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TextS1 presents the governing equation in the drained model.
TextS2 presents the nondimensionalized governing equation in the drained model.

TextS3 presents a numerical method for the governing equation in the drained model.
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TextS4 presents the approximate solution of the tidal response in the drained model.

Figure S1 shows a schematic of the undrained and drained models.

Figure S2 shows the numerical solution of ¢ in equation (12) for the undrained model.

Figure S3 shows the numerical and approximate solutions for the tidal responses o and 6 in the
drained model.

Figure S4 shows the numerical solution of ¢ in equation (12) for the drained model.

Text S1. Derivation of governing equations for the drained model

We explain a drained model in which pore fluids flow out of the shear zone (Figure S1b). The
difference between the undrained and drained models is in the presence of fluid flow. The
governing equations of the drained model are the same those as in the undrained model
(equations (3), (4) and (8)), except for the governing equation for pore fluids.

Following the work of Segall et al. (2010), we assume homogeneous diffusion (HD), which
holds under the condition that T > t,,,.. In the HD case, the effect of the finite shear zone
thickness can be neglected, so the width of the shear zone can be formally defined asw — 0
(Segall et al., 2010). The direction of fluid flow (Figure S1b) is parallel to the z-axis, and the
shear zone lies on z = 0. cy,,q denotes the fluid pressure diffusivity at z # 0. Then, the
governing equation for pore fluids can be written as (Segall et al., 2010)

_ MW(f)

z=0 2Chyd
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)#(51)
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Text S2. Nondimensionalization of the governing equations in the drained model

The governing equations for the drained model are the upper three in equation (10) and the
nondimensionalized equation (S1). When we adopt ,/cp,4T as the representative length in the z-

axis direction, the nondimensionalized equation (S1) can be written as

ap
FV:

where E, = Me/zagff /wz/Tchyd =U/2 ’wz/Tchyd. Ey, represents the relative importance of

the dilatancy/compaction effect to the effective normal stress change in the drained model.
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Previous experiments and observations suggest that cp,q~1071~* m?/s (Yamashita and

Tsutsumi, 2018) and U~10°~"2 (Section 2.2.3). Using 10°~1/2 m as the value of w (Section

4.3.4), we obtain a possible range of E,, of 1072 to 107*.

Text S3. A numerical method for the governing equation in the drained model

The upper three equations in equation (10) are calculated numerically using the third-order
Adams-Bashforth method. equation (S2) is calculated numerically using the method in Appendix
B of Segall et al. (2010). In the following, we discuss the latter method. Near the shear zone, the
discretization needs to be sufficiently fine to capture a steep gradient of the pore fluid pressure.
On the other hand, for a region far from the shear zone, the discretization does not need to be fine
because the pore fluid pressure gradient is small. Thus, we use the following coordinate
transformation between z and r (Segall et al., 2010):

z(r) = —c + e" or, equivalently r(z) = In(c + 2).
We solve equation (S2) numerically in a new coordinate system using the Crank-Nicolson

method. Specifically, we solve
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{1+ge—rk(e—(7'k—5) +e—(rk+6))}pli(+1

= b} + Do e D pfy +pf) Lo ipl (e 4 010, 4(s3)

where y = At/Ar?, § = Ar/2, and pF is the value of the pore fluid pressure of the k-th grid in
the new coordinate system at time step i. At andAr represent increments in time and space,
respectively. In this study, the number of grids is 35, the starting position of the grid is (0) =
In(0), Ar = 0.3, and ¢ = 10~*. Therefore, the grid farthest from the shear zone in the numerical
calculation using Chyd~10_1 m? /s, T~12.4 h is approximately z=170 m, while the grid farthest
to the shear zone in the numerical calculation using chyd~10‘3 m?/s, T~12.4 h is

approximately z=17 m.

Text S4. The approximate solution of the tidal response for the drained model

The approximate solution for the drained model is derived in the same manner as in Section 3.1.
The pore fluid pressure change due to fluid flow is represented as p(z,t) = p, + Ap(2)e'®t,
where p(0, t) corresponds to the pore fluid pressure in the shear zone. The equations for the

drained model corresponding to equations (13) and (14) for the undrained model are

|l>
<N

Tl ~
— = ———|AS(t) |#(S4

and

C=a- (b - Up1EpV 2mi), respectively. #(S5)

Ty

1+lT

The equations of the drained model corresponding to equations (17) and (18) for the undrained

model are

2mi
a = Re|—== ——— | #(56)
(KVp1 + 2miC)o,zf

and
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0 = arg| ==——— ], respectively. #(57
g(KVpl +2niC> pectively. #(S7)

Furthermore, by applying the argument from which equations (19) and (20) were derived for the
drained model, the approximate solutions of a and § can be expressed as

a~Re {(Cagff)_l} #(S8)
and

S~arg{C~1}, respectively. #(59)
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Figure S1. A schematic of the undrained (a) and drained (b) models. The difference between the

two models is whether fluid flows outside the shear zone.
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Figure S2. The numerical solution of ¢ (dots). The differences in color represent differences in the

dilatancy parameter U.
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Figure S3. (a) The numerical solution of a (dots) and the approximation solution (i.e., equation
(S8)) (solid line). (b) The numerical solution of & (dots) and the approximation solution (i.e.,

equation (S9)) (solid line). The differences in color represent differences in the dilatancy

parameter E,, for the drained model.
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Figure S4. The numerical solution of ¢ (dots). The differences in color represent differences in the

dilatancy parameter E, for the drained model.
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