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Introduction 

TextS1 presents the governing equation of the drained model. 

TextS2 presents the nondimensionalized governing equation of the drained model. 



 

 

2 

 

TextS3 presents a numerical method for solving the governing equation of the drained model. 

TextS4 presents the approximate solution for the tidal response of the drained model. 

Figure S1 shows a schematic of the undrained and drained models. 

Figure S2 shows the numerical solution of 𝑐 in equation (12) for the undrained model. 

Figure S3 shows the numerical and approximate solutions for the tidal responses α and δ of the 

drained model. 

Figure S4 shows the numerical solution of 𝑐 in equation (12) for the drained model. 

Figure S5 shows the time variation of the tidal Coulomb stress term (Δ𝑆(𝑡) of equation (21)), the 

dilatancy/compaction effect term and the evolution effect term in equation (21). 

Figure S6 shows a schematic illustration of the relationship between the fault creep velocity and 

the tide level when 𝑈 = 1. 

Figure S7 shows the dependence of the parameter 𝐸𝑝 on the phase difference. 

Figure S8 shows the dependence of 𝑑𝑐 on the tidal sensitivity and phase difference when 𝑉𝑝𝑙 =

10−7 and 10−9 m/s. 

 

Text S1. Derivation of the governing equations for the drained model 

We explain a drained model in which pore fluids flow out of the shear zone (Figure S1b). The 

difference between the undrained and drained models is the presence of fluid flow. The governing 

equations of the drained model are the same as those in the undrained model (equations (3), (4) 

and (8)), except for the governing equation for pore fluids. 

Following the work of Segall et al. (2010), we assume homogeneous diffusion (HD), which 

holds under the condition that 𝑇 ≫ 𝑡𝑤. In the HD case, the effect of the finite shear zone 

thickness can be neglected, so the width of the shear zone can be formally defined as 𝑤 → 0 

(Segall et al., 2010). The direction of fluid flow (Figure S1b) is parallel to the z-axis, and the 



 

 

3 

 

shear zone lies on 𝑧 = 0. 𝑐ℎ𝑦𝑑 denotes the fluid pressure diffusivity at 𝑧 ≠  0. Then, the 

governing equation for pore fluids can be written as (Segall et al., 2010) 

𝜕𝑝

𝜕𝑡
= 𝑐ℎ𝑦𝑑

𝜕2𝑝

𝜕𝑧2
  (

𝜕𝑝

𝜕𝑧
|

𝑧=0
=

𝑀𝑤𝜙̇

2𝑐ℎ𝑦𝑑
) . (𝑆1) 

 

Text S2. Nondimensionalization of the governing equations of the drained model 

The governing equations for the drained model are the upper three in equation (10) and the 

nondimensionalized equation (S1). When we adopt √𝑐ℎ𝑦𝑑𝑇 as the representative length in the z-

axis direction, the nondimensionalized equation (S1) can be written as 

𝜕𝑝̃

𝜕𝑡̃
=

𝜕2𝑝̃

𝜕𝑧̃2
   (

𝜕𝑝̃

𝜕𝑧̃
|
𝑧̃=0

= −𝐸𝑝

1

𝜃̃

𝑑𝜃̃

𝑑𝑡̃
) , (𝑆2) 

where 𝐸𝑝 = 𝑀𝜖/2𝜎𝑒𝑓𝑓
0 √𝑤2/𝑇𝑐ℎ𝑦𝑑 = 𝑈/2√𝑤2/𝑇𝑐ℎ𝑦𝑑. 𝐸𝑝 represents the relative importance of 

the dilatancy/compaction effect to the effective normal stress change in the drained model. 

Previous experiments and observations suggest that 𝑐ℎ𝑦𝑑~10−1~3 m2/s (Yamashita and 

Tsutsumi, 2018) and 𝑈~100~−2 (Section 2.2.3). Using 100~1/2 m as the value of 𝑤 (Section 

4.3.4), we obtain a possible range of 𝐸𝑝 as 10−2 to 10−4. 

 

Text S3. A numerical method for solving the governing equation of the drained 

model 

The upper three equations in equation (10) are calculated numerically using the third-order 

Adams-Bashforth method as in the undrained case. Equation (S2) is calculated numerically using 

the method presented in Appendix B of Segall et al. (2010). In the following, we discuss the latter 

method. Near the shear zone, the discretization needs to be sufficiently fine to capture a steep 
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gradient of the pore fluid pressure. On the other hand, for a region far from the shear zone, the 

discretization does not need to be fine because the pore fluid pressure gradient is small. Thus, we 

use the following coordinate transformation between 𝑧 and 𝑟 (Segall et al., 2010): 

𝑧(𝑟) = −𝑐 + 𝑒r or, equivalently, 𝑟(𝑧) = ln(𝑐 + 𝑧). 

We solve equation (S2) numerically in a new coordinate system using the Crank-Nicolson 

method. Specifically, we solve 

{1 +
𝛾

2
𝑒−𝑟𝑘(𝑒−(𝑟𝑘−𝛿) + 𝑒−(𝑟𝑘+𝛿))} 𝑝𝑘

𝑖+1

= 𝑝𝑘
𝑖 +

𝛾

2
𝑒−𝑟𝑘𝑒−(𝑟𝑘−𝛿)(𝑝𝑘−1

𝑖 + 𝑝𝑘−1
𝑖+1 ) −

𝛾

2
𝑒−𝑟𝑘𝑝𝑘

𝑖 (𝑒−(𝑟𝑘−𝛿) + 𝑒−(𝑟𝑘+𝛿)), (𝑆3)
 

where 𝛾 = Δ𝑡/Δ𝑟2, 𝛿 = Δ𝑟/2, and 𝑝𝑖
𝑘 is the value of the pore fluid pressure of the 𝑘-th grid in 

the new coordinate system at time step 𝑖. Δ𝑡 andΔ𝑟 represent increments in time and space, 

respectively. In this study, the number of grids is 35, and the starting position of the grid is 

𝑟(0) = ln(0), Δ𝑟 = 0.3, and 𝑐 = 10−4. Therefore, the grid farthest from the shear zone in the 

numerical calculation using 𝑐ℎ𝑦𝑑~10−1 m2/s, 𝑇~12.4 h is approximately 𝑧 = 170 m, while the 

grid farthest from the shear zone in the numerical calculation using 𝑐ℎ𝑦𝑑~10−3 m2/s, 𝑇~12.4 h 

is approximately 𝑧 = 17 m. 

 

Text S4. The approximate solution for the tidal response of the drained model 

The approximate solution for the drained model is derived in the same manner as in Section 3.1. 

The pore fluid pressure change due to fluid flow is represented as 𝑝(𝑧, 𝑡) = 𝑝0 + Δ𝑝(𝑧)𝑒𝑖𝜔𝑡, 

where 𝑝(0, 𝑡) corresponds to the pore fluid pressure in the shear zone. The equations for the 

drained model corresponding to equations (13) and (14) for the undrained model are  

Δ𝑉̃

𝑉̃𝑝𝑙

=
2𝜋𝑖

𝐾̃𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶
|Δ𝑆̃(𝑡)| (𝑆4) 

and 
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𝐶 = 𝑎 −
1

1 + 𝑖
𝑇𝜃
𝑇

(𝑏 − 𝜇𝑝𝑙𝐸𝑝√2𝜋𝑖), respectively. (𝑆5) 

The equations of the drained model corresponding to equations (17) and (18) for the undrained 

model are 

𝛼 = 𝑅𝑒 (
2𝜋𝑖

(𝐾̃𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶)𝜎𝑒𝑓𝑓
0 ) (𝑆6) 

and 

𝛿 = 𝑎𝑟𝑔 (
2𝜋𝑖

𝐾̃𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶
) , respectively. (𝑆7) 

Furthermore, by applying the argument from which equations (19) and (20) were derived for the 

drained model, the approximate solutions of 𝛼 and 𝛿 can be expressed as 

𝛼~𝑅𝑒 {(𝐶𝜎𝑒𝑓𝑓
0 )

−1
} (𝑆8) 

and 

𝛿~𝑎𝑟𝑔{𝐶−1}, (𝑆9) 

respectively. 
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Figure S1. A schematic of the undrained (a) and drained (b) models. The difference between the 

two models is whether fluid flows outside the shear zone.  
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Figure S2. The numerical solution of 𝒄 (dots). The differences in color represent differences in 

the dilatancy parameter 𝑼. 
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Figure S3. (a) The numerical solution of 𝜶 (dots) and the approximation solution (i.e., equation 

(S8)) (solid line). (b) The numerical solution of 𝜹 (dots) and the approximation solution (i.e., 

equation (S9)) (solid line). The differences in color represent differences in the dilatancy 

parameter 𝑬𝒑 for the drained model. 
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Figure S4. The numerical solution of 𝒄 (dots). The differences in color represent differences in 

the dilatancy parameter 𝑬𝒑 for the drained model. 
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Figure S5. The time evolution of the dilatancy/compaction (D/C) term and the evolution (Evo) 

term for 𝑈 = 1 and 𝑈 = 0.1 (the variation from the time average over one tidal cycle is shown). 

The horizontal axis denotes the time normalized by the tidal period, and the values from 0 to 1 

indicate one tidal cycle. The vertical axis denotes the tidal Coulomb stress (tCs) × 103, 

normalized by the frictional strength 𝜎𝑒𝑓𝑓
0 . The numerical solutions for 𝑇𝜃/𝑇 = 14 and 𝑈 = 1 are 

shown in black, and those for 𝑇𝜃/𝑇 = 4.2 and 𝑈 = 0.1 are shown in yellow. The amplitudes of 

the D/C term and tCs term are almost the same for 𝑈 = 0.1 as well as 𝑈 = 1. This means that the 

argument in Lines 407-414 in the body text can be applied to 𝑈 = 0.1 as well as 𝑈 = 1. 

Furthermore, the D/C term for 𝑈 = 0.1 has a phase shift to the right of that for 𝑈 = 0.1. Thus, 

𝛽(≪ 𝜋) at 𝑈 = 0.1 is larger than 𝛽(≪ 𝜋) at 𝑈 = 1 (log(𝑉/𝑉𝑝𝑙)~|Δ𝑆(𝑡)|sin(𝛽/2) cos(𝜔𝑡 +

(𝜋 − 𝛽)/2). See Appendix B). Since the tidal Coulomb stress peak corresponds to 𝜔 = 𝜋/2, the 

larger 𝛽 is, the smaller 𝛿 is. In other words, 𝛿 is smaller for 𝑈 = 0.1 than for 𝑈 = 1. 
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Figure S6. A schematic illustration of the relationship between the fault creep velocity and tide 

level when 𝑈 = 1. For simplicity, only the normal stress change (white arrows) is represented. (a) 

Tidal modulation of fault creep when 𝑇𝜃/𝑇 ≪ 1. Since the dilatancy/compaction effect (black 

arrows) decreases the amplitude of Δ𝑆(𝑡), the fault creep velocity reaches its maximum at 𝛿~0. 

(b) Tidal modulation of fault creep when 𝑇𝜃/𝑇 ≪ 1 and 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎. The sum of the 

normal stress due to the dilatancy/compaction effect and the tidal normal stress becomes the 

largest in the sense of enhancing fault slip at 𝛿~𝜋/2. (c) Tidal modulation of fault creep when 

𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎. The dilatancy/compaction effect is negligible, and the fault creep velocity 

reaches its maximum at 𝛿~0.  
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Figure S7. The dependence of 𝑇𝜃/𝑇 on the phase difference at 𝐸𝑝 = 0.1 The numerical solution 

of 𝛿 (dots) and the approximation solution (i.e., equation (S9)) (solid line). We see that the 

maximum phase difference is 𝛿~𝜋/6 at 𝑇𝜃/𝑇~10, which cannot explain the observed phase 

difference of 𝜋/2. 
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Figure S8. (a) The approximation solution of 𝛼 (equation (19)) when 𝑉𝑝𝑙 = 10−7 m/s (black) and 

 10−9 m/s (yellow). The horizontal axis denotes the critical slip distance 𝑑𝑐. The blue dots show 

that 𝛼 for 𝑑𝑐 = 0.13 m increases from ≲ 0.1 to ~0.7 as 𝑉𝑝𝑙 decreases from 10−7 m/s to 10−9 

m/s. (b) The same as in (a) but for the approximation solution of 𝛿 (equation (20)). The blue dots 

show that 𝛿 decreases from ~𝜋/2 to ~0 as 𝑉𝑝𝑙 decreases from 10−7 m/s to 10−9 m/s. 

 


