benchmark uncertainty250

yielding a maximum uncertainty, as some energy will go to the storage heat flux. A model251

run passes IET,m when ETmodel falls within the uncertainty of ETbench.252

The timing of modeled ET is assessed assuming exponential ET recession after rain-253

fall based on the recession timescale estimated following the Jongen et al. (2022) method-254

ology. This methodology considers only the first ten days to exclude the influence of longer255

dry periods and irrigation. A daily-timescale analysis circumvents observational gaps.256

Model and observations are assessed if they have the same distribution for the recession257

timescale with a Kolmogorov-Smirnov test (Chakravarti et al., 1967). The IET,t indi-258

cator is assigned a value of 1 when the p-value is below 0.05.259

2.1.3 Water storage260

Indicator IS,m evaluates the water storage by comparing the modeled water stor-261

age and cumulative net water flux ranges (Section 2.1) over the analysis period with re-262

spect to the estimated water storage capacity. According to the literature, soil water stor-263

age capacity is maximally half the soil depth for all soil types (Saxton et al., 1986). As264

the modeled soil depth depends on the model run, the soil water storage capacity is cal-265

culated for each separately. To account for interception storage, 3 mm is added to the266

estimated water storage capacity based on tree and impervious interception observations267

(Klaassen et al., 1998; Wouters et al., 2015; Carlyle-Moses et al., 2020). The two mod-268

els not including soil moisture do not pass the first check of this indicator and are only269

evaluated based on the net water flux (Table 2). Other models receive 0.5 score when270

either the modeled water storage range or the net cumulative water flux range falls within271

the estimated water storage capacity (or 1 for both).272

Indicator IS,t quantifies the internal temporal consistency between the change in273

water storage (Eq. 2) and the net water flux (Eq. 1), which should be indicating the same274

flux. The coefficient of determination R2 (Willmott, 1982) is calculated using storage275

changes using 30-min (or 60-min) model output depending on the site forcing data. This276

metric equals 1 if the timing between two fluxes is similar (R2 > 0.9) independent of277

the flux bias, unlike other indicators (e.g. IA ). The two models without soil moisture278

output are assigned a value of 0 for IS,t as their performance could not be evaluated.279

2.1.4 Surface runoff (Rs)280

Indicator IR,m assesses the Rs magnitude relating total event precipitation to Rs281

(Figure 1a). Without runoff observations, curve numbers (CN) are derived to evaluate282

modeled total event Rs (Cronshey et al., 1985) based on the relation between the total283

event precipitation (Pe) and the total event Rs (Re):284

Re =
(Pe − 0.2S)2

Pe + 0.8S
with S =

1000

CN
− 10 (4)285

where S is the potential maximum retention. To determine when precipitation events286

are independent, the auto-correlation of precipitation events is examined. A dry period287

of five hours (Figure S1) is assumed across all sites, which is consistent with Wenzel Jr288
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Figure 1. Illustration of surface runoff indicators (IR,m and IR,t) showing (a) lag time be-

tween an event precipitation centroid and surface runoff centroid, and (b) CN values (Eq. 4)

derived from total event precipitation and surface runoff.

and Voorhees (1981). To exclude snow events, the analysis includes only events with a289

minimum air temperature above 0◦C. For each model run, Eq. 4 is fit through the point290

cloud of Re versus Pe to estimate S and a standard deviation associated with the curve291

fit (Figure 1b). The CN is derived from the S estimate from the curve-fitting and the292

standard deviation is scaled accordingly to yield a CN uncertainty estimate.293

For each site, the CN is estimated using a linear interpolation of a look-up table294

considering the impervious fraction within the eddy-covariance footprint (Cronshey et295

al., 1985). Given soil texture influences CN , sand fraction (Brakensiek & Rawls, 1983;296

Nachtergaele, 2001) obtained from a global data set (OpenLandMap, (Hengl, 2018)) is297

used to constrain CN and provide uncertainty margins assuming an uncertainty of one-298

third of the CN change in both directions from a one-level change in soil texture. If the299

site CN uncertainty overlaps with the model CN uncertainty, IR,m is assigned a value300

of 1.301

Indicator IR,t addresses the rainfall-Rs response times (Leopold, 1968). The lag302

time is calculated as the difference between centroids of rainfall (Pcentroid) and Rs (Rcentroid)303

for the same events as the CN calculations (Figure 1a). Long-tail rainfall events are ex-304

cluded when the Rcentroid comes before the Pcentroid. As eddy-covariance systems have305

a footprint on the sub-square-kilometer scale (Feigenwinter et al., 2012), lag time is ex-306

pected to be much faster than 30-60 minutes (Morin et al., 2001; Berne et al., 2004; Yao307

et al., 2016), which is the model output resolution (Lipson et al., 2023a). Therefore, the308

mean lag time needs to be less than one hour. The mean is preferred over the median309

to also pinpoint models that occasionally have long lag times which would not affect the310

median.311

2.2 Models312

The present study anonymously analyzes the water balance outputs from 19 Urban-313

PLUMBER ULSMs (Table 2). Other Urban-PLUMBER ULSMs did not submit the nec-314

essary outputs to allow for a water balance assessment. The outputs are for 20 sites cov-315
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ering a range of climates, impervious fractions, and observational periods (Table 3). As316

two models did not run all sites, 377 runs are analyzed.317

For each site, modelers were provided with the site characteristics and meteoro-318

logical forcing with 10-year spin-up data (Lipson et al., 2022a). The spin-up period re-319

quired to reach equilibrium varies per model, with some requiring many years to come320

to hydrological equilibrium with the forcing meteorology (Yang et al., 1995; Best & Grim-321

mond, 2016). The 10 years of spin-up before the evaluation observations allowed the soil322

moisture stores to equilibrate with local conditions prior to analysis. ERA5 reanalysis323

data (Hersbach et al., 2020) are used to derive hourly forcing with bias-correction includ-324

ing diurnal and seasonal effects for each site (Lipson et al., 2022a).325

Depending on site data, evaluation is undertaken with 30- or 60-minute fluxes for326

periods varying between 148 and 1827 days (average 912 days, Table 3). Similar to the327

Urban-PLUMBER protocol, to minimize human errors, modelers received a preliminary328

analysis of the water balance to help identify major issues and were encouraged to up-329

date their results. This eliminated unit errors, added missing variables, and removed in-330

active soil moisture layers.331

For this study, we harmonize the hydrological model output. If a model only pro-332

vided QE (unit: [W m−2]), it is converted to ET (unit: [mm d−1]) using latent heat333

of vaporization accounting for air temperature (Bringfelt, 1986). When snow is present334

the latent heat of fusion is added to the latent heat of vaporization to acquire the latent335

heat of sublimation (Petrucci et al., 2010). In the forcing, precipitation is split into snow-336

fall and rainfall. At only 30% of the sites, snowfall amounts to more than 10% of the pre-337

cipitation. It is added as rainfall for one model without snow hydrology, while the two338

others do not account for this input. Irrigation is simulated in two models. For all other339

models, it is assumed to be zero.340

3 Results341

The 19 ULSMs show a wide spread in the average yearly water fluxes at all 20 sites342

based on all 377 model runs (Figure 2). Overall, the model spread (whiskers, Figure 2)343

is wider than the modeled ensemble mean flux (bars, Figure 2). Models show more vari-344

ation in ET than in runoff. Sites with higher annual water input have more variability345

in model output fluxes, for example, the relatively high fluxes in KR-Jungnang and SG-346

TelokKurau compared to the lower yearly fluxes in PL-Lipowa and US-WestPhoenix.347

3.1 Water balance closure348

Although the annual mean model ensemble almost closes the water balance at most349

sites (Figure 2), most individual models do not close the water balance (Figure 3). Here,350

closure is assumed when the sum of all fluxes (Eq. 3) is less than 3% of P+I. This oc-351

curs in 57% of the model runs (IA, Figure 4). In 25% of the model runs, non-closure ex-352

ceeds 10% of P+I. Closure is model-related as the bias is similar across sites for each model353

(Figure 3). Five models close the water balance in all runs, whereas four models account354

for 48% of unclosed model runs. To assess the impact of model run length, the analy-355

sis is repeated with sites with more than two years of observations yielding similar re-356

sults.357

3.2 Evapotranspiration (ET )358

Comparison of the modeled average diurnal range of the ET (Figure 5) shows the359

highest inter-model spread at the peak of the daily cycle, with a range of 10-600% of the360

model ensemble-mean flux. Along three sites with contrasting precipitation regimes (US-361

WestPhoenix, AU-Preston, and SG-TelokKurau), ET increases as expected at wetter sites.362
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ź
(L

ip
ow

a)
P

L
-L

ip
ow

a
5
1
.7

6
1
9
.4

5
1
8
2
7

D
fb

2
0
.7

6
7

3
7

P
aw

la
k

et
a
l.

(2
0
1
1
)

F
o
rt

u
n

ia
k

et
a
l.

(2
0
1
3
)

P
ol

an
d

 L
ód
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Figure 2. Ensemble mean (bars) and full range (minimum to maximum, whiskers) of the

modeled annual water fluxes for all 20 sites ordered by increasing average annual precipitations.

Modeled storage flux (Eq. 2, brown) appears on the left if a net input and right if a net loss.

Values are means of all complete yeas in a data set (e.g. NL-Amsterdam: 2018-05-01 19:00 -

2019-05-01 19:00, 2018-05-01 20:00 - 2019-05-01 20:00, etc.). AU-Surreyhills has less than a year

of observations.
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Figure 3. Annual water balance closure (Eq. 3) per model (marker) at 20 sites (by increasing

average annual precipitation). Models with indicator IA = 1 (Table 1, horizontal shading) are

shown in more detail in the lower panel (b).
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Figure 4. Overview of the indicators of the urban water balance representation (UWBR)

score and constituent indicators (Table 1) over all sites. Means are corrected for missing model

runs.

At US-WestPhoenix, all models but one underestimate ET . This underestimation likely363

results from the absence of irrigation in nearly all models, while irrigation is common364

at US-WestPhoenix (Templeton et al., 2018). At the other two sites, around half the mod-365

els underestimate ET (Figure 5). Although for these sites the model medians are bet-366

ter, the difficulty of capturing the correct flux magnitude is evident, as IET,m is passed367

by only 26% of the model runs (Figure 4). No model passes this indicator at more than368

half of the sites.369

After different rainfall events, daily ET decreases with varying timescales in both370

the observations and the models (Figure 6). The variation is higher amongst the mod-371

eled than the observed drydowns. In contrast with the ET magnitude, the recession timescale372

shows no link with the precipitation regime. IET,t shows the ET recession timescale is373

captured correctly in 87% of the cases (Figure 4).374

3.3 Water storage375

Not all models have water storage values (Eq. 2) that are equal to the cumulative376

net water flux (Eq. 1, Figure 7), which is seen across all sites (not shown). However, the377

water storage should reflect the cumulative net water flux, as the storage change is equal378

to the net water flux. For five models, the storage change is equal to the net water flux379

at all sites. Minor differences occur in six models and large differences in six others. Two380

models have no differences at sites without snowfall (e.g. AU-Preston) but large differ-381

ences at sites with snowfall (e.g. CA-Sunset), as these models do not account for the snow-382

fall in the input we see an increasing difference between the cumulative net water flux383

and the water storage. The models with larger differences follow a seasonal cycle likely384

caused by a non-restricted cumulative net water flux combined with restricted water stor-385

age by soil storage capacity.386
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Figure 5. Illustration of modeled and observed (dashed) mean diurnal cycle of ET at three

sites with contrasting annual rainfall: (a) US-WestPhoenix, (b) AU-Preston, and (c) SG-

TelokKurau. Note that the observations are direct latent heat flux observations from eddy-

covariance systems and do not refer to ETbench.
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Figure 6. As Figure 5, but modeled (grey) and observed (black) daily ET following sepa-

rate, individual rainfall events. Drydown events are selected based on their duration and data

availability (see Jongen et al., 2022). Note that the observations are direct latent heat flux obser-

vations from eddy-covariance systems and do not refer to ETbench.
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Figure 7. Cumulative difference between the water storage (Eq. 2) and cumulative net water

flux (Eq. 1) at two representative sites for the entire model period for all models. Snowfall occurs

at CA-Sunset, but not at AU-Preston. Some models are not visible as they are close to zero.

The range of modeled water storage exceeds the estimated site water storage ca-387

pacity (IS,m) in 64% of cases (Figure 4). Models 1 and 5 have the lowest score for this388

indicator, because they have an inconsistency between the inputs and outputs (Eq. 3)389

causing non-closure of the water balance at nearly all sites. Three models never exceed390

the estimated water storage capacity.391

How water storage relates to cumulative net water flux is linked to the individual392

models given the consistent results across sites (Figure 9). With magnitude represented393

by water balance closure, we focus on the timing by assessing the water storage relative394

to the cumulative net water flux (Figure 8a-c). Model runs can have comparable direc-395

tions but different patterns, e.g. model 11 (Figure 8a), comparable patterns but differ-396

ent magnitudes of change, e.g. model 9 (Figure 8b), or virtually no differences (e.g. model397

18, Figure 8c). The water storage change and the net water flux (Figure 8d-f) empha-398

sizes the differences in timing, which is why the indicator uses the R2 of these deriva-399

tives. Only five models have virtually no differences and thus an R2 of 1 (Figure 4). Over400

half of the models have R2 greater than 0.9 indicating timing consistency (IS,t, Figure401

4).402

3.4 Surface runoff (Rs)403

All models have surface runoff triggered by precipitation, but the precipitation event404

size causing Rs events differs between models (Figure 10). The model rather than the405

site seems to explain triggering event size despite the variation amongst sites in imper-406

vious fractions and precipitation regimes. This suggests that surface runoff parameter-407

ization may be critical. Thus, we find a large inter-model spread in the cumulative mod-408

eled Rs (Figure 2). One model is excluded as it does not output Rs separately from Rsub.409

Ten models show the expected increase of cumulative Rs with increasing site impervi-410

ous fraction (p>0.05, Wald test (Wald, 1943)), whereas nine models do not (Figure S2).411

Only in 43 of the 337 model runs, the CN (curve number: Section 2.1.4) is cap-412

tured correctly, passing IR,m (Figure 4), so all other model runs have no overlap with413

the site estimates (see Section 2.1.4). Three models capture the CN correctly for at least414

half of their model runs and are responsible for 32 of the successful model runs. Most415

models do not match event precipitation and Rs relation. Most models underestimate416

the CN relative to the site estimate (Figure S3). Underestimating the CN indicates a417
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f) for three models with increasing coefficient of determination (R2) of the water storage change

and the net water flux determined at (half-)hourly resolution.
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Figure 9. Coefficient of determination (R2) between (half-)hourly water storage change (Eq.

2) and net water flux (Eq. 1) by model and site. Green indicates the 0.9 IS,t threshold (Table 1).

Missing results are shown as white (i.e. cannot calculate water storage change or net water flux).

Figure 8 may aid interpretation of R2 values.

model is overestimating surface interception and/or soil infiltration, reducing Rs (Equa-418

tion 4).419

One in four model runs accurately captures the fast Rs response in the lag time420

(Figure 4) with IR,t passed by 25% of the model runs. With very short lag times expected,421

only overestimates are simulated. Most lag times averaged per model run are less than422

five hours, but exceptionally they are over 100 hours. Average lag times per model run423

are shown in Figure S4.424

3.5 Urban water balance representation (UWBR) score425

Across all model runs, the mean UWBR score amounts to 3.3 out of the possible426

7 (Figure 4). Although the overall pass rate across all indciators and models is 47%, pass427

rates strongly vary per indicator. Notably, 87% passes IET,t, while only 11% passes IR,m.428

Pass rates also differ among models from 28% to 72%. Only one model run passes all429

indicators, while 10 model runs have a score of 6 our of 7. Model 19 accounts for five of430

these eleven high-scoring runs. If a model closes the water balance (IA), it generally scores431

better on both storage indicators. In contrast, models with a high passing percentage432

for one ET indicator do not systematically score better for the other ET indicator. Over-433

all, the ET timing (IET,t) is captured better than its cumulative magnitude (IET,m). A434

similar pattern is seen in the Rs indicators with the timing (IR,t) captured slightly bet-435

ter than magnitude (IR,m).436

Generally, pass rates per indicator show a dependence on the model (Figure 4). This437

dependence is not found for sites (Figure S5). There is no relation evident between UWBR438

score and model approach (e.g. built surface, soil hydrology, Table 2), but the model is439
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Figure 10. Illustration of surface runoff triggered for different AU-Preston precipitation

events by three models (a) 13, (b) 5, and (c) 9. Note, the left-hand Y axis (surface runoff) in-

creases (a→c), whereas the right-hand side Y axis (precipitation) is the same for all.

more influential than the site on UWBR score. As the Lipson et al. (2023a) classifica-440

tion (Table 2) was not developed with the water balance representation as its original441

goal, further work would be needed to identify what model attributes are key to better442

UWBR score.443

3.6 Linking the water and energy balance444

Surprisingly, models do not appear to capture any aspect of the latent heat flux445

more accurately if their UWBR score is higher. The UWBR score does not significantly446

correlate with better ranking on any of the four metrics evaluating the (half-)hourly mod-447

eled QE : the R2, σnorm, RMSEs, and RMSEu (p>0.05, Wald test, Figure S6). These448

correlations remain absent if one of the indicators is omitted from the analysis. The lack449

of correlation may be the result of the low number (11) of runs with a UWBR score higher450

than 5 (Figure 4) effectively reducing the UWBR score range. Given the lack of relations451

between the UWBR score and QE metrics, the QE is not better captured in model runs452

that pass more indicators of a realistic water balance representation, thus refuting our453

hypothesis that the urban water balance skill positively impacts simulated energy fluxes.454

4 Discussion and conclusions455

This study assesses the water balance representation in 19 ULSMs from the Urban-456

PLUMBER project. It appears the water balance is not closed (within 3%) in 57% of457

the model-site runs. The considerable spread in water fluxes is as wide as the absolute458

flux magnitude at all sites. For both ET and Rs, the timing is captured better than the459

flux magnitude. Modeled water storage dynamics (Eq. 2) are inconsistent with the net460

water flux (Eq. 1) in 44% of the models. Refuting our hypothesis, a better water bal-461

ance representation does not result in more accurate latent heat fluxes. However, it is462

clear that the urban water balance is imperfectly incorporated into ULSMs and more463

proper physically-based representations are required.464
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Five models close the water balance at all sites (Models 6, 13, 15, 18, and 19), while465

three never reach closure (Models 1, 3, and 5). The other models close the water bal-466

ance at some sites. For several non-closing models, we identify the causes. One model467

implicitly assumes an infinite source or sink of soil moisture by adapting the modeled468

soil moisture when it exceeds hard-coded limits adding or removing water to remain within469

these limits (Model 11). Two other models do not fully couple all processes, such as runoff470

and evaporation calculations occurring without water availability feedback between pro-471

cesses (Models 1 and 5). Such uncoupled processes may also explain inconsistent water472

storage dynamics and net water flux. Three models have groundwater flux, which is not473

included in the model output (Models 8, 16, and 17). One model without a snow mod-474

ule disregarded all snowfall creating a mismatch between real and modeled input (Model475

2). For one model, we suspect a very shallow soil layer causes large numerical errors re-476

sulting in an unclosed water balance (Model 4). Fortunately, model improvements should477

be able to eliminate these issues for most models.478

Evidence is found that the models would benefit from reevaluating their runoff pa-479

rameterizations. The runoff volumes are poorly captured, resulting in IR,m having the480

poorest overall pass rate (Figure 4). Runoff has not been evaluated in previous ULSM481

comparisons and suffers here from a lack of direct observations and small areas being mod-482

eled (<1 km2). The lack of correlation between modeled cumulative Rs and the imper-483

vious fraction is worrying given the well-documented relation (Shuster et al., 2005; Ja-484

cobson, 2011). However, many models use relatively simple approaches, such as a con-485

stant fraction of rainfall that runs off independent of site characteristics, rainfall inten-486

sity, or soil moisture state. Others use poorly constrained parameters, such as how much487

water is routed between sub-grid tiles. Future work could help to constrain such para-488

meters, while the simple approaches could be improved relatively straightforwardly.489

Despite the lack of evidence showing a link between the UWBR score and QE per-490

formance, the incomplete representation of the water balance may contribute to the poor491

latent heat flux performance of the ULSMs. The design of the UWBR score may not be492

successful in revealing an existing link between the UWBR score and QE performance,493

as the UWBR score indicators assess the water balance based on physical realism and494

expectations derived from the literature. While a higher UWBR score indicates a more495

physically consistent water balance, it may still be an incorrect simulation. The oppo-496

site is also true, as, without physical constraints, machine learning approaches show good497

results for QE (Vulova et al., 2021). Apart from that, a potential link between the wa-498

ter balance representation and the QE performance may be hidden by other elements499

affecting QE performance. These elements could be other components of the model (e.g.500

the energy balance representation) or human errors. Yet, we do find a poor performance501

for QE consistent with the literature showing QE is among the most challenging fluxes502

to model (Grimmond et al., 2011; Lipson et al., 2023a). As the energy and water bal-503

ance are directly connected, we hypothesize potential errors in the water balance are caus-504

ing, and not being caused by, the poor performance of QE , as the short runoff timescales505

in urban areas on a neighborhood scale dictate the water availability for QE and not the506

other way around. Hence, good model performance for the latent and sensible heat flux507

cannot be achieved without properly representing both balances. Thus, we believe an508

improved representation of the water balance will assist in latent heat flux simulation509

and other energy fluxes.510

This first systematic analysis of urban water balance modeling is an opportunis-511

tic study taking advantage of model outputs, model characterizations, and observations512

gathered for the Urban PLUMBER project (Lipson et al., 2023a, 2022a). The Urban-513

PLUMBER setup affects this study via (1) the diversity of model outputs linked to their514

range of modeling approaches, and (2) a lack of observations for all the water balance515

terms. Intentionally, a wide range of modeling approaches are analyzed with both de-516

fault parameters and provided parameters implemented by modelers (Lipson et al., 2023a),517
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impacting the model results and performance. For example, numerical discretization of518

soil layers can cause a flawed, reduced moisture drydown linked to irregular soil layer depths519

that enhance evaporation (MacKay et al., 2022). Ongoing land surface model develop-520

ments to capture and link more processes increase both their scope and complexity, but521

the number of differing aspects complicates a systematic analysis aiming to attribute per-522

formance to certain aspects (Fisher & Koven, 2020; Blyth et al., 2021). To minimize hu-523

man error, Urban-PLUMBER allowed resubmission of model outputs after web-based524

and manual checks. As these checks did not address the water balance, we provided an525

additional basic analysis of the water balance results to catch other human errors with526

encouragement to resubmit updated outputs. Unfortunately, resubmission reduces but527

does not eliminate human errors. All differences other than the water balance represen-528

tation hinder the attribution of the model performance to the water balance concept as529

they explain the large variety in model performance amongst models that capture the530

water balance equally accurately. Ideally, these differences would be eliminated by de-531

veloping a multi-model framework in the future (Sadegh et al., 2019) and characteriz-532

ing model types based on water balance approaches. Such a characterization could al-533

low for teasing out more detailed strengths and weaknesses of water balance represen-534

tations.535

Lack of observations (e.g. runoff, soil moisture) prevents direct assessment for many536

water balance terms. Hence, we develop a new alternative using quantitative indicators.537

Each indicator addresses a water balance process and checks whether it complies with538

physical limits, the model itself, or previous research. We refrain from weighting the in-539

dicators to minimize the score subjectivity and prevent one indicator from controlling540

the outcome. The systematic removal of one of the seven indicators allows us to confirm541

the UWBR score is not driven by one indicator.542

Here, we show ULSMs produce a wide range of water balance results but often do543

not realistically represent important hydrological processes. Although our results are for544

offline ULSMs, we expect the identified issues will persist in a coupled setting on any scale545

(e.g., with mesoscale atmospheric models). ULSMs could be improved by ensuring they546

close the water balance and updating runoff parameterizations. Ideally, future energy-547

water–carbon studies will try to gather both a wider range of observations but also mod-548

eled processes. This will aid improvement of model processes and their feedbacks. How-549

ever, the complexity of the urban landscape (e.g. different definitions between eddy co-550

variance footprints, and runoff catchments) will require nested model runs and obser-551

vations to ensure consistency of all. We recommend routine assessment of water balance552

closure in ULSM development phase applying the indicators of the UWBR score. In a553

broader context, both model evaluations and comparisons should extend beyond the tar-554

get variables of the model to all processes that directly influence these variables. This555

will benefit the broader delivery of integrated urban services (WMO, 2019) and facili-556

tate urban resilience across time scales.557

5 Open research558

All observation data from this study are openly available at Zenodo via https://doi.org/10.5281/zenodo.6590886559

(Lipson et al., 2022b). Model results and benchmarks (Lipson & Best, 2022) for AU-preston560

are archived at Zenodo. Model results for the other sites are visualized at https://urban-561

plumber.github.io/sites and will be published together with phase 2.562
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database. Water Resources Research, 35 (6), 1915–1919.592

Best, M. J., Abramowitz, G., Johnson, H., Pitman, A., Balsamo, G., Boone, A., . . .593

others (2015). The plumbing of land surface models: benchmarking model594

performance. Journal of Hydrometeorology , 16 (3), 1425–1442.595

Best, M. J., & Grimmond, C. S. B. (2016). Modeling the partitioning of turbulent596

fluxes at urban sites with varying vegetation cover. Journal of Hydrometeorol-597

ogy , 17 (10), 2537–2553.598

Best, M. J., Pryor, M., Clark, D., Rooney, G., Essery, R., Ménard, C., . . . oth-599

ers (2011). The Joint UK Land Environment Simulator (JULES), model600

description–part 1: energy and water fluxes. Geoscientific Model Development ,601

4 (3), 677–699.602

Bjorkegren, A., Grimmond, C. S. B., Kotthaus, S., & Malamud, B. (2015). CO2603

emission estimation in the urban environment: Measurement of the CO2 stor-604

age term. Atmospheric Environment , 122 , 775–790.605

Blyth, E. M., Arora, V. K., Clark, D. B., Dadson, S. J., De Kauwe, M. G.,606

Lawrence, D. M., . . . others (2021). Advances in land surface modelling.607

Current Climate Change Reports, 7 (2), 45–71.608
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