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Abstract 15 

Accurate flood inundation modelling using a complex high-resolution hydrodynamic (high-16 

fidelity) model can be very computationally demanding. To address this issue, efficient 17 

approximation methods (surrogate models) have been developed. Despite recent developments, 18 

there remain significant challenges in using surrogate methods for modelling the dynamical 19 

behaviour of flood inundation in an efficient manner. Most methods focus on estimating the 20 

maximum flood extent due to the high spatial-temporal dimensionality of the data. This study 21 

presents a hybrid surrogate model, consisting of a low-resolution hydrodynamic (low-fidelity) 22 

and a Sparse Gaussian Process (Sparse GP) model, to capture the dynamic evolution of the flood 23 

extent. The low-fidelity model is computationally efficient but has reduced accuracy compared 24 

to a high-fidelity model. To account for the reduced accuracy, a Sparse GP model is used to 25 

correct the low-fidelity modelling results. To address the challenges posed by the high 26 

dimensionality of the data from the low- and high-fidelity models, Empirical Orthogonal 27 

Functions (EOF) analysis is applied to reduce the spatial-temporal data into a few key features. 28 

This enables training of the Sparse GP model to predict high-fidelity flood data from low-fidelity 29 

flood data, so that the hybrid surrogate model can accurately simulate the dynamic flood extent 30 

without using a high-fidelity model. The hybrid surrogate model is validated on the flat and 31 

complex Chowilla floodplain in Australia. The hybrid model was found to improve the results 32 

significantly compared to just using the low-fidelity model and incurred only 39% of the 33 

computational cost of a high-fidelity model.  34 

Plain Language Summary 35 

Floods are the most common type of natural disaster and therefore it is important to predict when 36 

and where flooding occurs. This is normally done using a complex computer model that divides 37 

the area of interest into small subareas and then calculates how the water moves between each 38 

subarea. However, to predict flooding accurately over large areas, it is necessary to use millions 39 

of small subareas and it takes a long time to calculate the movement of flood water between 40 

subareas. To mitigate this issue, this study proposes an alternative approach based on a simpler 41 

computer model. This simpler model uses larger subareas to predict flooding, which makes the 42 

model less accurate but much faster. To compensate for the reduced accuracy, the results are 43 

corrected using an advanced computer method that is calibrated to predict the relationship 44 
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between the predictions made using the complex and simpler models. The new approach is used 45 

to predict flooding on a large, flat floodplain in Australia. The predictions show a significant 46 

improvement compared to just using the simpler computer model. Furthermore, the calculations 47 

only take about 39% of the time taken by a complex model with the small subareas, but the 48 

accuracy is similar.  49 

1 Introduction 50 

Floods are some of the most destructive natural disasters in the world and they are 51 

projected to become more severe and frequent with climate change (IPCC, 2021). During a flood 52 

event normally dry areas are inundated until a maximum inundation extent is reached (flooding 53 

period), whereafter the water recedes back to the normal state (recession period). Capturing the 54 

dynamics of this behaviour is of great importance for risk management and has led to the 55 

development of advanced hydrodynamic models. Hydrodynamic models can represent different 56 

levels of complexity and precision. For simulating the dynamics of flood inundation, two-57 

dimensional hydrodynamic models that numerically solve the depth-averaged Navier-Stokes 58 

equations on a high-resolution grid is normally applied (Teng et al., 2017). These high-resolution 59 

hydrodynamic models are often referred to as high-fidelity models, where the fidelity refers to 60 

the model’s degree of realism (Razavi et al., 2012). However, the high precision of high-fidelity 61 

models comes at an expense of high computational cost, which makes them unfeasible in many 62 

practical applications such as ensemble and real-time modelling (Teng et al., 2017; Wu, 2020). 63 

To address this issue, computationally efficient approximation methods named surrogate models 64 

have been developed (Razavi et al., 2012).  65 

Many different types of surrogate models have been considered and can be divided into 66 

three groups: emulator, low-fidelity, and conceptual models (McGrath et al., 2018; Razavi et al., 67 

2012; Teng et al., 2017). Emulator models, also known as response surface surrogates or meta 68 

models (Razavi et al., 2012), are data-driven models that are trained to predict observations or 69 

results from high-fidelity models. Emulators are capable of mapping complex non-linear 70 

relationships, and, once trained, have a high computational efficiency (Razavi et al., 2012). 71 

However, emulators are not physics-based models, and it is not straightforward to employ an 72 

emulator to approximate high spatial-temporal dimensional data from a high-fidelity flood 73 

inundation model. To deal with the hysteresis of system behaviour, it is usually necessary to 74 
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incorporate timeseries data. For emulators this is often done by using several input variables 75 

representing lagged timesteps, thus increasing the dimensionality of the data used for model 76 

development (Brahim-Belhouari & Bermak, 2004; Brahim-Belhouari et al., 2001; Zahura, 2020). 77 

Consequently, emulator models are often limited to just predicting the maximum flood 78 

inundation extent (e.g. Devi (2019); Kim (2020); Lin (2020)) rather than predicting a timeseries 79 

of flood behaviour.  80 

However, recently emulator-based surrogate models have been developed to incorporate 81 

timeseries data and to predict the dynamic flood inundation extent (Chu, 2020; Kabir, 2021; Xie 82 

et al., 2021; Zhou et al., 2021). These studies predict flood inundation using numerous individual 83 

emulator models. Each of the models are independent and predict flooding at a specific location 84 

in the floodplain. The number of individual models varies with model application. For example, 85 

Kabir (2021) used 150, Zhou et al. (2021) used 125, Chu (2020) used 14227 and Xie et al. (2021) 86 

used 14278. Using many single models is impractical and does not account for the spatial 87 

correlation of flood inundation behaviour (Chu, 2020). To address this issue, new methods have 88 

been proposed, such as the parallel partial approach by Gu and Berger (2016) and Ma et al. 89 

(2020) where correlation parameters are shared between individual Gaussian Process (GP) 90 

emulator models. Even so, dealing with spatial correlation is an issue that persists and needs to 91 

be addressed when employing emulator models.  92 

Low-fidelity models represent another type of surrogate models. These are physics-based 93 

models similar to high-fidelity models, but with reduced complexity. Model complexity is 94 

reduced by changing the numerical accuracy, adopting simplified assumptions for the governing 95 

scheme, or applying a simpler model type (e.g. using a one-dimensional instead of two-96 

dimensional model) (Asher et al., 2015; Razavi et al., 2012). Due to the reduced complexity, 97 

low-fidelity models have a lower computational demand than high-fidelity models, but at the 98 

cost of reduced accuracy (Fernández-Godino et al., 2019; Fernandez et al., 2017; Liu et al., 2018; 99 

Park et al., 2017). In comparison to emulator models, low-fidelity models can more easily 100 

incorporate hysteresis and spatial dimensionality but with a higher computational burden. 101 

The last group of surrogate models is simplified conceptual models. These models can 102 

also be considered low-fidelity models with significantly reduced model complexity. Conceptual 103 

models utilise simple hydraulic concepts to make predictions and can provide useful estimates 104 
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for the maximum or final flood inundation extent (McGrath et al., 2018; Teng et al., 2017). 105 

However, their capability to predict the dynamical behaviour of the flood events is limited 106 

(McGrath et al., 2018; Teng et al., 2017).  107 

Emulator and low-fidelity models both have their strengths and weaknesses, thus a 108 

combination of these two or a hybrid model utilising both surrogate model types, is an appealing 109 

approach. However, as mentioned previously emulator models have issues dealing with the 110 

spatial correlation inherent in hydrodynamic behaviour, thus many single models are used for 111 

individual locations across a floodplain. This is often impractical and can lead to discontinuity 112 

between the estimates derived for neighbouring grid cells. To reduce the number of emulator 113 

models, dimensionality reduction techniques such as feature selection methods have been 114 

introduced to identify key locations in a floodplain (e.g. Zhou et al. (2021)). An alternative way 115 

of reducing dimensionality of spatial-temporal data is to extract key features in the form of 116 

patterns or trends (feature extraction methods). A common feature extraction method is 117 

Empirical Orthogonal Function (EOF) analysis, which has been used in areas of remote sensing, 118 

climate science and oceanography (e.g. Aires (2014); Aires (2020); Alvarez and Pan (2016); 119 

Chang (2020); Ghosh (2021); Golestani and Sørensen (2013); Jolliffe and Cadima (2016); 120 

Marques et al. (2009)). EOF analysis reduces the spatial-temporal data into pairs (modes) of 121 

spatial patterns (EOF) and temporal variability functions, termed expansion coefficients (EC) 122 

(Jolliffe & Cadima, 2016; Zhang & Moore, 2015). When ranked, each mode explains a 123 

descending proportion of the variance in the data, and the dimensional reduction is achieved by 124 

using only the first few significant modes to explain most of the variance in the dataset (Jolliffe 125 

& Cadima, 2016; Zhang & Moore, 2015). In addition, EOF analysis is reversible, meaning that 126 

the dataset can be both decomposed to and reconstructed from the ECs and EOFs (e.g. Aires 127 

(2014)).  128 

EOF analysis can be used for downscaling data from low-resolution to high-resolution, 129 

thus making it appealing for use with low- and high-fidelity flood inundation modelling. For this 130 

reason, Carreau and Guinot (2021) recently predicted high-resolution water depths and discharge 131 

using a hybrid surrogate approach that combined a low-resolution hydrodynamic model with 132 

Artificial Neural Network (ANN) emulator models to predict ECs from a high-resolution 133 

hydrodynamic model. Carreau and Guinot (2021) demonstrated the value of using EOF analysis 134 

and emulator models to downscale the results from low-fidelity models, and they obtained higher 135 
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resolution predictions of water depth and discharge for flooding events in urban environments. 136 

They derived the “low-fidelity model results” by averaging the high-fidelity results over selected 137 

subdomains. While this approach suited their evaluation purposes, in practice the low-fidelity 138 

model results need to be derived independently from the high-fidelity model to avoid the 139 

computational burden involved, and this will most likely introduce additional uncertainty to the 140 

low-fidelity results. It is also worth noting that they developed individual EOF analyses and 141 

hybrid models specific to different flow problems. To ensure consistency, the EOF analysis 142 

should be performed once for the entire dataset of flood events, and the same hybrid model 143 

should be able to simulate the full duration of various flood events on a real-world topology with 144 

complex flow patterns and dynamically changing inundation extents. 145 

An emulator, such as the ANN used by Carreau and Guinot (2021), is well suited to 146 

describe the complex functional relationships that exists between the ECs. However, the choice 147 

of emulator is not straightforward as many different emulators have been developed and there is 148 

no single algorithm that outperforms all others (Razavi et al., 2012; Wolpert & Macready, 1997). 149 

Nevertheless, in recent years a probabilistic treatment of predictions has increased in popularity 150 

and with it, interest in Gaussian Process (GP) models. This is due to the ability of a GP model to 151 

characterise uncertainty by predicting both the mean and standard deviation of the associated 152 

errors (Schulz et al., 2018). GP models have already been used in numerous studies to predict 153 

wave height/water level (Ma et al., 2020; Malde, 2016; Parker, 2019), timeseries behaviour 154 

(Brahim-Belhouari & Bermak, 2004; Contreras, 2020; Hachino & Kadirkamanathan, 2011), and 155 

timeseries with ECs as input (Avendaño-Valencia et al., 2017), and they have been used widely 156 

in multi-fidelity modelling (Fernández-Godino et al., 2019; Fernandez et al., 2017; Park et al., 157 

2017; Toal, 2015). However, GP models become very computationally demanding when dealing 158 

with large datasets due to the difficulties encountered when inverting large covariance matrices 159 

(Bauer et al., 2017; Burt et al., 2019). Flood inundation events can have long timeseries 160 

consisting of several thousand timesteps, thereby making it computationally infeasible to use the 161 

GP model. Fortunately, Sparse Gaussian Processes (Sparse GP) offer means to this issue. The 162 

Sparse GP models use a number of inducing variables to approximate the full GP and thereby 163 

reduce the computational demand (Leibfried et al., 2021). Despite the promising aspects of the 164 

Sparse GP models, their applications to real-life problems are still limited, and this study 165 
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therefore aims to investigate approaches that are suited for practical applications of this type of 166 

emulator models. 167 

This study proposes a new hybrid LSG (Low-fidelity, Spatial analysis, and Gaussian 168 

process) model to provide accurate flood inundation predictions in a computationally efficient 169 

manner. The model uses a low-fidelity model as a transfer function to capture the dynamics and 170 

spatial correlation of a flood event. The key spatial and temporal features of the low-fidelity 171 

model outputs are extracted through EOF dimension reduction techniques, thereby enabling the 172 

use of a Sparse GP model to refine predictions of the dynamic evolution of the flood inundation 173 

extent. The LSG model is applied to the simulation of complex flow patterns resulting from 174 

flood events in a flat extensive floodplain, which provides a challenging application for the 175 

model. 176 

This paper is organised as follows. In section 2 the LSG model is presented, including the 177 

methodology for the EOF analysis and Sparse GP model. In section 3 the case study for the 178 

Chowilla floodplain is outlined with the available data and tests performed. Then in section 4 the 179 

results from the case study are presented, followed by discussion and conclusion in section 5 and 180 

6, respectively.  181 

2 LSG model 182 

The LSG (Low-fidelity, Spatial analysis, and Gaussian process) model is a surrogate 183 

approach that provides high-fidelity estimates if the dynamic behaviour of flood inundation. It 184 

consists of a low-fidelity hydrodynamic model and a Sparse GP emulator model, where the 185 

Sparse GP model is used to convert the low-fidelity data to high-fidelity data via conversion of 186 

ECs from an EOF analysis. In this study the only difference between the low- and high-fidelity 187 

models is the degree of spatial resolution adopted, where the lower spatial resolution of the low-188 

fidelity model reduces the accuracy of the predictions. 189 

The workflows for training and prediction are illustrated in Figure 1. EOF analysis is 190 

performed on the high-fidelity data, thereby reducing the spatial-temporal data to EOF spatial 191 

maps and ECs temporal functions. The low-fidelity data is first converted to the same 192 

computational grid as the high-fidelity model, thus enabling the derivation of low-fidelity ECs 193 

through the use of the high-fidelity EOFs. Finally, the ECs from both datasets are used to train 194 
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the Sparse GP model. Once the Sparse GP model is trained, the LSG model can be applied to 195 

new flood events to predict the dynamic flood inundation extent without the need to run a high-196 

fidelity model. A detailed description of the workflows is given in the following sections. 197 

 198 

Figure 1: Process of training and prediction for the LSG model to simulate flood 199 

inundation extent. Blue ovals indicate the output of each process. 200 

2.1 EOF analysis of hydrodynamic data 201 

EOF analysis consists of reducing the dimensionality of spatial-temporal data by creating 202 

modes of spatial maps (i.e. EOFs) and temporal functions (i.e. ECs), where each mode is 203 

orthogonal to all others (Jolliffe & Cadima, 2016; Zhang & Moore, 2015).  204 

Prior to the EOF analysis, the low- and high-fidelity models are used to simulate several 205 

different inundation events that span a wide range of inundation behaviour from no flood to 206 

extreme flood scenarios. This will enhance the output space coverage of the Sparse GP model 207 

and improve prediction accuracy for new unseen events (Maier et al., 2010; Wu et al., 2013).  208 

As the inundation extent is the focus of this study, the outputs from the low- and high-209 

fidelity models are converted to binary values (1 for flooded and 0 for dry). The threshold for 210 

flooding is chosen to be 3 cm to ignore insignificant flooding and reduce numerical errors. The 211 

binarization facilitates the grouping of the grid cells into the three categories “Always dry” (AD), 212 
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“Always flooded” (AF) and “Temporary flooded” (TF) based on their change of state over time. 213 

The state of the AD and AF cells remain constant over time and are therefore left out of the EOF 214 

analysis. The final step before the EOF analysis is to remove the temporal mean from the binary 215 

timeseries of each of the TF cells (detrending) and to apply a weighting according to the cell 216 

size. This weighting ensures that larger grid cells are given higher influence, as they account for 217 

a larger proportion of the inundated area.  218 

Let 𝐻𝐹 be a 𝑇 × 𝑃 matrix, where each row is a timestep 𝑡 for 𝑡 = 1, … , 𝑇, and each 219 

column 𝑝 is a TF cell in the high-fidelity model for 𝑝 = 1, … , 𝑃. The EOF analysis is performed 220 

via singular value decomposition of the 𝐻𝐹 matrix and follows equation (1). The EOF analysis is 221 

performed using the sklearn.decomposition.PCA module in the Scikit-learn machine learning 222 

package in Python programming language (Pedregosa et al., 2011). 223 

 𝐻𝐹 = 𝐸𝑂𝐹𝐻𝐹 ∙ U ∙ D 

= 𝐸𝑂𝐹𝐻𝐹 ∙ 𝐸𝐶𝐻𝐹 

≈  ∑ 𝐸𝑂𝐹𝐻𝐹(𝑘, : ) ∙ 𝐸𝐶𝐻𝐹(: , 𝑘)

𝐾

𝑘=1

 

(

1) 

where 𝐸𝑂𝐹𝐻𝐹 is a 𝑇 × 𝑃 orthogonal matrix where each row corresponds to a spatial map, and 224 

𝐸𝐶𝐻𝐹 is a 𝑇 × 𝑇 matrix of column-wise temporal functions. 𝑈 and 𝐷 are 𝑇 × 𝑇 matrices, where 225 

𝐷 is diagonal, containing respectively the eigenvectors and eigenvalues 𝜆 of the covariance 226 

matrix from the EOF analysis. To enhance computational efficiency, only the first 100 EOF and 227 

ECs modes are derived. This is sufficient to ensure the significant modes are obtained. In line 228 

three of eq. (1) the data is represented by the first 𝐾 significant modes. The modes account for a 229 

decreasing proportion of the variance, meaning the majority of the variance in the dataset is 230 

described in the first 𝐾 modes, where 𝐾 ≪ 𝑇. The remaining modes are considered noise and do 231 

not contain meaningful information about the dataset. The error involved in using only the first 𝐾 232 

modes to reconstruct the high-fidelity dataset is considered minimal, thus, it is only 𝐸𝐶𝐻𝐹(: ,1: 𝐾) 233 

that needs to be predicted using the Sparse GP model. The significant modes are found using 234 

North’s test (see equation (2)), which states that modes are significant if the difference between 235 

the eigenvalues of two modes are bigger than the error limits (North et al., 1982). Furthermore, 236 

all modes chosen should have eigenvalues above one (Kaisers Rule) to ensure the modes provide 237 

more information than just using the original individual input variables (Kaiser, 1960). 238 
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∆𝜆 > 𝜆√2/𝑇  

(

2) 

After the 𝐸𝐶𝐻𝐹 is derived, the next step is to prepare the low-fidelity data as input for the 239 

Sparse GP model. The low-fidelity model has a lower spatial resolution than the high-fidelity 240 

model, but by converting the low-fidelity data to the high-fidelity model grid (using the same 241 

spatial representation as the high-fidelity data) the 𝐸𝑂𝐹𝐻𝐹 matrix can be used to derive the ECs 242 

for the low-fidelity dataset. This ensures the ECs for all flood events for both the low- and high-243 

fidelity data are derived using the same EOF spatial modes. The spatial conversion is performed 244 

by assigning each high-fidelity cell the value of the closest low-fidelity cell for all timesteps by 245 

using the Euclidean distance between the x-y coordinates.  246 

As for the high-fidelity dataset, only the TF cells are used in the EOF analysis for the 247 

low-fidelity data, thereby creating a new 𝑇 × 𝑃 matrix named 𝐿𝐹 consisting of the low-fidelity 248 

data. The low-fidelity data is detrended and weighted in the same manner as for the high-fidelity 249 

data. This pre-processing enables the derivation of the ECs for the low-fidelity data utilising the 250 

orthogonality of the 𝐸𝑂𝐹𝐻𝐹 matrix in equation (3). 251 

 
𝐸𝐶𝐿𝐹 = 𝐿𝐹 ∙ 𝐸𝑂𝐹𝐻𝐹

′  
(

3) 

where 𝐸𝐶𝐿𝐹 is a 𝑇 × 𝑇 matrix of temporal function derived for the low-fidelity dataset and 252 

𝐸𝑂𝐹𝐻𝐹
′  is the transpose of the 𝐸𝑂𝐹𝐻𝐹 matrix. 253 

Once both the 𝐸𝐶𝐿𝐹 and 𝐸𝐶𝐻𝐹 are derived, they can be used as input and output to train 254 

the Sparse GP model.  255 

 256 

2.2 Sparse Gaussian Process (Sparse GP) model 257 

The 𝐸𝐶𝐻𝐹(: ,1: 𝐾) are predicted using individual Sparse GP models, thereby creating a 258 

total of 𝐾 models. The models are assumed to be fully independent due to the orthogonality of 259 

the 𝐸𝐶𝐻𝐹 in the EOF analysis. The number of models developed here is significantly reduced 260 

compared to the approach of building an emulator for each grid cell in the high-fidelity model. 261 

The Sparse GP models are implemented in Python using the GPflow package (Matthews et al., 262 
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2017), which has the advantage of utilising GPU calculations for optimisation of the model to 263 

reduce computational time. 264 

2.2.1 General concepts of the GP and Sparse GP models 265 

A GP model can predict non-linear complex relationships with statistical confidence by 266 

assuming that the relationship between input and output follows a Gaussian distribution of 267 

functions, explained by the mean and variance (see equation (4) below) (Rasmussen & Williams, 268 

2006).  269 

 
𝐺𝑃(𝑥) ~ 𝒩(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) 

(

4) 

where 𝑚(𝑥) is the mean function, which is normally assumed to be zero (Rasmussen & 270 

Williams, 2006), and 𝑘(𝑥, 𝑥′) is the covariance function (popularly referred to as a “kernel”) that 271 

is used to generate the covariance matrix. The kernel controls the variance of the prediction, and 272 

numerous kernel functions have been developed (Rasmussen & Williams, 2006). Different 273 

kernel functions may lead to different results, and therefore initial tests have been carried out 274 

using the most commonly used kernel functions including Radial Basis Function, Matern 3/2, 275 

Matern 5/2 and Exponential. The Exponential kernel has been found to provide the most robust 276 

performance given the 𝐸𝐶𝐿𝐹 and 𝐸𝐶𝐻𝐹 as input and output, respectively. The Exponential kernel 277 

(see equation (5)) is a special case of the Matern kernel, with 1/2 roughness parameter and 278 

double lengthscale. 279 

 
𝑘(𝑥, 𝑥′) = 𝜎𝑓

2 exp (−
𝑥 − 𝑥′

2𝑙
) + 𝜎𝑛

2 
(

5) 

where 𝜎𝑓
2 is the signal variance, 𝑙 is the lengthscale, 𝑥 − 𝑥′ is the Euclidean distance between 280 

inputs points, and 𝜎𝑛
2 is the noise variance. The terms 𝜎𝑓

2 and 𝑙 represent the hyperparameters of 281 

the GP that are optimised by maximum likelihood estimation. However, this requires inversion 282 

of the covariance matrix that has a computational requirement of 𝒪(𝑇3). This makes the GP 283 

model optimisation infeasible when dealing with timeseries data that can have several thousand 284 

input samples (Bauer et al., 2017; Leibfried et al., 2021). 285 

To deal with the high computational demand of full GP models, approximation methods 286 

called Sparse GP models have been developed (Bauer et al., 2017; Leibfried et al., 2021). Sparse 287 
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GP models approximate the full GP via introduction of 𝑀 inducing points, which reduces the 288 

computational requirement to 𝒪(𝑇𝑀2) (Snelson & Ghahramani, 2006; Titsias, 2009). The 289 

adaption of equation (4) to accommodate the use of inducing points is shown in equation (6). 290 

 
𝑆𝑃𝐺𝑃(𝑥) ~ 𝒩(𝑦|𝑘𝑥

′ 𝐾𝑀
−1𝑦̅, 𝐾𝑥𝑥 − 𝑘𝑥

′ 𝐾𝑀
−1𝑘𝑥 + 𝜎𝑛

2𝐼) 
(

6) 

where 𝑘𝑥 is 𝑘(𝑥, 𝑥̅), 𝐾𝑀 is 𝑘(𝑥̅, 𝑥̅) and 𝐾𝑥𝑥 is 𝑘(𝑥, 𝑥′). The variables 𝑦 and 𝑥 are the observation 291 

and input points, respectively, where 𝑦̅ and 𝑥̅ are the inducing points for the observations and 292 

input points. The observation inducing points (𝑦̅) can be removed via integration by assuming a 293 

prior distribution following the full GP, which is reasonable as 𝑦̅ is expected to follow 𝑦 294 

(Snelson & Ghahramani, 2006). Consequently, inducing points only need to be found for the 295 

input points. 296 

Several types of Sparse GP models have been developed (Bauer et al., 2017; Leibfried et 297 

al., 2021; Titsias, 2009). Among them, the variational inference based Sparse GP model has the 298 

attractive feature that it improves with an increasing number of inducing points, and provides a 299 

good approximation to the full GP (Bauer et al., 2017). Therefore, the variational inference based 300 

Sparse GP model is chosen in this study to predict the relationship between 𝐸𝐶𝐿𝐹 and 𝐸𝐶𝐻𝐹. For 301 

more information on the Sparse GP model, the reader is referred to Burt et al. (2019) and 302 

Leibfried et al. (2021). 303 

2.2.2 Training of Sparse GP models 304 

The training of the Sparse GP models is performed using the maximum likelihood 305 

method, where the maximum likelihood estimates of the hyperparameters, 𝜎𝑓
2 and 𝑙, and 306 

inducing points are obtained using the L-BFGS-B optimisation algorithm. Each individual 307 

Sparse GP model is trained using all modes of the 𝐸𝐶𝐿𝐹(: ,1: 𝐾) as input and only one mode 308 

𝐸𝐶𝐻𝐹(: , 𝑘) as output. This ensures the Sparse GP models are optimised to the specific mode 𝑘 309 

utilising all the information available in the low-fidelity data. The input and output ECs 310 

timeseries are standardised to a mean of 0 and variance of 1 before being incorporated in the 311 

Sparse GP models to ensure numerical stability. A single lengthscale is optimised across all input 312 

dimensions in the Sparse GP models, as Automatic Relevance Detection (ARD) with individual 313 
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lengthscales for each input dimension can lead to overfitting of Gaussian Process models 314 

(Cawley & Talbot, 2010). 315 

The optimisation process can have several local optima, and therefore the choice of initial 316 

conditions is important (Bauer et al., 2017; Rasmussen & Williams, 2006). The lengthscale 317 

describes how far away from an input sample that information can be used, and often a good 318 

initial choice of the lengthscale lies within the boundaries of the input sample values. The initial 319 

value of the lengthscale for each Sparse GP model is chosen as the absolute average value of the 320 

input values. This has shown to be a robust choice and ensures a good optimisation. The signal 321 

variance 𝜎𝑓
2 is optimised using an initial guess of 1, which is the default value for most 322 

applications. 323 

Selecting the number and location of the inducing points is not straightforward. The 324 

number of inducing points depend on the number and distribution of the input data. When 325 

choosing the number of inducing points, the number should be significantly less than the number 326 

of input points to leverage the computational advantage of the sparse approximations. The ratio 327 

depends on the amount and distribution of the input data. The initial locations of the inducing 328 

points are chosen by initially distributing them linearly from the minimum to maximum value of 329 

the input, as this ensures a fast and robust optimisation. 330 

In addition, to further reduce the risk of being stuck in local optima in the optimisation 331 

process, only the inducing points are optimised initially while the hyperparameters are fixed, as 332 

suggested in a previous study (Bauer et al., 2017). Thereafter, the hyperparameters are optimised 333 

with the inducing points fixed.  334 

2.3 Reconstruction of flood extent data using predicted ECs 335 

Once the Sparse GP models are trained, they can be used to predict 𝐸𝐶𝐻𝐹. By reversing 336 

the EOF procedure, the data for the TF cells can be reconstructed using the 𝐾 significant modes, 337 

following eq. (1). The flood data does not reconstruct fully from the EOF analysis, even if the 338 

𝐸𝐶𝐻𝐹 is perfectly predicted, as not all modes are used. For this reason, the reconstructed flood 339 

data is converted to binary values by adopting a standardised threshold of 0.5 to differentiate 340 

between flooded and dry cells. To reconstruct the dataset for all cells (AF, AD and TF), the AD 341 

and AF cells are added to the reconstructed TF cell data. This provides a high-resolution 342 
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prediction of the dynamic flood inundation extent without the need to run a high-resolution high-343 

fidelity model. 344 

 345 

3 Application of the LSG model  346 

3.1 Study area and hydrodynamic models 347 

The LSG model is evaluated on the flat and complex Chowilla floodplain, which is 348 

located near the state border of New South Wales, Victoria, and South Australia in south-eastern 349 

Australia (see Figure 2). The Chowilla floodplain is adjacent to the Murray river, and includes 350 

several small creeks, wetlands, lakes, and billabongs that all contribute to the dynamic change of 351 

inundation in the area (Murray-Darling Basin Authority, 2021). The study area is approximately 352 

224 km².  353 

To simulate flood inundation of the study area, a hydrodynamic model provided by the 354 

Murray–Darling Basin Authority (MDBA) is used. The model is a two-way coupled model, also 355 

known as a one-dimensional + two-dimensional (1D+2D) model, consisting of a MIKE 11 and a 356 

MIKE 21 FM model that are combined using the MIKE FLOOD framework (DHI, 2019). The 357 

MIKE 11 model simulates the water level and discharge in the river network based on the 358 

upstream inflow and downstream water level boundaries. The boundary conditions for the MIKE 359 

11 model are obtained from the Bureau of Meteorology’s (BoM) online water data platform 360 

(Bureau of Meteorology, 2021). The MIKE 21 model simulates the 2D surface flow on a 361 

quadratic grid. There is no precipitation included and a “no-flow” boundary is used along the 362 

edge of the MIKE 21 model, meaning that any changes to water on the floodplain are only due to 363 

interactions with the MIKE 11 model or through evapotranspiration.  364 

In this study, both high- and low-resolution MIKE 21 models are used. These constitute 365 

the high- and low-fidelity models used in the EOF analysis, as discussed in Section 2.1. The 366 

dimensions of the grid cells in the high-fidelity model is 30 x 30 m, and in total 249,263 cells are 367 

required to represent the full model domain. The low-fidelity model has coarser grid cells of 100 368 

x 100 m (28,935 cells in total) and is developed by averaging the elevation and roughness of the 369 

high-fidelity grid cells over the larger area.  370 
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 371 

Figure 2: Study area and boundary locations for the MIKE 11 and MIKE 21 models 372 

(ESRI, 2021). 373 

 374 

3.2 Generating training and validation data 375 

The hydrodynamic models are used to simulate flood events for the Chowilla floodplain 376 

between 15/08/2010 and 15/01/2021. This period is selected based on the availability of historic 377 

data for specifying the boundary conditions and includes nine historic events with durations 378 

varying from 75 to 290 days. However, four events are too small to cause any significant 379 

inundation of the floodplain. This causes a problem for training the Sparse GP models, as a large 380 

number of events spanning a wide range of inundation behaviour is needed to properly train the 381 

models. The training data should include extreme events with respect to the magnitude and the 382 

duration of their flood behaviour. To ensure this, 21 events were obtained by scaling up the 383 

observed inflow hydrographs and/or extending the duration of the events. As a result, a total of 384 

26 flood events were available for model development and evaluation. A summary of the events 385 

characteristics is found in Appendix A. 386 
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The simulated inundation events are divided into training and validation datasets. Three 387 

unique historic events covering the periods 15/08/2010-01/06/2011, 01/03/2012-15/06/2012 and 388 

28/05/2016-30/03/2017, are chosen for validation. These events are different in magnitude and 389 

dynamic flood evolution, and are numbered 1, 3 and 6, respectively (numbering is based on the 390 

chronological order of the historic events). The remaining historic events, including all scaled 391 

events, are used for training and consist of a total of 10,586 timesteps across all training events.  392 

To ensure the same starting point and the stability of the simulations, all flood events are 393 

simulated using the same set of initial conditions, where a fixed timestep of 2 seconds is adopted 394 

for both the MIKE 11 and MIKE 21 models. In addition, a warm-up period of 10 days is used to 395 

establish a relationship between the flood levels obtained by the 1D and 2D models. This warm-396 

up period is selected based on examination of initial model simulation results, and data from this 397 

warm-up period are removed before the EOF analysis. 398 

It is important to have a fine temporal resolution of the hydrodynamic results to 399 

accurately describe the flood inundation but increasing the number of timesteps also increases 400 

the computational cost of training and prediction for the Sparse GP models. For the Chowilla 401 

floodplain the change in the floodplain inundation is relatively slow and therefore a timestep of 6 402 

hours between saved datapoints is chosen. If the LSG model is applied on a more rapidly 403 

changing flood problem (e.g. local flash flooding), a higher frequency timestep would be needed. 404 

3.3 Setup of Sparse GP models for the case study 405 

The setup and training of the Sparse GP model follow the procedure describe in section 2. 406 

However, the number of modes found by the EOF analysis and the number of inducing variables 407 

is dependent on the training data. 408 

For the case study, the number of significant modes (𝐾) is found to be 52 modes via EOF 409 

analysis on the high-fidelity training dataset. These modes explain 97.8 % of the variance in the 410 

dataset and are found by means of North’s test (see section 2.1). This means a total of 52 Sparse 411 

GP models are developed and trained for this case study.  412 

The number of inducing points for each Sparse GP model is chosen to be 2% of the 413 

number of input samples. This percentage has shown to be sufficient to approximate the ECs in 414 
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this study and is found via a trial-and-error approach with the training data, which is a commonly 415 

used approach (Burt et al., 2019).  416 

 417 

3.4 Evaluation of the LSG model 418 

A number of evaluation metrics are used to evaluate the performance of the LSG model. 419 

The relative Root Mean Square Error (relRMSE) is used to capture the general performance of 420 

the LSG model and is calculated using equation (7): 421 

 

𝑟𝑒𝑙𝑅𝑀𝑆𝐸 =
√1

𝑇
∑ (𝐴𝐿𝑆𝐺(𝑡) − 𝐴𝐻𝐹(𝑡))

2𝑇
𝑡=1

1
𝑇

∑ 𝐴𝐻𝐹(𝑡)𝑇
𝑡=1

 

(

7) 

where 𝐴𝐿𝑆𝐺 is the prediction using the LSG model, and 𝐴𝐻𝐹 is the true inundation extent 422 

simulated using the high-fidelity model.  423 

The prediction of the peak of a flood inundation event is important, as most areas will be 424 

inundated at that stage. To reduce the effect of smaller variations the average flood inundation 425 

extent of the top 5% highest values is compared by using the relative Peak Value Error 426 

(relPeakValErr) in equation (8): 427 

 
𝑟𝑒𝑙𝑃𝑒𝑎𝑘𝑉𝑎𝑙𝐸𝑟𝑟 =

𝐴𝑝𝑒𝑎𝑘,5%
𝐿𝑆𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐴𝑝𝑒𝑎𝑘,5%

𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐴𝑝𝑒𝑎𝑘,5%
𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 
(

8) 

where 𝐴𝑝𝑒𝑎𝑘,5%
𝐿𝑆𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐴𝑝𝑒𝑎𝑘,5%

𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the average inundation extent for the 5% highest values 428 

obtained from the LSG and high-fidelity models, respectively.  429 

Another important parameter for flood prediction is the timing of the flood peak, as this is 430 

when the greatest impact on people and infrastructure is to be expected. The ability of the LSG 431 

model to predict the timing of the peak is assessed using the relative average peak time error 432 

compared to the peak period (relPeakTimeErr-1) for the top 5% highest values (See equation 433 

(9)), and the overall timing of the flood inundation prediction is determined using the relative 434 

average peak time error (relPeakTimeErr-2) compared to the rising limb of the flood event (See 435 

equation (10)). 436 
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𝑟𝑒𝑙𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒𝐸𝑟𝑟-1 =

𝑡𝑝𝑒𝑎𝑘,5%
𝐿𝑆𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑡𝑝𝑒𝑎𝑘,5%

𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅

max(𝑡𝑝𝑒𝑎𝑘,5%
𝐻𝐹 ) − min (𝑡𝑝𝑒𝑎𝑘,5%

𝐻𝐹 )
  

(

9) 

 
𝑟𝑒𝑙𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒𝐸𝑟𝑟-2 =

𝑡𝑝𝑒𝑎𝑘,5%
𝐿𝑆𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑡𝑝𝑒𝑎𝑘,5%

𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑡𝑝𝑒𝑎𝑘,5%
𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑡𝑟𝑖𝑠𝑒,10%

𝐻𝐹
  

(

10) 

where 𝑡𝑝𝑒𝑎𝑘,5%
𝐻𝐹  and 𝑡𝑝𝑒𝑎𝑘,5%

𝐿𝑆𝐺  are vectors containing the timesteps at which the top 5% highest 437 

flood inundation extent are registered (peak period),  𝑡𝑝𝑒𝑎𝑘,5%
𝐿𝑆𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑡𝑝𝑒𝑎𝑘,5%

𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the average 438 

timestep for the peak period for the LSG and high-fidelity models, respectively. 𝑡𝑟𝑖𝑠𝑒,10%
𝐻𝐹  439 

indicates the start of the rising limb of the flood event, which is chosen to be at a 10% increase 440 

compared to the minimum flood extent.  441 

The ability of the LSG model to predict the spatial location of the inundation is assessed 442 

using the Probability of Detection (POD) and Rate of False alarm (RFA) as shown in equations 443 

(11) and (12). 444 

 
𝑃𝑂𝐷 =

𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝐴𝑚𝑖𝑠𝑠𝑒𝑑
 

(

11) 

 
𝑅𝐹𝐴 =

𝐴𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝐴𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚
 

(

12) 

where 𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 is the area detected as flooded or dry at a given timestep using both the high-445 

fidelity and LSG models, 𝐴𝑚𝑖𝑠𝑠𝑒𝑑 is flooded areas predicted using the high-fidelity model but 446 

which is dry using the LSG model, and 𝐴𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 is the flooded areas predicted using the LSG 447 

model but not the high-fidelity model. Furthermore, 𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑, 𝐴𝑚𝑖𝑠𝑠𝑒𝑑 and 𝐴𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 are 448 

plotted on maps for the maximum inundation extent to inspect the locations of error. Bounds and 449 

values corresponding to a good prediction for all the evaluations metrics are shown in Table 1.  450 

 451 

 452 

 453 
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Table 1: Evaluation metrics and bounds for values they can take. 454 

Metric Bounds Good 

prediction 

Notes 

relRMSE [0, 1] 0  

relPeakValErr [-1, 1] 0 Negative and positive value indicates an 

under- and overprediction, respectively. 

relPeakTimeErr-1 [-∞, ∞] 0 Negative and positive value indicate the 

peak being early or late, respectively 

relPeakTimeErr-2 [-∞, ∞] 0 Negative and positive value indicate the 

peak being early or late, respectively 

POD [0, 1] 1  

RFA [0, 1] 0  

 455 

4 Results 456 

4.1 Inundation extent 457 

The inundation extent for the low-fidelity, LSG and high-fidelity models is shown in 458 

Figure 3 for event 1 at three different timesteps. The timesteps are chosen according to the 459 

flooding, peak, and recession periods of the flood event (See Figure 4). The resolution of the 460 

low-fidelity model is coarse, and the floodplain topology is not well described. In general, the 461 

low-fidelity model significantly underestimates the flood inundation extent. This is unexpected, 462 

as models with a low-resolution are known to overestimate the flood inundation extent compared 463 

to models with a finer resolution (Chatterjee et al., 2008; Yu & Lane, 2006). One reason for this 464 

is related to the coupling of the 1D and 2D models. The low- and high-fidelity MIKE 21 models 465 

are coupled to the MIKE 11 model at the same location, but not necessarily at the same 466 

elevation. As the low-fidelity model is averaged over a larger area, the lower elevations in the 467 

river are smoothed out by the floodplain, thus resulting in a higher elevation of the grid cell and 468 

of the 1D-2D coupling. This means the river level in the MIKE 11 model has to reach a higher 469 
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elevation before flooding on the floodplain occurs, and as a result, less water inundates the 470 

floodplain. 471 

The LSG model can compensate for this underestimation and demonstrates clear 472 

improvement over the predictions from the low-fidelity model. The LSG model overestimates 473 

the inundation extent slightly, but in general shows a similar inundation extent to the high-474 

fidelity model at all three timesteps in Figure 3. The performance of the LSG model compared to 475 

the high-fidelity model is assessed in detail in the following paragraphs. 476 

 477 

Figure 3: Flood inundation extent for validation event 1 simulated using the low-fidelity, 478 

LSG, and high-fidelity models. Inundated areas are colored in blue and showed in km² in 479 

the lower left corner of each subfigure. 480 

The prediction of the LSG model is summarised as a timeseries of the inundation extent 481 

for the three validation events in Figure 4. For all three events the low-fidelity model 482 

underestimates the flood inundation extent but provides a similar evolution of the flood extent 483 
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compared to the high-fidelity model. This demonstrates not only the low-fidelity model’s ability 484 

to capture the dynamic features (timing) of the flood inundation events, but also the need for the 485 

Sparse GP models to correct the low-fidelity results.  486 

For event 1 the LSG model significantly improves the low-fidelity model predictions, 487 

especially during the first flat period and the rising limb before the first peak. The first smaller 488 

peak is overestimated, but for the second and larger peak, the LSG model performs well, and the 489 

peak and recession period are only slightly overestimated. For event 3 the LSG model performs 490 

significantly better than the low-fidelity model in predicting the rising limb. However, the peak 491 

is overestimated significantly, showing the same tendency as for the first smaller peak in event 1. 492 

The recession period for event 3 obtained from the LSG model is underpredicted, but it still 493 

shows an improvement compared the low-fidelity model. For the last validation event (Event 6), 494 

the LSG model predicts the flood inundation extent well from start to finish of the event, despite 495 

overpredicting the peak. This shows the LSG model does have the ability to correct the low-496 

fidelity results and to predict a flood inundation extent that is similar to the high-fidelity model. 497 

The difference in the prediction accuracy between the validation events is a result of the 498 

differences between validation and training events, and more training events could potentially 499 

improve the performance of the LSG model.  500 

Considering the evaluation metrics in Table 2, the relative RMSE (relRMSE) for event 3 501 

is lower than that of the other two validation events. This is because event 3 shows signs of both 502 

over- and under-prediction, which on average evens out the errors. The peak value is 503 

overestimated for all three events (relPeakValErr>0), but the relative error compared to the size 504 

of the flood event is low, especially for event 1 and 6. In general, both the relRMSE and 505 

relPeakValErr metrics show errors less than 0.10 compared to the high-fidelity model for all 506 

three validation events, which is considered a good performance. 507 

The timing of the peak shows a similar tendency for both event 1 and 6, where the LSG 508 

predicts the peak earlier than the high-fidelity model, as indicated by the negative peak timing 509 

errors (relPeakTimeErr-1 and relPeakTimeErr-2). In the LSG model structure, the low-fidelity 510 

model is assumed to capture the dynamics of the event, where the key difference between the 511 

high- and low-fidelity models is the spatial resolution of the grid cells. Any systematic 512 

differences in timing errors could be compensated for by calibrating the roughness of the low-513 
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fidelity model to match the evolution of the flood inundation (Yu & Lane, 2006), or the results of 514 

the low-fidelity model could be shifted according to the average timing error in the training data. 515 

However, for event 3, the LSG model predicts the peak later than the high-fidelity model, and an 516 

adjustment of the low-fidelity model results would therefore not improve predictions for event 3.  517 

 518 

Figure 4: Inundation extent obtained using the high-fidelity and LSG models to simulate 519 

the three validation events. 520 

 521 

 522 

 523 

 524 

 525 
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Table 2: Evaluation of the relative performance of the LSG model compared to the high-526 

fidelity model to simulate the validation events. 527 

Metric Event 1 Event 3 Event 6 

relRMSE 0.09 0.04 0.09 

relPeakValErr 0.02 0.06 0.03 

relPeakTimeErr-1 -0.25 0.06 -0.25 

relPeakTimeErr-2 -0.04 0.01 -0.04 

 528 

4.2 Detection of flooding 529 

The Probability of Detection (POD) and Rate of False alarm (RFA) obtained from the 530 

LSG model for the three validation events are shown in Figure 5. The results demonstrate that 531 

the ability of the LSG model to detect the spatial extent of inundation varies throughout the 532 

events. The POD is above 0.76 and the RFA is below 0.20 for the entire duration of all three 533 

validation events, and the POD shows better performance of the LSG model at the beginning of 534 

the events. Event 6 has a low point in the POD around 20/12/2016, which is due to a timing error 535 

of the falling limb of the flood event. The LSG model demonstrates high prediction accuracy for 536 

the POD of Event 6 until this point. The RFA varies throughout the events due to the general 537 

overprediction of the LSG model. Examining the timeseries behaviour of POD and RFA is not 538 

typically done, as these metrics are generally used to characterise errors in the maximum flood 539 

inundation extent. The LSG model’s ability to predict the dynamical flood inundation extent is 540 

therefore hard to compare to that of other surrogate models.  541 

Considering the POD and RFA for the maximum inundation extent in Table 3, the LSG 542 

model performs well. The POD and RFA of the maximum inundation extent are comparable and 543 

are better than found in similar studies, which used surrogate models to predict flood inundation 544 

(e.g. Zhou et al. (2021) showed a POD of 0.99-0.999 and RFA of 0.046-0.067, and Xie et al. 545 

(2021) showed a POD of 0.955-1 and a RFA of 0.001-0.07). 546 
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 547 

Figure 5: Probability of detection (POD) and Rate of false alarm (RFA) for the three 548 

validation events. 549 

 550 

Table 3: POD and RFA of the maximum flood inundation extent for the three validation 551 

events 552 

Parameter Event 1 Event 3 Event 6 

POD 0.99 1.00 1.00 

RFA 0.03 0.06 0.02 

 553 

The extent of the maximum inundation, as well as the detections, misses and false alarms 554 

from the LSG model, are shown in Figure 6. In general, there is a good agreement between the 555 

LSG and high-fidelity models considering the spatial inundation detection ability of the LSG 556 

model, although there are false alarms for all three validation events and misses for events 1 and 557 

3. Events 1 and 6 are larger than event 3 and most of the floodplain is inundated at some point 558 
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during these events. Given the “no-flow” boundary in the MIKE 21 model (described in Section 559 

3.1), flood flows cannot escape by crossing the boundary, which results in a build-up of water on 560 

the floodplain. This means most cells will be inundated at some point during the events, and 561 

thereby detected in the maximum inundation extent. 562 

The eastern and western parts of the floodplain show the biggest errors between the LSG 563 

model prediction and the high-fidelity simulation. These are also the areas that are normally the 564 

last to be inundated during a flood event in this floodplain, and inundation in these areas is thus 565 

harder to predict than in areas that always get inundated.  566 

 567 

Figure 6: Detected, Misses and False alarms for the LSG model compared to the high-568 

fidelity model for the maximum flood extent. (ESRI, 2021). 569 

 570 
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4.3 Computational demand 571 

The simulations are carried out on a High-Performance Computer (HPC) with a 3.70 572 

GHz Intel® Xeon® E-2288G CPU with 64 GB ram and an NVIDIA Quadro RTX 5000 graphic 573 

card for GPU calculations. The computational time of the low-fidelity model is approximately 574 

39% of that of the high-fidelity model, see Table 4. The training and prediction time of the EOF 575 

analysis and the Sparse GP models is considerably shorter than that of running the low-fidelity 576 

model. Further reducing the complexity of the low-fidelity model would increase computational 577 

efficiency of the LSG model, but this is likely to also reduce the accuracy of model predictions. 578 

The nature of this trade-off is an aspect that needs further exploration. 579 

Table 4: Training and prediction time of the high-fidelity model compared to the low-580 

fidelity for simulation of validation event 3.  581 

 High-fidelity 

model 

Low-fidelity 

model 

EOF analysis + 

Sparse GP models 

Import and data conversion - - 10 min 

Training of Sparse GP - - 11 min 

Prediction 1012 min 396 min 1 min 

 582 

5 Discussion 583 

The results in section 4 demonstrate the potential for the LSG model to provide fast and 584 

accurate predictions of flood inundation extent over time. The main advantage for using 585 

surrogate models is the computational gains. The low-fidelity model accounts for 99.7% of the 586 

computational burden of the LSG model. It is therefore worth exploring possibilities of using a 587 

simpler low-fidelity model, as the current hybrid model setup is not considered feasible for 588 

practical purposes such as ensemble and real-time modelling. There are no general rules for how 589 

to reduce the complexity of a hydrodynamic model, but simplifications will compromise the 590 

accuracy, thereby creating a trade-off between accuracy and computational burden. In the case 591 

study considered, the low-fidelity model is simply a coarser version of the high-fidelity model. 592 

To reduce the number of grid cells a flexible mesh that adopts a fine resolution in the river and a 593 
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coarser resolution on the floodplains could be applied. Alternatively, the 2D component could be 594 

removed, so only the 1D MIKE 11 model is run. The MIKE 11 model takes 91 min to simulate 595 

event 3, which would significantly reduce the computational effort compared to the 1D+2D low-596 

fidelity model, which takes 396 min (see Table 4). However, the MIKE 11 simulation results 597 

would have to be transferred onto the floodplain in order to generate the low-fidelity ECs using 598 

the high-fidelity EOF spatial modes. The computational advantages of using just a 1D model 599 

makes this approach attractive, but it has not been explored further in this study. 600 

One objective of this study was also to examine the Sparse GP model and its performance 601 

as an emulator. In training the Sparse GP models, it is essential that the training data includes 602 

events of different magnitudes and variability in the evolutional patterns of the flood inundation, 603 

so the training data covers the entire output space required (Maier et al., 2010; Wu et al., 2013). 604 

Once trained, Sparse GP models are able to handle large input datasets and describe the complex 605 

relationship between the low- and high-fidelity model for a flat complex floodplain. Inclusion of 606 

the Sparse GP model is an important component in achieving accurate predictions in this study 607 

and are considered to be an effective emulator for flood inundation simulation. 608 

Besides the choice of low-fidelity and/or emulator model, an important aspect of 609 

surrogate modelling is the effort needed to setup the modelling framework. The setup of the LSG 610 

model can be tedious due to the need to generate suitable training dataset. This is because 611 

numerous simulations with the high-fidelity model are needed to train the Sparse GP models and 612 

create a robust hybrid surrogate model that can be applied to future flood problems. For this 613 

reason, the LSG model is mostly appropriate for a study area where a high-fidelity model and 614 

several simulation results are already available, or for projects with a long time-horizon so the 615 

training data can be generated, such that the desirable gains in the computational efficiency after 616 

training can be achieved. Furthermore, the EOF analysis and Sparse GP model is undertaken 617 

using Python without a graphical user interface (GUI). To make the model more accessible for 618 

industry users, a simple modelling package with instructions for how to best derive low- and 619 

high-fidelity results and how to use the model could be developed, hence advancing the method 620 

from theory to more practical applications.  621 

After the prediction of the inundation extent, the next natural step for the LSG model is to 622 

extend the methodology to predict other parameters such as water depth and discharge. This is 623 
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important, as only predicting the inundation extent can misrepresent the severity of a flood 624 

(Hunter et al., 2007). The MIKE 21 hydrodynamic model already simulates these parameters but 625 

reconstructing continuous hydraulic variables using the EOF analysis is more complicated than 626 

reconstructing binary depth data. To reconstruct continuous hydraulic variables, boundary 627 

constraints on the EOF analysis may be required to avoid negative values, as suggested by 628 

Giordani and Kiers (2007). Alternatively, other dimension reduction techniques like Self-629 

organising Maps (Kohonen, 1982) or Auto-encoders (Hinton & Salakhutdinov, 2006) could be 630 

explored.  631 

In this study, the LSG model is applied to a floodplain that is particularly flat and 632 

extensive, which is a challenging example to consider when relating differences between high- 633 

and low-fidelity model predictions. The methodology as described is not restricted to this 634 

floodplain, or only fluvial flood problems. In theory, the LSG model could be applied to any 635 

flood inundation problem, or to other similar problems, such as downscaling remotely sensed 636 

data.  637 

6 Conclusion 638 

Accurate predictions of the dynamic behaviour of flood inundation extent are of great 639 

importance to operational flood risk management. Traditional methods based on high-fidelity 640 

hydrodynamic models are known to provide accurate results, but at high computational cost. 641 

This has led to the development of surrogate models that can reduce computational cost whilst 642 

still maintaining an acceptable level of accuracy. However, current surrogate models have 643 

difficulties in handling the high spatial-temporal dimensionality of flood inundation data. The 644 

hybrid LSG surrogate model proposed in this study addresses this challenge. By focusing on the 645 

dynamic behaviour of the flood inundation extent, the LSG model goes beyond the normal 646 

application of emulator surrogate models which generally only predict the maximum inundation 647 

extents.  648 

The hybrid model consists of a low-fidelity hydrodynamic model to capture the dynamic 649 

and spatial correlation of the flood inundation event and a Sparse Gaussian Process (Sparse GP) 650 

model to improve the accuracy of the low-fidelity model. The hydrodynamic model results are 651 

decomposed through Empirical Orthogonal Function (EOF) analysis into EOF spatial maps and 652 

ECs temporal function. This enables the Sparse GP model to transform the low-fidelity ECs into 653 
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high-fidelity ECs, whereafter the predicted high-fidelity ECs are used to reconstruct the dynamic 654 

inundation extent with improved accuracy without actually running a computationally heavy 655 

high-fidelity model. 656 

The LSG model is evaluated on the flat and complex Chowilla floodplain using three 657 

different historic events. Compared to just using a low-fidelity model, the LSG model 658 

significantly improves predictions of the flood inundation extent, thereby showing the benefit of 659 

using Sparse GP models to correct the low-fidelity results. The LSG model achieved a 660 

Probability of Detection (POD) above 0.76 and a Rate of False Alarm below 0.20 for the entire 661 

duration of the validation events compared to the results obtained using the high-fidelity model. 662 

Furthermore, if only the maximum inundation extent is considered, then a POD>0.99 and an 663 

RFA<0.05 are achieved, which demonstrates high prediction accuracy of the LSG model.  664 

The LSG model shows a good overall ability to capture the dynamic behaviour of flood 665 

inundation, but it tends to overpredict the peak inundation extent (e.g. 1-6% for the case study 666 

considered). Regarding the timing, the predictions follow the patterns of the high-fidelity model 667 

predictions, and there is no general tendency for the timing of the peaks to be over- or under-668 

predicted. Once trained, the LSG model reduces the computational demand to 39% of that of the 669 

original high-fidelity model for the selected case study. 670 

In future studies, the trade-offs between model simplicity and computational efficiency 671 

need to be investigated. The low-fidelity model is the most computationally demanding part of 672 

the hybrid model, meaning a reduction in the low-fidelity model complexity could lead to 673 

significant reduction in the computational time, but this is expected to degrade the accuracy of 674 

the hybrid model. Another aspect to consider is to extend the methodology to estimate flood 675 

parameters such as water depth or velocity. These parameters are simulated using hydrodynamic 676 

models and are highly relevant in flood and hazard estimation. A surrogate model should 677 

therefore be able to estimate these parameters to be a fully comparable alternative to a high-678 

fidelity model. Finally, as the methodology is not dependent on the case study, the hybrid model 679 

is applicable to other flood inundation problems (e.g. urban flooding, storm surge) and 680 

applications (e.g. downscaling of remote sensing data). New applications would therefore shed 681 

further light on the potential of the LSG model.  682 

 683 
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Appendix A. Historic events for training and validation 901 

The flood events used for training and validation of the LSG model is shown in Table 902 

A.1 and Figure A.1. Data to simulate the events is obtained from Bureau of Meteorology’s 903 

(BoM) online water data platform (Bureau of Meteorology, 2021) for the three inflow boundaries 904 

(Murray river, Mullaroo creek and Lindsay river) and the downstream water level boundary for 905 

the Murray river. All boundary data is recorded as daily mean values of both discharge and water 906 

level. However, some days only contain a recorded water level for an inflow boundary location. 907 

To address this issue, polynomial functions have been fitted to describe the relation between 908 

water level and discharge for days with both variables recorded. These functions are used to 909 

calculate an estimated discharge, for days with missing discharge recordings. For days with 910 

neither water level nor discharge recorded, the daily values are found using linear interpolation.  911 
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For 3 of the flood events, inflow data is only available for the Murray river, see Table 912 

A.1. The discharge in the Murray river is main source for the flooding and on average a factor 913 

⁓790 and ⁓10 higher than the discharge in the Lindsay river and Mullaroo creek, respectively. 914 

The difference between these 3 events compared to the remaining events is therefore considered 915 

negligible. 916 

As both the low- and high-fidelity models is run with the same boundary conditions, 917 

these adaptations of the boundary values do not affect the results of the LSG model in this paper.  918 

Table A.1: Flood events simulated using the high- and low-fidelity models for training and 919 

validation of the LSG model. 920 

Event no. Start End Inflow scaling 

factor 

Extended 

duration 

Validation 

event 

1 
a
 15/08/2010 01/06/2011 1 - Yes 

2
 a
 01/07/2011 15/10/2011 1 - No 

3 01/03/2012 15/06/2012 1 - Yes 

4 20/06/2012 01/11/2012 1 - No 

5a 01/07/2013 01/12/2013 3 - No 

5b 01/07/2013 01/12/2013 4 - No 

5c
 b
 01/07/2013 01/12/2013 3 x2 No 

5d
 b
 01/07/2013 01/12/2013 4 x2 No 

6
 a
 01/07/2016 01/02/2017 1 - Yes 

7a 01/11/2017 15/01/2018 3 - No 

7b 01/11/2017 15/01/2018 4 - No 

7c 01/11/2017 15/01/2018 5 - No 

7d 01/11/2017 15/01/2018 6 - No 

7e
 b
 01/11/2017 15/01/2018 5 x2 No 
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7f
 b

 01/11/2017 15/01/2018 6 x2 No 

8a 01/09/2019 01/12/2019 3 - No 

8b 01/09/2019 01/12/2019 4 - No 

8c 01/09/2019 01/12/2019 5 - No 

8d 01/09/2019 01/12/2019 6 - No 

8e
 b
 01/09/2019 01/12/2019 5 x2 No 

8f
 b

 01/09/2019 01/12/2019 6 x2 No 

9a 01/11/2020 15/01/2021 3 - No 

9b 01/11/2020 15/01/2021 4 - No 

9c 01/11/2020 15/01/2021 5 - No 

9d 01/11/2020 15/01/2021 6 - No 

9e
 b
 01/11/2020 15/01/2021 5 x2 No 

a
 Only data for the Murray River is available for the inflow boundaries. Linear 

interpolation is used for the other inflow boundaries. 

b
 Start and end dates reflect original dates of the event. Events are extended by the 

factor in the extended duration column. 
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 921 

Figure A.1: Inflow hydrographs for discharge in the Murray river during the historic and 922 

synthetic flood events. In the legend “a, b, … , f” refers to the event number in Table A.1. 923 

Events without a letter corresponds to the “a” hydrograph. 924 


