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TextS1 presents the governing equation in the drained model. 17 

TextS2 presents the nondimensionalized governing equation in the drained model. 18 

TextS3 presents a numerical method for the governing equation in the drained model. 19 
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TextS4 presents the approximate solution of the tidal response in the drained model. 20 

Figure S1 shows a schematic of the undrained and drained models. 21 

Figure S2 shows the numerical solution of 𝑐 in equation (12) for the undrained model. 22 

Figure S3 shows the numerical and approximate solutions for the tidal responses α and δ in the 23 

drained model. 24 

Figure S4 shows the numerical solution of 𝑐 in equation (12) for the drained model. 25 

 26 

27 

We explain a drained model in which pore fluids flow out of the shear zone (Figure S1b). The 28 

difference between the undrained and drained models is in the presence of fluid flow. The 29 

governing equations of the drained model are the same those as in the undrained model 30 

(equations (3), (4) and (8)), except for the governing equation for pore fluids. 31 

Following the work of Segall et al. (2010), we assume homogeneous diffusion (HD), which 32 

holds under the condition that 𝑇 ≫ 𝑡𝑤. In the HD case, the effect of the finite shear zone 33 

thickness can be neglected, so the width of the shear zone can be formally defined as 𝑤 → 0 34 

(Segall et al., 2010). The direction of fluid flow (Figure S1b) is parallel to the z-axis, and the 35 

shear zone lies on 𝑧 = 0. 𝑐ℎ𝑦𝑑 denotes the fluid pressure diffusivity at 𝑧 ≠  0. Then, the 36 

governing equation for pore fluids can be written as (Segall et al., 2010) 37 

𝜕𝑝

𝜕𝑡
= 𝑐ℎ𝑦𝑑

𝜕2𝑝

𝜕𝑧2
  (

𝜕𝑝

𝜕𝑧
|

𝑧=0
=

𝑀𝑤𝜙̇

2𝑐ℎ𝑦𝑑
) #(𝑆1)
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39 

The governing equations for the drained model are the upper three in equation (10) and the 40 

nondimensionalized equation (S1). When we adopt √𝑐ℎ𝑦𝑑𝑇 as the representative length in the z-41 

axis direction, the nondimensionalized equation (S1) can be written as 42 

𝜕𝑝̃

𝜕𝑡̃
=

𝜕2𝑝̃

𝜕𝑧̃2
   (

𝜕𝑝̃

𝜕𝑧̃
|

𝑧̃=0
= −𝐸𝑝

1

𝜃̃

𝑑𝜃̃

𝑑𝑡̃
) , #(𝑆2)  

where 𝐸𝑝 = 𝑀𝜖/2𝜎𝑒𝑓𝑓
0 √𝑤2/𝑇𝑐ℎ𝑦𝑑 = 𝑈/2√𝑤2/𝑇𝑐ℎ𝑦𝑑. 𝐸𝑝 represents the relative importance of 43 

the dilatancy/compaction effect to the effective normal stress change in the drained model. 44 

Previous experiments and observations suggest that 𝑐ℎ𝑦𝑑~10−1~3 m2/s (Yamashita and 45 

Tsutsumi, 2018) and 𝑈~100~−2 (Section 2.2.3). Using 100~1/2 m as the value of 𝑤 (Section 46 

4.3.4), we obtain a possible range of 𝐸𝑝 of 10−2 to 10−4. 47 

48 

49 

The upper three equations in equation (10) are calculated numerically using the third-order 50 

Adams-Bashforth method. equation (S2) is calculated numerically using the method in Appendix 51 

B of Segall et al. (2010). In the following, we discuss the latter method. Near the shear zone, the 52 

discretization needs to be sufficiently fine to capture a steep gradient of the pore fluid pressure. 53 

On the other hand, for a region far from the shear zone, the discretization does not need to be fine 54 

because the pore fluid pressure gradient is small. Thus, we use the following coordinate 55 

transformation between 𝑧 and 𝑟 (Segall et al., 2010): 56 

𝑧(𝑟) = −𝑐 + 𝑒r or, equivalently 𝑟(𝑧) = ln(𝑐 + 𝑧). 

We solve equation (S2) numerically in a new coordinate system using the Crank-Nicolson 57 

method. Specifically, we solve 58 
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{1 +
𝛾

2
𝑒−𝑟𝑘(𝑒−(𝑟𝑘−𝛿) + 𝑒−(𝑟𝑘+𝛿))} 𝑝𝑘

𝑖+1

= 𝑝𝑘
𝑖 +

𝛾

2
𝑒−𝑟𝑘𝑒−(𝑟𝑘−𝛿)(𝑝𝑘−1

𝑖 + 𝑝𝑘−1
𝑖+1 ) −

𝛾

2
𝑒−𝑟𝑘𝑝𝑘

𝑖 (𝑒−(𝑟𝑘−𝛿) + 𝑒−(𝑟𝑘+𝛿)), #(𝑆3)
 

where 𝛾 = Δ𝑡/Δ𝑟2, 𝛿 = Δ𝑟/2, and 𝑝𝑖
𝑘 is the value of the pore fluid pressure of the 𝑘-th grid in 59 

the new coordinate system at time step 𝑖. Δ𝑡 andΔ𝑟 represent increments in time and space, 60 

respectively. In this study, the number of grids is 35, the starting position of the grid is 𝑟(0) =61 

ln(0), Δ𝑟 = 0.3, and 𝑐 = 10−4. Therefore, the grid farthest from the shear zone in the numerical 62 

calculation using 𝑐ℎ𝑦𝑑~10−1 m2/s, 𝑇~12.4 h is approximately z=170 m, while the grid farthest  63 

to the shear zone in the numerical calculation using 𝑐ℎ𝑦𝑑~10−3 m2/s, 𝑇~12.4 h is 64 

approximately z=17 m. 65 

66 

67 

The approximate solution for the drained model is derived in the same manner as in Section 3.1. 68 

The pore fluid pressure change due to fluid flow is represented as 𝑝(𝑧, 𝑡) = 𝑝0 + Δ𝑝(𝑧)𝑒𝑖𝜔𝑡, 69 

where 𝑝(0, 𝑡) corresponds to the pore fluid pressure in the shear zone. The equations for the 70 

drained model corresponding to equations (13) and (14) for the undrained model are  71 

Δ𝑉̃

𝑉̃𝑝𝑙

=
2𝜋𝑖

𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶
|Δ𝑆̃(𝑡)|#(𝑆4)  

and 72 

𝐶 = 𝑎 −
1

1 + 𝑖
𝑇𝜃
𝑇

(𝑏 − 𝜇𝑝𝑙𝐸𝑝√2𝜋𝑖), respectively. #(𝑆5)  

The equations of the drained model corresponding to equations (17) and (18) for the undrained 73 

model are 74 

𝛼 = 𝑅𝑒 (
2𝜋𝑖

(𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶)𝜎𝑒𝑓𝑓
0 ) #(𝑆6)  

and 75 
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𝛿 = 𝑎𝑟𝑔 (
2𝜋𝑖

𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶
) , respectively. #(𝑆7)  

Furthermore, by applying the argument from which equations (19) and (20) were derived for the 76 

drained model, the approximate solutions of 𝛼 and 𝛿 can be expressed as 77 

𝛼~𝑅𝑒 {(𝐶𝜎𝑒𝑓𝑓
0 )

−1
} #(𝑆8)  

and 78 

𝛿~𝑎𝑟𝑔{𝐶−1}, respectively. #(𝑆9)  

79 
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80 

A schematic of the undrained (a) and drained (b) models. The difference between the 81 

two models is whether fluid flows outside the shear zone82 

83 

84 
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85 

The numerical solution of 𝑐 (dots). The differences in color represent differences in the 86 

dilatancy parameter 𝑈. 87 

88 

89 
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90 

(a) The numerical solution of 𝛼 (dots) and the approximation solution (i.e., equation 91 

(S8)) (solid line). (b) The numerical solution of 𝛿 (dots) and the approximation solution (i.e., 92 

equation (S9)) (solid line). The differences in color represent differences in the dilatancy 93 

parameter 𝐸𝑝 for the drained model. 94 

95 
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96 

The numerical solution of 𝑐 (dots). The differences in color represent differences in the 97 

dilatancy parameter 𝐸𝑝 for the drained model.98 

99 


