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Abstract 16 

Tidal triggering of tectonic tremors has been observed at plate boundaries around the circum-Pacific region. It has 17 

been reported that the response of tremors to tidal stress during episodic tremor and slow slip (ETS) changes 18 

between the early and late stages of ETS. Several physical models have been constructed, with which observations 19 

for the tidal response during ETS have been partly reproduced. However, no model has been proposed that 20 

reproduces all the observations. In this study, a model adopted in previous studies is extended to include the effects 21 

of dilatancy/compaction that occur in the fault creep region. The analytical approximate solution derived in this 22 

study and numerical computational results reveal how the tidal response depends on physical properties of the fault. 23 

Furthermore, the model reproduces all the above observations simultaneously for a specific range of fault 24 

parameters. Of particular importance is that the occurrence of dilatancy/compaction is essential to reproduce the 25 

tidal response at the early stage of ETS. The value of the critical distance 𝑑𝑐 is constrained to be approximately 26 

10 cm. This is in agreement with the values that have been widely used in seismic cycle numerical simulations 27 

rather than those obtained in laboratory experiments. The fluid pressure diffusivity is constrained to be at least 28 

10−5 m2/s or less, and the effective normal stress is constrained to 105~6 Pa. In conclusion, this study shows that 29 

reproducing the tidal response of tectonic tremors during ETS is useful for estimating fault physical properties, 30 

including hydraulic properties. 31 

Plain Language Summary 32 

Slow earthquakes, which are slower fault slips than ordinary earthquakes, have been observed at many plate 33 

boundaries around the Pacific Rim. To understand how slow earthquakes occur, we need to know the exact physical 34 

fault properties that cause slow earthquakes. Previous studies have reported that the rate of occurrence of tectonic 35 

tremors, which are slow earthquakes, varies periodically in response to subsurface stress changes induced by tides. 36 

However, the detailed mechanism of the periodic behavior is still unclear. In this paper, we develop a theoretical 37 

model to explain this periodic behavior. A comparison between the observations in the Nankai Trough and Cascadia 38 

with our model shows that the pore fluid pressure in the vicinity of the fault changes significantly when tremors 39 

respond relatively weakly to tides. Furthermore, for the model to explain the observed tidal response of tremors, we 40 

find that the scale of the surface roughness of the fault should be much larger than those obtained by laboratory 41 

experiments and that the fault should have a low permeability. 42 
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1 Introduction 43 

 Recent geodetic and seismological observations have revealed that slow earthquakes occur in the transition zone, 44 

which is located at the deeper extension of the locked megathrust zone in a subduction zone. Slow earthquakes have 45 

various timescales, which are classified into low-frequency earthquakes (LFEs) with a major frequency of 2 − 8 Hz 46 

(Obara, 2002), tectonic tremors, which are aggregations of LFEs (Shelly et al., 2007a), very low-frequency 47 

earthquakes (VLFEs) with a major frequency of 20 − 200 Hz (Ito et al., 2007), and slow slip events (SSEs), which 48 

do not radiate seismic waves and continue to slip for more than a few days (Dragert et al., 2001; Hirose et al., 1999). 49 

The focal mechanism of these slow earthquakes indicates that slow earthquakes accommodate shear slip on the plate 50 

interface (e.g., Ide et al., 2007; Shelly et al., 2006). This focal mechanism coincides with that of ordinary 51 

earthquakes, which cause fast slip. It is well known that the fast slip behavior of an ordinary earthquake reflects the 52 

physical properties of the fault, which consist of friction, effective normal stress and dilatancy/compaction (e.g., 53 

Proctor et al., 2020; Scholz, 2019; Segall and Rice, 1995). The coincidence of the focal mechanism with those of 54 

slow earthquakes means that the slip behaviors of slow earthquakes should also reflect such fault physical 55 

properties. Therefore, it is important to clarify physical fault properties in the transition zone to reveal the 56 

mechanism of slow earthquakes on various timescales. 57 

 In numerical simulation studies, several models have been proposed to reproduce slow earthquakes. These models 58 

usually adopt the rate- and state-dependent friction law (RSF) (e.g., Dieterich, 1979; Marone, 1998) as the frictional 59 

law on the plate interface. Examples of such models are those assuming near-neutral stability (e.g., Liu and Rice, 60 

2005; Matsuzawa et al., 2010), dilatant strengthening of the shear zone (e.g., Liu, 2013; Segall et al., 2010), 61 

transition from velocity weakening (VW) at a low slip rate to velocity strengthening (VS) at a high slip rate (e.g., Im 62 

et al., 2020; Peng and Rubin, 2018; Shibazaki and Iio, 2003), spatial heterogeneity of frictional properties and 63 

effective normal stress (Luo and Ampuero, 2018), and sudden negative Coulomb stress change in the VS region due 64 

to fault valve action (Perfettini and Ampuro, 2008). Comparisons between such models and observed slow slip 65 

behaviors have allowed us to estimate the physical fault properties in the transition zone, which cannot be observed 66 

directly (e.g., Beeler et al., 2018; Luo and Liu, 2019; Nakata et al., 2012; Shibazaki et al., 2012). 67 

 In this study, we focus on tectonic tremors because they occur more frequently than other slow earthquakes, and it 68 

is easier to obtain more data to investigate the physical properties of faults. Tremors are classified into episodic 69 

families that accompany an SSE and continuous families that consist of tremors that occur almost every day 70 
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(Thomas et al., 2018). The former is called episodic tremor and slip (ETS) (Obara et al., 2004; Rogers and Dragert, 71 

2003). An important observational fact is that, for an ETS, there is a correlation between the slip rate of the SSE and 72 

the tremor occurrence rate (e.g., Bartlow et al., 2011; Hirose and Obara, 2010; Thomas et al., 2018; Villafuerte et al., 73 

2017), even though the cumulative moment magnitude 𝑀𝑊 of tremors is orders of magnitude smaller than that of 74 

SSEs (Kao et al., 2010). This correlation has been modeled by assuming that a tremor source is driven to failure by 75 

the stress loading due to aseismic slip that occurs in the region surrounding the tremor source (Shelly et al., 2007a). 76 

Based on this model, Shelly et al. (2011) interpreted the delayed dynamic triggering of tremors as a result of 77 

transient creep induced by the passage of seismic waves. Similarly, Tan and Marsan (2020) interpreted that the 78 

spatial anisotropy of the SSE during an ETS causes anisotropy in the power law describing a spatial decay of 79 

tremors. 80 

Another important observational fact revealed by global observations of tremors is that tremors are sensitive to 81 

tidal stress (e.g., Chen et al., 2018; Hoston, 2015; Ide and Tanaka, 2014; Ide et al., 2015; Nakata, 2008; Royer et al., 82 

2015; Rubinstein et al., 2008; Shelly et al., 2007b; Thomas et al., 2009, 2012; Van Der Elst et al., 2016; Yabe et al., 83 

2015). In general, stress changes on faults in the transition zone due to semidiurnal and diurnal tides are a few kPa or 84 

smaller. These stress changes are much smaller than the stress drop of ordinary earthquakes. Therefore, the tidal 85 

response of ordinary earthquakes is not always noticeable (cf., Ide et al., 2016; Métivier et al., 2009; Vidale et al., 86 

1998). However, the tidal response of slow earthquakes is clearer because the pore pressure on the plate interfaces is 87 

much higher in the transition zone than in the seismogenic zone, and hence, the effective normal stress is low (Audet 88 

et al., 2009; Shelly et al., 2006). 89 

 The tidal response of tremors can be characterized by a tidal sensitivity and a phase difference. The tidal sensitivity, 90 

which characterizes the magnitude of tidal modulation of the tremor rate (i.e., the number of observed tremor events 91 

per unit time), is defined as 𝛼; the relationship between the tremor rate and the tidal Coulomb stress change is 92 

described by 93 

𝑅 = 𝑅0𝑒𝛼∆𝑆(𝑡), ##(1)  

where 𝑅 denotes the tremor rate, ∆𝑆(𝑡) is the tidal Coulomb stress, and 𝑅0 is the reference tremor rate when 94 

∆𝑆(𝑡) = 0. In equation (1), the order of the tidal sensitivity is 0.1~1 kPa−1 (e.g., Houston, 2015; Ide et al., 2015; 95 

Thomas et al., 2012; Yabe et al., 2015). The phase difference, defined as 𝛿, represents the phase shift between the 96 

tremor rate peak (i.e., the phase at which 𝑅 is maximized) and the tidal stress peak (i.e., the phase at which ∆𝑆(𝑡) is 97 
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maximized). 𝛿 is positive when the tremor rate reaches its maximum before the tidal stress reaches its maximus. For 98 

example, when the peak of 𝑅 precedes the peak of ∆𝑆(𝑡) in the semidiurnal tide (approximately 12 hour cycle) by 3 99 

hours, 𝛿~𝜋/2. Previous studies have reported that 𝛼 and 𝛿 change at the early and later stages of the ETS (Houston, 100 

2015; Royer et al., 2015; Yabe et al., 2015). At the early stage of an ETS, 𝛼~0.1 kPa−1 (meaning that tidal 101 

modulation of the tremor rate is smaller) and 𝛿~𝜋/2. At the later stage of the ETS, 𝛼~0.7 kPa−1 (meaning that the 102 

tidal modulation of the tremor rate is larger) and 𝛿~0. In addition, the number of tremors occurring at the later stage 103 

of ETS is approximately 1/10 or less than at the early stage of ETS (Houston, 2015; Royer et al., 2015). 104 

Constructing a model that reproduces such observed tidal responses of tremors is an effective method to infer the 105 

physical properties of faults because tidal stress change, which serves as an “input” to a fault slip model to 106 

reproduce the tidal response, is much easier to estimate. Previous studies have proposed several models to interpret 107 

the observed tidal response of tremors (Ader et al., 2012; Beeler et al., 2013; Beeler et al., 2018; Hawthorne and 108 

Rubin, 2013; Houston, 2015). These models are classified into deterministic models that adopt the physical model 109 

proposed by Shelly et al. (2007a) and a stochastic model that adopts the Weibull distribution as the failure strength 110 

of tremor sources. Furthermore, deterministic models are classified into models that consider the change in the pore 111 

fluid pressure at the plate interface due to dilatancy/compaction and models that do not consider it (Table 1). 112 

Specifically, Ader et al. (2012) adopted the RSF for the VS to describe the tidal modulation of the fault creep 113 

velocity. They showed that the tidal sensitivity and phase difference depend on the magnitude of the ratio of the 114 

timescale of a tidal period to the timescale of the evolution of the state variable. Based on this result, they stated that 115 

the differences in the tidal response of tremors are due to the differences in the average fault creep velocity. Beeler 116 

et al. (2013) compared dislocation creep, dislocation glide and the RSF of the VS as possible mechanisms of fault 117 

creep. They concluded that the RSF of the VS successfully explained the behavior represented by equation (1). 118 

Based on a model that follows the RSF that transitions from the VW to the VS, Hawthorne and Rubin (2013) 119 

showed that the tidal modulation of the fault creep velocity increases as the fault creep average velocity decreases. 120 

Based on a probabilistic model, Houston (2015) interpreted that the tidal response of tremors is different between 121 

the early stage and later stages of ETS due to a gradual decrease in the rupture strength for the tremor sources. 122 

Beeler et al. (2018) reproduced the observed tidal response of tremors of the continuous families based on a model 123 

assuming the RSF of the VW and estimated fault physical properties of the transition zone, such as the fluid pressure 124 

diffusivity and dilatancy coefficient. 125 
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 126 

Table 1. A summary of previous models and our model 127 

Paper that proposed 

the model 

Model type Introduction of fluid 

pressure change by 

dilatancy/compaction 

Reproduction of 

tidal response of 

tremor at the early 

stage of ETS 

Reproduction of 

tidal response of 

tremor at the later 

stage of ETS 

Ader et al. (2012) Deterministic N N Y 

Beeler et al. (2013) Deterministic N N Y 

Hawthorne and 

Rubin (2013) 

Deterministic N N Y 

Houston (2015) Probabilistic ― Ya Ya 

Beeler et al. (2018) Deterministic Y ―b ―b 

This study Deterministic Y Y Y 

a The model assumption may not be valid. bThe model is not applicable to the tidal response of tremors during ETS. 128 

 129 

Most of the above models can partially explain the observations of the tidal response of tremors during ETS (Table 130 

1). However, these models have several disadvantages. The model of Ader et al. (2012) cannot explain the 131 

observation results that 𝛿~𝜋/2 without adopting a value of a critical slip distance that is sufficiently smaller than 132 

that obtained from rock experiments. The models of Beeler et al. (2013) and Hawthorne and Rubin (2013) cannot 133 

explain the observation results of 𝛿~𝜋/2. The model of Houston (2015) assumes that slip accumulation during the 134 

ETS breaks down precipitating minerals and weakens the fault. This model may contradict the idea of dilatant 135 

strengthening, which assumes that fault strength increases with increasing pore space due to breakage of 136 

precipitating minerals (Audet and Bürgmann, 2014). The model of Beeler et al. (2018) reproduces the tidal response 137 

of tremors for continuous families, but it cannot account for the tidal response of tremors during ETS. Therefore, the 138 

models proposed thus far cannot explain the aspects of the observed tidal responses of tremors or contradict the 139 

results of laboratory experiments. 140 

Here, we propose a new model in which dilatancy/compaction occurs in the VS region to explain the observed tidal 141 

response of tremors during ETS. We find that the pore fluid pressure changes due to dilatancy/compaction caused by 142 
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tidal stress change in the transition zone, where the effective normal stress is low, has a significant influence on the 143 

sliding behavior in the VS zone. We present governing equations for this problem in chapter 2. In the next chapter, 144 

we derive an approximate solution to quantitatively describe 𝛼 and 𝛿 and clarify how the model responds to tidal 145 

stress changes. We reveal the physical reason for the dependence of 𝛼 and 𝛿 on the fault physical properties. In 146 

chapter 4, we estimate fault physical properties based on comparison between the observations and our model results 147 

and discuss the validity of the estimated properties. In chapter 5, we summarize the results. 148 

2 Methods 149 

2.1 Modeling the rate of tremor occurrence 150 

As in previous studies, we assume that tremors are generated by the rupture of small brittle patches on the fault 151 

plane due to the aseismic shear slip of a larger-scale surrounding fault (Ader et al., 2012; Beeler et al., 2013; Shelly 152 

et al., 2007a). This means that the tremor source is very small and that the tremor rate, 𝑅, serves as a passive meter 153 

of the creep velocity of the surrounding fault, 𝑉: 154 

𝑉

𝑉𝑟
=

𝑅

𝑅𝑟
, #(2)  

where 𝑅𝑟 and 𝑉𝑟 denote the tremor rate and the creep velocity at a reference state, respectively. Based on this 155 

assumption, we can regard a change in the tremor rate as a change in the creep velocity. We consider the effects of 156 

tidal modulation on the creep velocity 𝑉 rather than on the tremor rate itself (e.g., Ader et al., 2012; Beeler et al., 157 

2013; Ide and Tanaka, 2014). 158 

2.2 Governing equations 159 

2.2.1 RSF 160 

We model the above fault creep, assuming a one-degree-of-freedom spring-slider system and employ the RSF as a 161 

friction law (Ader et al., 2012). According to the RSF, the friction coefficient 𝜇 can be written as: 162 

𝜇 = 𝜇0 + 𝑎log (
𝑉

𝑉0
) + 𝑏log (

𝑉0𝜃

𝑑𝑐
) , #(3)  
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where 𝜇0 denotes the friction coefficient at a reference slip velocity 𝑉0, 𝑉 is the slip velocity, 𝑑𝑐 is the critical slip 163 

distance, 𝜃 is the state variable, which is often interpreted as the average contact time for an asperity, and 𝑎 and 𝑏 164 

are fault constitutive parameters (e.g., Scholz, 1998). To represent fault creep, the constitutive parameters must 165 

satisfy 𝑎 > 𝑏. This regime is called VS. In equation (3), the second term on the right-hand side (RHS) represents the 166 

“direct effect”, which is caused by a change in the slip velocity, and the third term on the RHS represents the 167 

“evolution effect”, which is caused by the temporal change in the state variable. Fault slip behavior evolves to a new 168 

steady state when a sudden slip velocity change occurs and the fault slips over a distance of 𝑑𝑐 (Dieterich, 1979). 169 

This process can be expressed in several ways. In this study, we adopt the slip law proposed by Ruina (1983): 170 

d𝜃

d𝑡
= −

𝑉𝜃

𝑑𝑐
log (

𝑉𝜃

𝑑𝑐
) . #(4)  

2.2.2 Dilatancy/Compaction 171 

Dilatancy/compaction is a mechanism that relates fault gouge deformation to the behavior of the pore fluid. A 172 

shear zone exists at and near the plate interface where shear slip is localized and fault gouge is present (e.g., Rice, 173 

2006). We assume that the porosity change in the shear zone is caused by dilatancy/compaction (e.g., Segall et al., 174 

2010; Suzuki and Yamashita, 2009). The associated behavior of pore fluids can be modeled as in the following two 175 

cases. The first is an undrained model, which assumes that the pore fluid pressure changes only within the shear 176 

zone (Figure S1a in the supporting information), and the second is a drained model, which assumes a “homogeneous 177 

diffusion” of the pore fluid into a region adjacent to the shear zone (Segall et al., 2010) (Figure S1b in the supporting 178 

information). Since our model is a one-degree-of-freedom system, the pore fluid pressure is uniform in the direction 179 

of the slip plane, and the pore fluid pressure diffuses in the direction vertical to the slip plane. As described later, the 180 

undrained model can explain the observed results in a consistent way and the drained model cannot. Therefore, the 181 

results for the drained model are shown only in the supporting information (Figures S3 and S4). The undrained 182 

model is theoretically valid when a tidal period 𝑇 (e.g., 12.4 hours) is sufficiently shorter than the characteristic 183 

timescale 𝑡𝑤 at which the pore fluid pressure diffuses through the shear zone (𝑇 ≪ 𝑡𝑤). 184 

Mathematically, in the undrained model, the pore fluid pressure change in the shear zone can be described as 185 

d𝑝

d𝑡
= −𝑀

d𝜙

d𝑡
, #(5)  
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which is derived from the conservation of pore fluid mass (Segall et al., 1995), where d𝑝/d𝑡 denotes a temporal 186 

change in the pore fluid pressure, 𝑀 is the bulk modulus of the fluid and the pore space, and d𝜙/d𝑡 denotes a 187 

change in the porosity due to dilatancy/compaction. As described previously, for the friction coefficient (equation 188 

(3)), the porosity, which varies with dilatancy/compaction, also evolves from one steady state to another as the slip 189 

velocity changes. The evolution law for the porosity can be empirically described as 190 

d𝜙

d𝑡
= −

𝜖

𝜃

d𝜃

d𝑡
, #(6)  

using the state variable 𝜃, where 𝜖 is a dilatancy coefficient (Segall and Rice, 1995). From equations (5) and (6), we 191 

obtain 192 

d𝑝

d𝑡
= −𝜖𝑀

1

𝜃

d𝜃

d𝑡
 . #(7)  

 193 

2.2.3 A quasi-static equation of motion 194 

The quasi-static equation of motion for the one-degree-of-freedom spring-slider model under tidal stress can be 195 

written as 196 

∆𝜏(𝑡) + 𝑘Δ𝑢 = 𝜇𝜎𝑒𝑓𝑓(𝑡), #(8)  

where ∆𝜏(𝑡) denotes the shear stress acting on the fault plane due to tides, 𝜎𝑒𝑓𝑓(𝑡) is the effective normal stress, ∆𝑢 197 

is the relative displacement of the block to the spring pulling distance, 𝑘 is the spring stiffness and 𝜇 is the friction 198 

coefficient (Ader et al., 2012; Perfettini and Schmittbuhl, 2001). In our model, the effective normal stress is written 199 

as 𝜎𝑒𝑓𝑓(𝑡) = 𝜎𝑒𝑓𝑓
0 + ∆𝜎(𝑡) − ∆𝑝(𝑡) − Δ𝑝′(𝑡), where 𝜎𝑒𝑓𝑓

0  denotes a reference effective normal stress, ∆𝜎(𝑡) is the 200 

normal stress acting on the fault plane due to tides, ∆𝑝(𝑡) is the pore fluid pressure change due to 201 

dilatancy/compaction in the shear zone, and ∆𝑝′(𝑡) is the pore fluid pressure change due to the tidal normal stress 202 

change. When the tidal normal stress increases, ∆𝑝′(𝑡) also increases in proportion to the Skempton coefficient, 𝐵 203 

(i.e., ∆𝑝′(𝑡) = 𝐵Δ𝜎(𝑡)) (e.g., Beeler et al., 2018; Scholz et al., 2019). Using this relationship, the effective normal 204 

stress can be rewritten as 205 

𝜎𝑒𝑓𝑓(𝑡) = 𝜎𝑒𝑓𝑓
0 + (1 − 𝐵)∆𝜎(𝑡) − ∆𝑝(𝑡). #(9)  

The observations show that there is almost no correlation between the tidal normal stress change and the tremor 206 

rate (Houston, 2015; Thomas et al., 2012), which indicates that the fault strength is almost unchanged due to the 207 
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tidal normal stress change. This suggests that 𝐵 is nearly equal to 1 (equation (9)). Therefore, we adopt 𝐵 = 0.9 in 208 

our model. For simplicity, we assume that the tidal stresses ∆𝜎(𝑡) and ∆𝜏(𝑡) have a single period with the same 209 

magnitude and phase (i.e., ∆𝜎(𝑡) = Δ𝜏(𝑡) = |Δ𝜎(𝑡)|𝑒𝑖𝜔𝑡). 210 

 211 

2.3 Nondimensionalization of governing equations 212 

Equations (3), (4), (7) and (8) constitute the governing equations for our model. For nondimensionalization of these 213 

equations, we selected a tidal period 𝑇, a reference effective normal stress 𝜎𝑒𝑓𝑓
0 , and a critical slip distance 𝑑𝑐 as 214 

characteristic physical quantities (Table 2). Representing the dimensionless variables with a tilde, the result is 215 

written as: 216 

𝜇 = 𝜇0 + 𝑎log (
𝑉̃

𝑉̃0

) + 𝑏log (
𝜃̃

𝜃̃0

) 

Δ𝜏̃ + 𝐾Δ𝑢̃ = 𝜇𝜎̃𝑒𝑓𝑓 

d𝜃̃

d𝑡̃
= −𝜃̃𝑉̃log (𝜃̃𝑉̃) 

d𝑝̃

d𝑡̃
=

𝑈

𝜃̃

d𝜃̃

d𝑡̃
, #(10)  

where 𝜃0 = 𝑑𝑐/𝑉0 denotes the state variable at a reference slip velocity 𝑉0, 𝐾 = 𝑑𝑐𝑘/𝜎𝑒𝑓𝑓
0  is the nondimensional 217 

spring constant, and 𝑈 = 𝑀𝜖/𝜎𝑒𝑓𝑓
0  is the dilatancy parameter. Substituting the last equation in equation (10) into the 218 

nondimensionalized version of equation (9), we find that the larger 𝑈 is, the more dominant the effect of ∆𝑝(𝑡) on 219 

the effective normal stress is. In other words, the parameter 𝑈 represents the relative importance of the 220 

dilatancy/compaction to the effective normal stress change. Previous experiments and observations suggest that 221 

𝜎𝑒𝑓𝑓
0 ~105~6 Pa (Nakata et al., 2008; Shelly et al., 2006; Yabe et al., 2015), 𝜖~10−4~−5 (Samuelson et al., 2009), 222 

and 𝑀~1010 Pa (Segall et al., 1995). This yields a possible range of 𝑈 from 100 to 10−2. 223 

The time evolution of each physical quantity is numerically calculated using the third-order Adams-Bashforth 224 

method. 225 

 226 

Table 2. Parameters of fault physical properties 227 



manuscript submitted to replace this text with name of AGU journal 

 

Parameter Value 

Reference velocity 𝑉0 10−9 m/s 

Spring pulling velocity 𝑉𝑝𝑙 10−8 m/s 

Reference frictional coefficient 𝜇0 0.7 

Reference effective normal stress 𝜎𝑒𝑓𝑓
0  500 kPa 

Skempton coefficient 𝐵 0.9 

Spring stiffness 𝑘 104 Pa/m 

Magnitude of tidal shear stress|Δ𝜏(𝑡)| 1 kPa 

Magnitude of tidal normal stress|Δ𝜎(𝑡)| 1 kPa 

Tidal period 𝑇 12.4 h 

Frictional parameter 𝑎 0.003 

Frictional parameter 𝑏 0.002 

Dilatancy parameter 𝑈 10−2~0 

 228 

2.4 Definition of the tidal sensitivity (𝛼) and the phase difference (𝛿) 229 

In previous studies, 𝛼 has been estimated using equation (1), and 𝛿 has been inferred using the phase difference 230 

between the tidal Coulomb stress peak and the tremor rate peak (Houston, 2015; Royer et al., 2015; Yabe et al., 231 

2015); we define 𝛼 and 𝛿 in the same way. In the following, we refer to these two parameters as the “tidal 232 

response”. 233 

To illustrate the definition of these two quantities and how to determine them, Figure 1 shows a result obtained by 234 

numerically solving the governing equations for the case of 𝑈 = 0 and 𝑑𝑐 = 100 μm. The solid yellow line in 235 

Figure 1a is the time evolution of 𝑉(𝑡)/𝑉𝑝𝑙 during one tidal cycle. The solid yellow line in Figure 1b shows 𝑉(𝑡)/236 

𝑉𝑝𝑙 in Figure 1a against Δ𝑆(𝑡), and the solid green line shows the average of the upper and the lower values of 237 

𝑉(𝑡)/𝑉𝑝𝑙 at each Δ𝑆(𝑡) on the horizontal axis, where 238 

Δ𝑆(𝑡) = Δ𝜏(𝑡) − 𝜇𝑝𝑙(1 − 𝐵)Δ𝜎(𝑡)#(11)  
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denotes the tidal Coulomb stress (e.g., Beeler et al., 2018; Scholz et al., 2019), and 𝜇𝑝𝑙 is the steady-state friction 239 

coefficient at velocity 𝑉𝑝𝑙. The reason why Δ𝑆(𝑡) is described by Δ𝜏(𝑡) − 𝜇𝑝𝑙(1 − 𝐵)Δ𝜎(𝑡) instead of Δ𝜏(𝑡) −240 

𝜇𝑝𝑙Δ𝜎(𝑡) is that, for a poroelastic medium, the effective normal stress change due to tides is described by (1 −241 

𝐵)Δ𝜎(𝑡) from equation (9). 𝛼 is obtained by fitting the following equation to the average of 𝑉(𝑡)/𝑉𝑝𝑙 (solid green 242 

line in Figure 1b): 243 

𝑉(𝑡)

𝑉𝑝𝑙
= 𝑐𝑒𝛼Δ𝑆(𝑡). #(12)  

In the fitting, a constant 𝑐(< 1) is simultaneously determined. The time average of 𝑒𝛼Δ𝑆(𝑡) for one tidal cycle is 244 

greater than 1 when 𝛼 is sufficiently large. Therefore, if 𝑐  is not introduced, the time average of 𝑉(𝑡) over one tidal 245 

cycle exceeds 𝑉𝑝𝑙. This implies that forward slip accumulates in the long run, which is seismologically unrealistic. A 246 

similar constant is used in Beeler et al. (2018). The value of 𝑐 is presented in Figure S2 in the supporting 247 

information. The solid black line in Figure 1b shows the fitted result. 𝛿 is defined as the phase difference between 248 

the Δ𝑆(𝑡) peak and the 𝑉(𝑡)/𝑉𝑝𝑙 peak (see 𝛿 of Figure 1a), where 𝛿 is positive when the 𝑉(𝑡)/𝑉𝑝𝑙 peak precedes the 249 

Δ𝑆(𝑡) peak (i.e., 𝛿 in Figure 1a is negative). 250 

 251 

 252 

Figure 1. The numerical solution of equation (10) for 𝑈 = 0 and 𝑑𝑐 = 100 μm. (a) Determination of the phase 253 

difference (𝛿). The horizontal axis denotes time normalized by the tidal cycle, and the value from 0 to 1 indicates 254 

one tidal cycle. The vertical axis represents the slip velocity normalized by the reference velocity, 𝑉(𝑡)/𝑉𝑝𝑙. The 255 

solid yellow line shows 𝑉(𝑡)/𝑉𝑝𝑙, and the dashed blue line shows the tidal Coulomb stress, Δ𝑆(𝑡). The dashed black 256 

line represents the phase when Δ𝑆(𝑡) reaches the maximum, and the solid black line represents the 𝑉(𝑡)/𝑉𝑝𝑙 peak. 257 
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The phase difference 𝛿 is defined so that it is positive when the 𝑉(𝑡)/𝑉𝑝𝑙 peak precedes the Δ𝑆(𝑡) peak. (b) 258 

Determination of the tidal sensitivity (𝛼). The horizontal axis is Δ𝑆(𝑡) normalized by 𝜎𝑒𝑓𝑓
0 . The vertical axis 259 

represents the slip velocity normalized by the reference velocity, 𝑉(𝑡)/𝑉𝑝𝑙. The solid yellow line shows 𝑉(𝑡)/𝑉𝑝𝑙 in 260 

(a). The solid green line shows the average of the upper and lower velocities at each value of Δ𝑆(𝑡). 𝑐 and 𝛼 in 261 

equation (12) are determined by a least squares method by fitting equation (12) against the green solid line. The 262 

solid black line shows the fitted result. 263 

2.5 An approximate solution for 𝛼 and 𝛿 264 

To clarify how the tidal responses depend on the fault physical properties, we analytically derived an approximate 265 

solution for 𝛼 and 𝛿. The result is shown in Section 3.1. 266 

3 Result 267 

3.1 Derivation and verification of the approximate solution 268 

When the magnitude of the tidal Coulomb stress change |Δ𝑆(𝑡)| is small enough (|Δ𝑆(𝑡)| ≪ (𝑎 − 𝑏)𝜎𝑒𝑓𝑓
0 ), we can 269 

assume that the perturbation of each physical quantity caused by |Δ𝑆(𝑡)|𝑒𝑖𝜔𝑡 is proportional to 𝑒𝑖𝜔𝑡, where 𝜔 =270 

2𝜋/𝑇 is the angular velocity of the tide (Segall, 2010; Ader et al., 2012). In other words, the physical quantities can 271 

be written as 𝑉(𝑡) = 𝑉𝑝𝑙 + Δ𝑉𝑒𝑖𝜔𝑡, 𝜃(𝑡) = 𝜃𝑝𝑙 + Δ𝜃𝑒𝑖𝜔𝑡 and 𝑝(𝑡) = 𝑝0 + Δ𝑝𝑒𝑖𝜔𝑡, where 𝜃𝑝𝑙 denotes the steady-272 

state variable at 𝑉 = 𝑉𝑝𝑙, 𝑝0 is the reference value of pore fluid pressure, and Δ𝑉, Δ𝜃 and Δ𝑝 are the magnitudes of 273 

the perturbation. Substituting these forms into equations (3), (4), (7), and (8), and after some algebra, the 274 

perturbation of the nondimensionalized slip velocity, Δ𝑉̃, can be written as 275 

Δ𝑉̃

𝑉̃𝑝𝑙

=
2𝜋𝑖

𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴
|Δ𝑆̃(𝑡)|, #(13)  

 where 276 

𝐴 = 𝑎 −
1

1 + 𝑖
𝑇𝜃

𝑇

(𝑏 − 𝜇𝑝𝑙𝑈)#(14)  

and 277 

𝑇𝜃 = 2𝜋
𝑑𝑐

𝑉𝑝𝑙
. #(15)  
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Equation (15) represents a characteristic timescale on which the state variable evolves (Ader et al., 2012). From the 278 

relationship of Δ𝑉̃𝑒𝑖𝜔𝑡 = 𝑉̃(𝑡) − 𝑉̃𝑝𝑙, equation (13) can be rewritten as 𝑉(𝑡)/𝑉̃𝑝𝑙 = 1 + 2𝜋𝑖Δ𝑆̃(𝑡)/(𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴). 279 

We assume that this equation is the Taylor expansion of the RHS of 280 

𝑉̃(𝑡)

𝑉̃𝑝𝑙

= exp (
2𝜋𝑖

𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴
𝛥𝑆̃(𝑡)) #(16)  

to the first order. Then, comparing equation (16) with equation (1), we find that the tidal sensitivity (𝛼) and the 281 

phase difference (𝛿) can be written as 282 

𝛼 = Re (
2𝜋𝑖

(𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴)𝜎𝑒𝑓𝑓
0

) #(17)  

𝛿 = arg (
2𝜋𝑖

𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴
) #(18)  

For 𝑈 = 0, where dilatancy/compaction is neglected, Ader et al. (2012) presented a linearized approximation 283 

solution and a numerical solution. We can confirm that equations (13) and (18) are consistent with the 284 

nondimensionalized version of equation (3) of Ader et al. (2012), who examined tidal responses for different values 285 

of 𝑇. However, how the tidal response changes with different values of 𝑑𝑐 was not studied in detail for the period of 286 

~12 h, which is the dominant period of tides. Therefore, we examined how the tidal response changes with changes 287 

in 𝑑𝑐 or 𝑇𝜃 (equation (15)) for this period, since a comparison between our model and observations of the tidal 288 

response enables us to infer 𝑑𝑐 in the actual geophysical situation. Figures 2a and 2b show 𝛼 and 𝛿, respectively. In 289 

these figures, the solid green line and green dots represent the numerical solution of equation (10) and the 290 

approximate solution, respectively. The approximate solution and the numerical solution agree with each other 291 

within 15% for most cases. When 𝑇𝜃/𝑇~10−1, the approximate solution is less accurate for both 𝛼 and 𝛿. This 292 

means that the accuracy of the approximate solution can deteriorate when the nonlinearity is stronger (i.e., 𝛼 is 293 

larger). 294 

For 𝑈 ≠ 0, the approximate solution agrees with the numerical solution within 15% in all cases. The good 295 

agreement is attributed to the fact that 𝛼 is relatively small (at most ~0.7 kPa−1), thus the nonlinearity is weaker. 296 

This indicates that the approximate solution is valid regardless of the value of 𝑇𝜃/𝑇 when 𝑈 ≠ 0. 297 
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3.2 Dependence of the tidal response on the fault physical properties 298 

Based on the approximate solution and an analysis of the quasi-static equation of motion, we clarify how 𝛼 and 𝛿 299 

during an ETS depend on the fault physical properties. The specific range of physical properties that can explain the 300 

observations is discussed in Section 4. 301 

3.2.1 Factors governing the tidal response during ETS 302 

In our model, 𝑉𝑝𝑙 represents the average creep velocity of the surrounding fault. We can apply this model to fault 303 

creep during ETS, which occurs over a shorter time span than secular plate subduction. Geodetic observations show 304 

that the fault creep velocity during an ETS is ~10−6~−8 m/s (e.g., Meade and Loveless, 2009; Schwartz and 305 

Rokosky, 2007). Therefore, we set 𝑉𝑝𝑙 as 10−8 m/s in the following numerical simulation. In addition, the frictional 306 

parameters 𝑎 and 𝑏 are chosen so that 𝑎 − 𝑏 is small because it has been suggested that 𝑎 − 𝑏 decreases in the 307 

transition zone (e.g., Liu, 2013; Matsuzawa et al., 2010). The other parameters are similar to those used in previous 308 

studies (Ader et al., 2012; Hawthorne and Rubin, 2013). Table 2 shows the adopted parameters. For these 309 

parameters, we can confirm that |𝐾𝑉̃𝑝𝑙| ≪ |2𝜋𝑖𝐴|. Then, the tidal response (equations (17) and (18)) can be 310 

approximated as 311 

𝛼~Re {(𝐴𝜎𝑒𝑓𝑓
0 )

−1
} #(19)  

𝛿~arg{𝐴−1}. #(20)  

Combining these equations with equation (14), we note that α and δ depend on 𝑇𝜃/𝑇 and 𝑈. The former parameter 312 

𝑇𝜃/𝑇 prescribes whether there is enough time for the state variable to evolve throughout a tidal cycle. For example. 313 

𝑇𝜃/𝑇 ≪ 1 means that there is enough time for the state variable to evolve throughout a tidal cycle. In the following, 314 

we focus on these two parameters, 𝑇𝜃/𝑇 and 𝑈, to discuss the tidal response. 315 

3.2.2 A balance of the stress changes 316 

From Figures 2a and 2b, we see a large difference between the cases for 𝑈 = 0 and 𝑈 ≠ 0. The reason for this 317 

large difference can be understood by using the following equation, which is derived from the quasi-static equation 318 

of motion (equation (8)) (for the derivation, see Appendix A): 319 
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Δ𝑆(𝑡)~ 𝜎𝑒𝑓𝑓
0 (−𝜇𝑝𝑙𝑈𝑙𝑛 (

𝜃

𝜃𝑝𝑙
) + 𝑎𝑙𝑛 (

𝑉

𝑉𝑝𝑙
) + 𝑏𝑙𝑛 (

𝜃

𝜃𝑝𝑙
)) . #(21)  

In equation (21), the left-hand side (LHS) and the RHS correspond to the tidal Coulomb stress and the frictional 320 

strength, respectively. The first, second, and third terms on the RHS represent the dilatancy/compaction effect, the 321 

direct effect, and the evolution effect, respectively. In equation (21), 𝑈 is included only in the first term (the 322 

dilatancy/compaction term) on the RHS. When 𝑈 = 0, the first term vanishes and the tidal response (equations (19) 323 

and (20)) obtained in this study is consistent with the result discussed in Chapter 4.1 of Hawthrome and Rubin 324 

(2013). Therefore, we analyze the tidal response for 𝑈 ≠ 0 below. 325 

3.2.3 Analysis of the tidal response for 𝑈 ≠ 0 326 

Figures 2a and 2b show that the tidal response can be classified into three cases according to the value of 𝑇𝜃/𝑇 327 

because the value affects the degree to which the first term of 𝑎{1 − (𝑏 − 𝜇𝑝𝑙𝑈)/𝑎(1 + 𝑖𝑇𝜃/𝑇)} is dominant (see 328 

Equation (14)). The condition for the first term on the RHS of equation (14) to be negligibly small is |𝑏 −329 

𝜇𝑝𝑙𝑈|/𝑎|1 + 𝑖𝑇𝜃/𝑇| ≪ 1. Using the parameter set shown in Table 2, we obtain |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎~𝑂(1), so 𝑇𝜃/𝑇 ≫330 

|𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 is required for the above inequality to hold. Conversely, the condition for the first term on the RHS of 331 

equation (14) becoming dominant is when the value of 𝑎(1 + 𝑖𝑇𝜃/𝑇) becomes ~𝑎. In other words, 𝑇𝜃/𝑇 ≪ 1. The 332 

other case is the intermediate region between these two limits. 333 

 First, we consider the case where 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎. We find that for larger values of 𝑇𝜃/𝑇, 𝛼 and 𝛿 converge 334 

to the same values regardless of the value of 𝑈 (𝑇𝜃/𝑇~104 in Figures 2a and 2b). When 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎, the 335 

first term on the RHS of Equation (14) can be ignored (𝐴~𝑎). Therefore, substituting 𝐴~𝑎 into Equations (19) and 336 

(20), 𝛼 and 𝛿 become 𝑎𝜎𝑒𝑓𝑓
0  and 0, respectively, regardless of the value of 𝑈. Because there is not enough time for 337 

the state variable to evolve, the state variable is almost constant (𝜃~𝜃𝑝𝑙). Then, the dilatancy/compaction and the 338 

evolution effect term of equation (21) are almost zero. Therefore, equation (21) can be approximated as 339 

Δ𝑆(𝑡)~𝑎𝜎𝑒𝑓𝑓
0 log(𝑉/𝑉𝑝𝑙) or 𝑉~𝑉𝑝𝑙𝑒

Δ𝑆(𝑡)/𝑎𝜎𝑒𝑓𝑓
0

. This means that 𝛼 = 1/𝑎𝜎𝑒𝑓𝑓
0 . Moreover, the form of this equation 340 

indicates that the slip velocity peak agrees with the tidal Coulomb stress peak in time, which means that 𝛿 = 0. 341 

Next, we consider the case where 𝑇𝜃/𝑇 ≪ 1. In this case, 𝛼 depends on 𝑈 and takes a small value when 𝑈 is large 342 

(𝑇𝜃/𝑇~10−2 in Figure 2a). However, 𝛿 converges to zero regardless of the value of 𝑈 (𝑇𝜃/𝑇~10−2 in Figure 2b). 343 
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When 𝑇𝜃/𝑇 ≪ 1, we obtain 𝛼 = 1/(𝑎 − 𝑏 + 𝜇0𝑈)𝜎𝑒𝑓𝑓
0  and 𝛿 = 0 from equations (14), (19) and (20). Because the 344 

state variable evolves more rapidly than the tidal Coulomb stress change, the state variable is close to the new 345 

steady-state value (𝜃~𝑑𝑐/𝑉). This is derived by considering d𝜃/d𝑡~0 in equation (4). Then, equation (21) can be 346 

approximated as Δ𝑆(𝑡)~(𝑎 − 𝑏 + 𝜇𝑝𝑙𝑈)𝜎𝑒𝑓𝑓
0 log(𝑉/𝑉𝑝𝑙). As before, the form of this equation explains the above 347 

values of 𝛼 and 𝛿. Moreover, it is clear from the form of 𝛼 that it decreases as 𝑈 increases. 348 

 Finally, we consider the case of the intermediate region between the above two limits. Figure 2a shows that α varies 349 

smoothly and connects the limit values for 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 and 𝑇𝜃/𝑇 ≪ 1 (𝑇𝜃/𝑇~100~1 in Figure 2a). Figure 350 

2b shows that the maximum value of 𝛿 approaches 𝜋/2 as 𝑈 increases (𝑇𝜃/𝑇~100~1 in Figure 2b). To clarify why  351 

this occurs, we compared the time variation of the tidal Coulomb stress term (Δ𝑆(𝑡) of equation (21)), the 352 

dilatancy/compaction effect term and the evolution effect term in equation (19). Figure 3 shows these three terms for 353 

𝑈 = 1 and 𝑈 = 0.01. For 𝑈 = 1, the dotted blue line representing the tidal Coulomb stress and the solid black line 354 

representing the dilatancy/compaction effect are almost identical except for a small phase difference. Representing 355 

this phase difference as 𝛽(≪ 𝜋), we see from the balance between the solid black line and the dot blue line in Figure 356 

3 that −𝜇𝑝𝑙𝑈𝜎𝑒𝑓𝑓
0 log(𝜃/𝜃𝑝𝑙)~|Δ𝑆(𝑡)|𝑒𝑖𝜔(𝑡−𝛽). The dashed black line representing the evolution effect is negligibly 357 

small (𝑏𝜎𝑒𝑓𝑓
0 log(𝜃/𝜃𝑝𝑙)~0). Substituting these into equation (21), and after some algebra (Appendix B), we find 358 

that 359 

log (
𝑉

𝑉𝑝𝑙
) ∝ Re {𝑒𝑖𝜔(𝑡+

𝜋
2)} . #(22)  

This indicates that the slip velocity peak agrees with the tidal Coulomb stress rate peak (𝑇𝜃/𝑇~101 in Figure 2a). 360 

For 𝑈 = 0.01, the phase difference 𝛿 is small. This can be explained by considering the balance in equation (21). 361 

The amplitude of the solid yellow line representing the dilatancy/compaction effect in equation (21) is smaller than 362 

the amplitude of the dotted blue line representing the tidal Coulomb stress. Furthermore, the dashed yellow line 363 

representing the evolution effect decreases when the dilatancy/compaction effect term (solid yellow line) is larger 364 

and vice versa. Therefore, the amplitude of the sum of these two effects becomes even smaller than the amplitude of 365 

Δ𝑆(𝑡). For the stress balance of equation (21) to be satisfied, the direct effect term (second term on the RHS) should 366 

balance the difference between Δ𝑆(𝑡) and the sum of the above two effects. This means that the smaller 𝑈 becomes, 367 

the larger the direct effect term. The dominance of the direct effect term indicates that 𝛿 is small, as we have seen 368 

for the case of 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎, which explains why 𝛿 is closer to zero for 𝑈 = 0.01 than for 𝑈 = 1. 369 
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 370 

 371 

Figure 2. (a) The numerical solution of 𝛼 (dots) and the approximation solution (equation (19)) (solid line). (b) The 372 

numerical solution of 𝛿 (dots) and the approximation solution (equation (20)) (solid line). The differences in color 373 

represent the differences in the dilatancy parameter 𝑈. 374 

 375 
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 376 

Figure 3. Time evolution of the tidal Coulomb stress (tCs) (blue dotted line), the dilatancy/compaction effect (D/C) 377 

(solid lines), and the evolution effect (Evo) (dashed lines) in equation (21). The horizontal axis denotes time 378 

normalized by the tidal cycle, and the values from 0 to 1 indicate one tidal cycle. The vertical axis denotes the tidal 379 

Coulomb stress/frictional strength normalized by 𝜎𝑒𝑓𝑓
0 . The numerical solutions for 𝑇𝜃/𝑇 = 14 and 𝑈 = 1 are 380 

shown in black, and those for 𝑇𝜃/𝑇 = 1.4 and 𝑈 = 0.01 are shown in yellow. 381 

 382 

4 Discussion 383 

4.1 Application of the model to the observed tidal response during ETS 384 

As mentioned in the introduction, most of the previous models are unable to account for the phase difference of 385 

𝛿~𝜋/2, which is observed at the early stage of ETS. In this section, we show that our model can reproduce the tidal 386 

response during ETS, including the phase difference, for a specific range of fault physical properties. The obtained 387 

range was compared with independent results from experiments, geological studies, and numerical modeling. 388 

The observed tidal responses typically show 𝛼~0.1 kPa−1 and 𝛿~𝜋/2 at the early stage of ETS and 𝛼~0.7 kPa−1 389 

and 𝛿~0 at the later stage of ETS. The slip velocity of the fault, which rapidly increases at the onset of ETS, 390 

decreases to the steady-state subduction velocity with the progress of the ETS. In our model, ETS is represented by 391 
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setting 𝑉𝑝𝑙 higher than the steady-state subduction velocity (Table 2). We assume 𝑉𝑝𝑙~10−6 m/s at the early stage 392 

of the ETS and 𝑉𝑝𝑙~10−8 m/s at the later stage, considering that 𝑉𝑝𝑙~10−8~−6 m/s. 393 

4.2 The ranges of 𝑈 and 𝑑𝑐 reproduce the observation 394 

We see from Figure 2a and 2b that the model reproduces the observed tidal response at the early stage of ETS 395 

(𝛼~0.1, 𝛿~𝜋/2) when 𝑇𝜃/𝑇~10 and 𝑈~1. This case corresponds to the last of the three categories of 𝑇𝜃/𝑇 396 

presented in Section 3.2.3. We have seen that the first term on the RHS of equation (21) (the dilatancy/compaction 397 

effect term), which has a phase delay with respect to the tidal Coulomb stress change, dominates in the frictional 398 

strength change, and 𝛿 becomes 𝜋/2. The dominance of the dilatancy/compaction effect term reduces the direct 399 

effect term, which results in a smaller variation in the slip velocity (𝛼~0.1). For 𝑉𝑝𝑙 = 10−6 m/s, we obtain 400 

𝑑𝑐 = 10−1 m from the condition of 𝑇𝜃/𝑇~10 (equation (15)). 401 

Up to this point, we have used the undrained model. The drained model assumes that the pore fluid pressure 402 

diffuses outside the shear zone, as shown in equation (S1). This implies that the shear zone has a high permeability. 403 

The drained model can reproduce 𝛼 for both the initial and later stages by assuming 𝑑𝑐 = 10−2 m (the solid black 404 

line in Figure S3a in the supporting information). However, the drained model cannot reproduce 𝛿~𝜋/2 at the early 405 

stage (the solid black line in Figure S3b in the supporting information). The result that only the undrained model can 406 

reproduce both 𝛼 and 𝛿 suggests the low permeability of the shear zone. This indicates the possibility that our model 407 

can constrain the frictional parameters and the dilatancy coefficient as well as a hydraulic property of the fault 408 

through a comparison with observations of tidal response. 409 

Now, we return to the application of the undrained model. Focusing on the case of 𝑈~1, which explains the early 410 

stage, we see that the model can reproduce the observed tidal response at the later stage of ETS (𝛼~0.7 kPa−1 and 411 

𝛿~0) when 𝑇𝜃/𝑇 ≳ 103. This case corresponds to 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 described in the three categories in 412 

Section 3.2.3. As noted above, the phase advance disappears (𝛿~0) as the direct effect term (second term) on the 413 

RHS of equation (21) becomes dominant in the frictional strength change, and 𝛼 asymptotically reaches a value that 414 

is independent of 𝑈 (𝛼~1/𝑎𝜎𝑒𝑓𝑓
0 ). For 𝑉𝑝𝑙 = 10−8 m/s, the condition of 𝑇𝜃/𝑇 ≳ 103 indicates that 𝑑𝑐 ≳ 10−1 m. 415 

On the other hand, Figure 2a shows that the model for 𝑈 = 0.01 and 𝑈 = 0.1 can explain the tidal response at the 416 
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later stage of ETS when 𝑑𝑐 ≳ 10−3 m and 𝑑𝑐 ≳ 10−2 m, respectively. This means that if we apply the model only 417 

to the tidal response at the later stage of ETS, 𝑑𝑐 can be underestimated. 418 

The above comparison between the model and observations shows that the dilatancy/compaction effect is dominant 419 

at the early stage of ETS, while the dilatancy/compaction effect is negligible at the later stage of ETS. Figure 4 420 

schematically illustrates the physical process suggested by our model. First, we see the early stage of ETS (Figure 421 

4a). A higher tide level increases the ocean load and reduces Δ𝑆(𝑡). At low tide (𝛿~0), Δ𝑆(𝑡) takes its maximum. 422 

However, the effect generated by the low tide is almost canceled out by the significant increase in the normal stress 423 

due to the dilatancy/compaction effect. At the mean tide (𝛿~𝜋/2), Δ𝑆(𝑡) is zero. The dilatancy/compaction effect is 424 

reduced but it still takes effect, decreasing the normal stress. Consequently, the slip velocity or the tremor rate 425 

reaches the maximum. Next, we see the later stage of ETS (Figure 4b). Since the dilatancy/compaction effect is 426 

always negligible at this stage, the slip velocity is maximized when Δ𝑆(𝑡) becomes the largest (low tide). 427 

Incidentally, we can reproduce the observed tidal response (𝛼, 𝛿) as well as the observation that the number of 428 

tremors decreases by one or two orders of magnitude at the later stage of ETS compared to that at the early stage. 429 

This is obvious from the form of equation (2). 430 

 431 
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 432 

Figure 4. A schematic illustration of the relationship between the fault creep velocity and the tide level. For 433 

simplicity, only the normal stress change is represented. (a) Early stage of ETS. The sum of the normal stress due to 434 

the dilatancy/compaction effect (black arrows) and the tidal normal stress (white arrows) becomes the largest in the 435 

sense of enhancing fault slip at 𝛿~𝜋/2. (b) Later stage of ETS. The dilatancy/compaction effect is negligible, and 436 

the fault creep velocity reaches its maximum at 𝛿~0. 437 

 438 
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4.3 The constrained physical fault properties 439 

For our model to simultaneously reproduce the observed tidal responses at the early and later stage of ETS, the 440 

following four conditions must be satisfied: 𝑈(= 𝑀𝜖/𝜎𝑒𝑓𝑓
0 )~1, 𝑑𝑐~10−1 m, the occurrence of 441 

dilatancy/compaction in the fault creep region (i.e., 𝑎 > 𝑏) and low permeability within the shear zone (undrained 442 

model). Below, we discuss the validity of these conditions. 443 

4.3.1 The dilatancy parameter 𝑈 444 

Samuelson et al. (2009) obtained a dilatancy coefficient, and Segall et al. (1995) obtained bulk moduli of the fluid 445 

and pore space. These results yield 𝜖~10−4~−5 and 𝑀~1010 Pa (equation (7)). We assume that these experimentally 446 

obtained values are of the same magnitude in the transition zone. Substituting these values into 𝑈(= 𝜖𝑀/𝜎𝑒𝑓𝑓
0 ) = 1, 447 

which reproduces the observed tidal response, we obtain 𝜎𝑒𝑓𝑓
0 = 𝜖𝑀𝑈~105~6 Pa, which supports a near-lithostatic 448 

pore fluid pressure (e.g., Audet et al., 2009; Nakata, 2008; Shelly et al., 2006; Yabe et al., 2015). 449 

4.3.2 The critical slip distance 𝑑𝑐 450 

The results of friction experiments on rocks and gouges show 𝑑𝑐~10−4~−6 m (e.g., Marone, 1998). Our results 451 

(𝑑𝑐~10−1 m) are 3~5 orders of magnitude larger. The much larger critical slip distance can be explained by 452 

considering the differences in roughness between laboratory surfaces and natural faults (Scholz et al., 1988) and the 453 

differences in the thickness of the shear zone between experimental and natural faults (Marone and Kilgore, 1993). 454 

Numerical models assuming the RSF also adopt a critical slip distance larger than that in the experimental results. 455 

For example, Nakata et al. (2012) successfully modeled the SSE and aftershocks after the ~M7 earthquake in 456 

Hyuga-nada, Japan, with 𝑑𝑐 = 10−1~0 m. Maury et al. (2014) calculated a time evolution of shear stress for the SSE 457 

in Mexico and estimated that the critical slip distance that can quantitatively reproduce the observed results is 458 

5 × 10−2 m. Kawamura et al. (2018) applied a 1-D multidegree of freedom spring-slider model with 𝑑𝑐 = 10−2 m 459 

to reproduce various types of fault slip, such as fast slip, source nucleation, aftershock, and SSE. Our analysis of the 460 

tidal response during ETS also supports 𝑑𝑐 with the order of 10−1 m. 461 
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4.3.3 The occurrence of dilatancy/compaction in the fault creep region 462 

Numerical models that have been proposed thus far generally require the presence of a VW region (𝑎 − 𝑏 < 0) to 463 

reproduce SSE (e.g., Liu and Rice, 2005; Segall et al., 2010). Some models have proposed a mechanism by which 464 

SSE occurs in the VS regime, such as the generation of a negative Coulomb stress change due to fault valve action 465 

(Perfettini and Ampuro 2008) and the transition of the RSF from the VW at low speeds to the VS at high speeds 466 

(e.g., Im et al., 2020; Peng and Rubin, 2018; Shibazaki and Iio. 2003). Our model employs the framework of the VS 467 

and expresses the velocity of the slow slip by V𝑝𝑙 phenomenologically. 468 

The above two models assuming the VS (e.g., Im et al., 2020; Peng and Rubin, 2018; Perfettini and Ampuro, 2008; 469 

Shibazaki and Iio 2003) do not consider the time variation of pore fluid pressure. On the other hand, Beeler et al. 470 

(2018) developed a model that considers the time variation of pore fluid pressure in the VW region. However, it 471 

cannot explain the tidal response at the early stage of ETS. Our results show that when we assume the framework of 472 

the VS, the observed tidal response at the early stage of ETS cannot be reproduced unless dilatancy/compaction 473 

occurs. 474 

4.3.4 The fluid pressure diffusivity derived from the undrained condition 475 

Our results support the undrained model (Section 4.2). For the undrained model, 𝑇 ≪ 𝑡𝑤 must be satisfied (Section 476 

2.2.2). Using this condition, we can quantitatively constrain the fluid pressure diffusivity as follows. We assume that 477 

the thickness of the shear zone is 𝑤 and the fluid pressure diffusivity in the shear zone is 𝑐ℎ𝑦𝑑
∗ . Then, a dimensional 478 

analysis shows that 𝑤~√𝑡𝑤𝑐ℎ𝑦𝑑
∗ , where 𝑡𝑤 denotes the characteristic timescale on which the pore fluid pressure 479 

diffuses through the shear zone. Therefore, the condition of 𝑇 ≪ 𝑡𝑤 can be rewritten as 𝑇 ≪ 𝑤2/𝑐ℎ𝑦𝑑
∗ . 480 

We estimate 𝑤 in the transition zone in the following manner, since it cannot be observed directly. A drilling 481 

investigation and structural analyses of drill cores on the Nojima Fault revealed that 𝑤 in the seismogenic zone is 482 

~101/2 m (Lin and Nishikawa, 2019). It is generally expected that 𝑤 in the VS region is larger than in the VW 483 

region (e.g., Chen and Rampel, 2015). Therefore, we assume 𝑤~100~1/2 m in the VS region. Then, the above 484 

undrained condition yields 𝑐ℎ𝑦𝑑
∗ ≪ 2 ∗ 10−5~−4 m2/s. Previous studies have shown that the 𝑐ℎ𝑦𝑑

∗  of the seismogenic 485 

zone is ~10−8~−3 m2/s (Yamashita and Tsutsumi, 2018). Our results suggest that the shear zone in the transition 486 

zone is probably as impermeable as that in the seismogenic zone. 487 
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4.4 Other effects than dilatancy/compaction 488 

We have seen that the dilatancy/compaction effect is important to explain the phase difference (𝛿~𝜋/2) in the tidal 489 

response. In this section, we examine whether other effects could explain 𝛿~𝜋/2. The following possibilities are 490 

considered. 491 

(I) Change in the tidal period T as in Ader et al. (2012). In this case, 𝛿~𝜋/2 can be realized when 𝑇 >492 

𝑂 (109~10 s), regardless of the critical slip distance. However, such a 𝑇 value exceeds the longest tidal period (18.6 493 

years). 494 

(II) Introduction of a change in the state variable due to the normal stress acting on the fault plane (Linker and 495 

Dieterich, 1992). In this case, the time variation of the state variable can be written as follows: 496 

𝑑𝜃

𝑑𝑡
= −

𝑉𝜃

𝑑𝑐
log (

𝑉𝜃

𝑑𝑐
) −

𝛾

𝑏

𝜎̇

𝜎
𝜃, #(23)  

where 𝛾 is a constitutive parameter representing a normal stress dependence. In general, 𝛾~𝑂(0.1). Therefore, we 497 

adopt 𝛾 = 0.2 and solve the governing equations of our model replacing the evolution law (equation (4)) with 498 

equation (23). The results indicate that the difference caused by considering the effect of normal stress on the state 499 

variable is less than 1%. Therefore, the influence of the Linker-Dieterich effect is small and does not provide a 500 

reason for the large phase difference. 501 

(III) Tidal Coulomb stress can directly destroy the tremor source instead of aseismic slip on the surrounding fault. 502 

This effect is ignored in our model. If this is the case, the tremor rate is proportional to the tidal Coulomb stressing 503 

rate (i.e., 𝛿~𝜋/2) (Beeler et al., 2013; Lockner and Beeler, 1999). This direct effect of the tidal Coulomb stress 504 

should become clearer when the aseismic slip on the surrounding fault is smaller, i.e., at the later stage of ETS 505 

(Royer et al., 2015). However, the observed result shows 𝛿~0 at the later stage, indicating that the direct effect is 506 

smaller. 507 

None of the above effects can explain the phase difference of 𝛿~𝜋/2, and thus the pore fluid pressure change due 508 

to dilatancy/compaction is more likely to cause the large phase difference at the early stage of ETS. 509 

4.5 Application to the tidal response of continuous families 510 

By setting the value of 𝑉𝑝𝑙 to a steady-state plate convergence velocity (e.g., 10−9 m/s), we can examine the range 511 

of 𝑑𝑐 and 𝑈 in which our model reproduces the tidal response of continuous families. The observations show that 512 
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the tidal response of continuous families is 𝛿~0 (Ide and Tanaka, 2014; Thomas et al., 2012) and 𝛼~1.5 kPa−1 513 

(Thomas et al., 2012), for example. We examine whether these observations can be reproduced with parameters that 514 

reproduce the tidal response of episodic families (𝑑𝑐~10−1 m, 𝑈~1) (Section 4.2). In the case of 𝑑𝑐 = 10−1 m, 515 

𝑉𝑝𝑙 = 10−9 m/s and 𝑇𝜃/𝑇~104, we obtain 𝛼~𝑎𝜎𝑒𝑓𝑓
0 (= 0.67 kPa−1) and 𝛿~0 (Section 3.2.2). Therefore, by 516 

slightly reducing the value of 𝜎𝑒𝑓𝑓
0 , the tidal responses of continuous families and episodic families can be 517 

reproduced with similar values of the fault physical properties. 518 

4.6 Limitations of our model 519 

Because our model adopts a one-degree-of-freedom (one-DOF) spring-slider system, it cannot simulate the 520 

spatiotemporal variation in stress during ETS. Such spatiotemporal changes in stress have been modeled using a 521 

two-dimensional system (e.g., Hawthorne and Rubin, 2013), which can reproduce observations such as a spatial 522 

propagation of ETS and temporal changes in the slip velocity during ETS. Hawthorne and Rubin (2013) examined 523 

the tidal response of ETS based on such a 2-D model. 524 

However, Hawthorne and Rubin (2013) reported that the tidal response during ETS obtained by a 2-D simulation 525 

qualitatively agrees with the tidal response of the one-DOF ramp block slider model. Their model does not include 526 

the effect of dilatancy/compaction. To confirm whether the one-DOF and 2-D simulation results are in agreement 527 

for a model including the dilatancy/compaction effect, we need to extend our model to a 2-D system. One approach 528 

to do so would be to incorporate the dilatancy/compaction effect considered in our model into the model of 529 

Hawthorne and Rubin (2013). 530 

5 Conclusions 531 

Tremors in the transition zone are sensitive to tidal stress. In this study, we propose a physical model to explain the 532 

tidal response of tremors observed during ETS. Following previous studies (Ader et al., 2012; Beeler et al., 2013; 533 

Shelly et al., 2007a), we assumed that tremors are generated by the rupture of a small brittle patch on the fault plane 534 

due to the aseismic shear slip of a larger-scale surrounding fault. As in Ader et al. (2012), we adopted a one-degree-535 

of-freedom spring-slider that follows the RSF for the VS and set up the governing equations to describe the slip 536 

behavior of the block, considering a pore fluid pressure change in the shear zone (Section 2). The inclusion of pore 537 
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pressure changes due to dilatancy/compaction in the VS regime is a remarkable contrast to previous theoretical 538 

models describing tidal modulation. 539 

In our model, the tidal response is expressed with the tidal sensitivity (𝛼), which represents the amplitude of the 540 

tidal modulation of fault creep velocity, and the phase difference (𝛿) of the fault creep velocity peak relative to the 541 

tidal Coulomb stress peak. We analytically derived an approximate solution to reveal how the tidal response depends 542 

on the fault physical properties in Section 3. We note that the slip behavior is primarily controlled by the 543 

characteristic timescale 𝑇𝜃 (= 2𝜋𝑑𝑐/𝑉𝑝𝑙) at which the state variable evolves, where 𝑑𝑐 is the critical slip distance 544 

and 𝑉𝑝𝑙 is the background fault creep. We found that the behavior of 𝛼 and 𝛿 can be classified into three cases 545 

according to the magnitude of 𝑇𝜃/𝑇 (𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎, 𝑇𝜃/𝑇~1~|𝑏 − 𝜇𝑝𝑙𝑈|/𝑎, 𝑇𝜃/𝑇 ≪ 1), where 𝑇 is the 546 

tidal cycle (~12 hours), 𝑎 and 𝑏 are frictional constitutive parameters, 𝜇𝑝𝑙 is the frictional coefficient and 𝑈 is the 547 

dilatancy parameter. This classification reflects the degree to which the dilatancy/compaction effect is dominant in 548 

the frictional strength change. We showed that the smaller 𝑇𝜃/𝑇 is, the more dominant the dilatancy/compaction 549 

effect is in the friction strength change. 550 

We applied the model to ETS, assuming that 𝑉𝑝𝑙 changes between the early and later stages of the ETS. The model 551 

successfully reproduced the tidal response observed at both stages of the ETS. We constrained the effective normal 552 

stress to be 105~6 Pa, the critical slip distance to be 10−1 m, and the fluid pressure diffusivity to be  10−5 m2/s or 553 

less. Of particular importance is the use of the phase difference in the estimation of the fault properties. Without 554 

considering the dilatancy/compaction effect, the phase difference at the early stage cannot be reproduced. Moreover, 555 

using the tidal response data obtained during only the early stage or the later stage produces different estimates of 556 

the fault properties. The range of the fault properties obtained in our study are in the ranges inferred by independent 557 

studies. Our model supports a critical slip distance of ~10−1 m, which has been used in numerical simulations of 558 

earthquake cycles. This study shows that the physical modeling of the tidal response of tremors during ETS is an 559 

effective method to retrieve the fault properties in the transition zone, including hydraulic properties. 560 

 561 
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Appendix 562 

Appendix A: Derivation of equation (21) 563 

Substituting equation (3) into equation (8) and transforming the result, we obtain 564 

𝑘𝛥𝑢 + 𝛥𝜏 = {𝜇0 + 𝑎log (
𝑉𝑝𝑙

𝑉0
) + 𝑏log (

𝜃𝑝𝑙

𝜃0
) + 𝑎log (

𝑉

𝑉𝑝𝑙
) + 𝑏log (

𝜃

𝜃𝑝𝑙
)} 𝜎𝑒𝑓𝑓 

= {𝜇𝑝𝑙 + 𝑎log (
𝑉

𝑉𝑝𝑙
) + 𝑏log (

𝜃

𝜃𝑝𝑙
)} 𝜎𝑒𝑓𝑓. #(𝐴)  

We represent the relative displacement of the block at the steady state without the tide as Δ𝑢𝑛𝑜. Then, 𝑘Δ𝑢𝑛𝑜 =565 

𝜇𝑝𝑙𝜎𝑒𝑓𝑓
0  holds, where the RHS is obtained by setting ∆𝜎(𝑡) = 0 and ∆𝑝(𝑡) = 0 in equation (9). We can confirm that 566 

𝑘Δ𝑢~𝜇𝑝𝑙𝜎𝑒𝑓𝑓
0  as follows. For the parameter set in Table 2, 𝑘Δ𝑢̇~𝑂(𝑘𝑉𝑝𝑙) is three orders of magnitude smaller than 567 

Δ𝜏̇~𝑂(2𝜋|Δ𝜏|/𝑇). This means that 𝑘Δ𝑢̇ on the LHS of the time derivative of equation (A) is negligibly small, 568 

suggesting that Δ𝑢~Δ𝑢𝑛𝑜. Replacing 𝑘Δ𝑢 with 𝜇𝑝𝑙𝜎𝑒𝑓𝑓
0  on the LHS and using equations (9) and (11), equation (A) 569 

can be rewritten as 570 

Δ𝑆(𝑡) = −𝜇𝑝𝑙Δ𝑝(𝑡) + 𝑎𝜎𝑒𝑓𝑓log (
𝑉

𝑉𝑝𝑙
) + 𝑏𝜎𝑒𝑓𝑓log (

𝜃

𝜃𝑝𝑙
) . #(𝐵)571 

In equation (B), the LHS corresponds to the tidal Coulomb stress and the RHS corresponds to the frictional strength. 572 

Furthermore, equation (B) can be written as 573 

Δ𝑆(𝑡)~ − 𝜇𝑝𝑙𝑈𝜎𝑒𝑓𝑓
0 log (

𝜃

𝜃𝑝𝑙
) + 𝑎𝜎𝑒𝑓𝑓

0 log (
𝑉

𝑉𝑝𝑙
) + 𝑏𝜎𝑒𝑓𝑓

0 log (
𝜃

𝜃𝑝𝑙
) #(𝐶)574 

by using equation (7), where Δ𝑝 = 0 is taken at 𝜃 = 𝜃𝑝𝑙, and it is assumed that the changes in the effective normal 575 

stress in the second and third terms on the RHS of equation (C) are sufficiently small compared to 𝜎𝑒𝑓𝑓
0 . 576 

Appendix B: Derivation of equation (22) 577 

Substituting −𝜇𝑝𝑙𝑈𝜎𝑒𝑓𝑓
0 log(𝜃/𝜃𝑝𝑙)~Δ𝑆𝑒𝑖𝜔(𝑡−𝛽) and 𝑏𝜎𝑒𝑓𝑓

0 log(𝜃/𝜃𝑝𝑙)~0 into equation (21), as described in Section 578 

3.2.3, we obtain 579 

log (
𝑉

𝑉𝑝𝑙
) ~|Δ𝑆(𝑡)|Re(𝑒𝑖𝜔𝑡 − 𝑒𝑖𝜔(𝑡−𝛽)). #(𝐷)  
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When 𝜃1 = 𝜔𝑡 − 𝛽/2, 𝜃2 = 𝛽/2, we can write 𝑅𝑒(𝑒𝑖𝜔𝑡 − 𝑒𝑖𝜔(𝑡−𝛽)) = cos(𝜃1 + 𝜃2) − cos(𝜃1 − 𝜃2) =580 

sin(𝜃1) sin(𝜃2). Using sin(𝜃1) = cos (𝜋/2 + 𝜃1), we obtain sin(𝜃1) sin(𝜃2) = cos(𝜔𝑡 + (𝜋 − 𝛽)/2) sin(𝛽/2). 581 

That is, log(𝑉/𝑉𝑝𝑙)~|Δ𝑆(𝑡)|sin(𝛽/2) cos(𝜔𝑡 + (𝜋 − 𝛽)/2). Furthermore, since 𝛽 ≪ 𝜋, equation (D) can be 582 

rewritten as 583 

log (
𝑉

𝑉𝑝𝑙
) ~|Δ𝑆(𝑡)|sin (

𝛽

2
) Re {𝑒𝑖(𝜔𝑡+

𝜋
2)} . #(𝐸)  
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