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Elastic constants of rock material for the case of transversely isotropic symmetry 16 

along the x-3 axis (z-axis) with randomly distributed vertical cracks 17 

 18 

Here we describe the method of calculation of elastic constants for the case in which 19 

plane normals of cracks are randomly distributed in directions perpendicular to the x-3 20 

axis (z-axis). We also show that the ratio of the elastic constant of rock material that 21 

includes cracks to that of the matrix or the square of velocity ratio is expressed as (V/V0)
2
 22 

= 1 – pi ε, where V and V0 are the elastic-wave velocities with and without cracks, 23 

respectively, and ε is the crack density parameter defined by 24 

 25 

𝜀 =
3 ∅

4 𝜋 𝛼
 , 

 26 

where ∅ is the porosity and α = c/a is the aspect ratio of the crack (𝑎 = 𝑏 ≫ 𝑐). In 27 

addition, we derive the coefficients pi. 28 

 29 

The focus of this study is on a transversely isotropic medium with the x-3 axis (z-axis) as 30 

the axis of symmetry and with a vertical crack distribution in which the plane normals of 31 

the cracks are randomly distributed in horizontal directions (directions parallel to the x-32 

1,2 plane, x-y plane). The right-handed rectangular coordinate system is used in this 33 

study (Figure S1a). 34 

 35 

 36 
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Figure S1. The basic assumptions in this study: (a) the coordinate system, (b) vertical 37 

cross section of transversely isotropic rock with vertical cracks, and (c) side view of the 38 

direction of wave propagation and crack distribution.  39 

 40 

 41 

First, based on the method of Hudson (1981), we calculated 𝐶𝑖𝑗 for a material that 42 

includes vertical cracks that are plane normal along the x-1 axis (x-axis) (Figure S1b). 43 

Next, we took the rotational average of 𝐶𝑖𝑗 around the x-3 axis (z-axis), resulting in 𝐶̂𝑖𝑗, 44 

which were shown to be transversely isotropic with the x-3 axis (z-axis) by using a 45 

method similar to that of Nishizawa and Masuda (1991). 46 

 47 

 48 

 49 

 50 

Figure S2. Procedure for calculating the elastic constants in the transversely isotropic 51 

rock with vertical cracks: (a) 𝑪𝒊𝒋
𝟎  elastic constants of the rock matrix; (b) 𝑪𝒊𝒋 elastic 52 

constants for the rock material with vertical cracks for which the plane-normal direction 53 

is along the x-1 axis (x-axis); (c) 𝑪′𝒊𝒋(𝛗) elastic constants for rock material with vertical 54 

cracks for which the angle between the plane-normal direction and the x-1 axis (x-axis) is 55 

𝛗; and (d) 𝑪̂𝒊𝒋 elastic constants for rock material with transversely isotropic symmetry 56 

along the x-3 axis (z-axis) with vertical cracks with random values of 𝛗. 57 

 58 
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1. 𝑪𝒊𝒋
𝟎  elastic constants of the isotropic rock matrix (Figure S2a) 59 

 60 

In this study, we use abbreviated 2-index Voigt notation to express elastic constants such 61 

as Cij instead of 4-index notation for the fourth-rank tensor cijkl. We assume that the 62 

matrix of rock without cracks or inclusions is isotropic with two independent constants: 63 

 64 

𝐶𝑖𝑗
0 = 

(

 
 
 
 

𝐶11
0 𝐶12

0 𝐶12
0 0 0 0

𝐶12
0 𝐶11

0 𝐶12
0 0 0 0

𝐶12
0 𝐶12

0 𝐶11
0 0 0 0

0 0 0 𝐶44
0 0 0

0 0 0 0 𝐶44
0 0

0 0 0 0 0 𝐶44
0 )

 
 
 
 

=

(

 
 
 

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇)

 
 
 

 

 65 

𝐶12
0 = 𝐶11

0 − 2𝐶44
0  

 66 

The relationships between the elements 𝐶𝑖𝑗
0  and Lame’s parameters λ and μ of isotropic 67 

linear elasticity are 68 

 69 

𝐶11
0 =  𝜆 +  2𝜇,   𝐶12

0 = 𝜆,    𝐶44
0 = 𝜇. 70 

 71 

 72 

2. 𝑪𝒊𝒋 elastic constants for rock material with cracks that are plane normal along 73 

the x-1 axis (x-axis) (Figure S2b) 74 

 75 

Hudson (1981) modeled fractured rock as an elastic solid with thin, penny-shaped 76 

ellipsoidal cracks or inclusions. The effective moduli 𝐶𝑖𝑗 are given as 77 

 78 

𝐶𝑖𝑗 = 𝐶𝑖𝑗
0 + 𝐶𝑖𝑗

1 , 79 

 80 

where C
0

ij are the isotropic background moduli and C
1

ij are the first-order corrections. For 81 

the case in which the vertical cracks have crack normals along the x-1 axis (x-axis), the 82 

axis of symmetry of the material lies along the x-1 axis (x-axis), which has hexagonal 83 

symmetry with five independent constants as 84 

 85 

𝐶𝑖𝑗
1 = 

(

 
 
 
 

𝐶11
1 𝐶12

1 𝐶12
1 0 0 0

𝐶12
1 𝐶22

1 𝐶23
1 0 0 0

𝐶12
1 𝐶23

1 𝐶22
1 0 0 0

0 0 0 𝐶44
1 0 0

0 0 0 0 𝐶55
1 0

0 0 0 0 0 𝐶55
1 )

 
 
 
 

 ,      𝐶44
1 = 

1

2
 (𝐶22

1 − 𝐶23
1 ) . 86 

 87 

The following correction terms are given by Schön (2011, Table 6.15) for the case in 88 

which the crack normals are aligned along the x-1 axis (x-axis), including the vertical 89 

cracks:  90 
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 91 

𝐶11
1 = −

(𝜆 +  2𝜇)2

𝜇
 𝜀 𝑈3 

 92 

𝐶13
1 = −

𝜆 (𝜆 +  2𝜇)2

𝜇
 𝜀 𝑈3 

 93 

𝐶33
1 = −

𝜆2

𝜇
 𝜀 𝑈3 

 94 

𝐶44
1 =  0 

 95 

𝐶66
1 = −𝜇 𝜀 𝑈1 

 96 

in which the correction terms 𝐶𝑖𝑗
1  are negative; thus, the elastic properties decrease with 97 

fracturing. U1 and U3 depend on the crack conditions (Mavko et al., 2009; Schon 2011).  98 

For dry cracks, 99 

 100 

𝑈1 = 
16(𝜆 +  2𝜇)

3(3𝜆 +  4𝜇)
;           𝑈3 = 

4(𝜆 +  2𝜇)

3(𝜆 +  𝜇)
 .  

 101 

For wet cracks, Hudson’s expressions for infinitely thin fluid-filled cracks are 102 

 103 

𝑈1 = 
16(𝜆 +  2𝜇)

3(3𝜆 +  4𝜇)
;           𝑈3 =  0 . 

  104 

Therefore, for the dry case, 𝐶𝑖𝑗 are 105 

 106 

𝐶11 = 𝐶11
0 + 𝐶11

1 = (𝜆 + 2𝜇)(1 − 6 𝜀) 

 107 

𝐶13 = 𝐶13
0 + 𝐶13

1 =   𝜆(1 − 6 𝜀) 

 108 

𝐶33 = 𝐶33
0 + 𝐶33

1 = (𝜆 + 2𝜇)(1 −
2

3
 𝜀) 

 109 

𝐶44 = 𝐶44
0 + 𝐶44

1 =  𝜇 

 110 

𝐶66 = 𝐶66
0 + 𝐶66

1  =  𝜇 (1 −
16

7
 𝜀) .  111 

 112 

For the wet case, 113 

 114 

𝐶11 = 𝐶11
0 + 𝐶11

1  =  𝜆 + 2𝜇 

 115 

𝐶13 = 𝐶13
0 + 𝐶13

1  =  𝜆 
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 116 

𝐶33 = 𝐶33
0 + 𝐶33

1 =  𝜆 + 2𝜇 

 117 

𝐶44 = 𝐶44
0 + 𝐶44

1 =  𝜇 

 118 

𝐶66 = 𝐶66
0 + 𝐶66

1 =  𝜇(1 −
16

7
 𝜀) . 119 

 120 

𝐶𝑖𝑗 has hexagonal symmetry with the x-1 axis (x-axis) expressed with five independent 121 

moduli. 122 

 123 

 124 

3. 𝑪′𝒊𝒋(𝛗) elastic constants for rock material with vertical cracks that have an 125 

angle 𝛗 between the plane-normal direction and the x-1 axis (x-axis) (Figure 126 

S2c) 127 

 128 

When we rotate 𝐶𝑖𝑗 around the x-3 axis (z-axis) by an angle of φ from the x-1 axis (x 129 

axis), 𝐶𝑖𝑗 is a function of φ, as expressed by 𝐶′𝑖𝑗(φ). 130 

 131 

Regarding coordinate transformations, the elastic compliances cijkl are, in general, fourth-132 

rank tensors and hence transform according to  133 

 134 

𝑐𝑖𝑗𝑘𝑙
′ = 𝛽𝑖𝑝𝛽𝑗𝑞𝛽𝑘𝑟𝛽𝑙𝑠𝑐𝑝𝑞𝑟𝑠, 135 

 136 

where 𝑐𝑖𝑗𝑘𝑙
′  and 𝑐𝑝𝑞𝑟𝑠 are the elastic compliances after and before the coordinate 137 

transformation, respectively. For rotation around the x-3 axis (z-axis), 𝛽𝑖𝑗 is the following 138 

matrix element 139 

 140 

(
𝑐𝑜𝑠φ 𝑠𝑖𝑛φ 0
−𝑠𝑖𝑛φ 𝑐𝑜𝑠φ 0

0 0 1
). 141 

 142 

In this study, we use the abbreviated 2-index Voigt notation 𝐶𝑖𝑗 instead of 𝑐𝑖𝑗𝑘𝑙
′  and 𝑐𝑖𝑗𝑘𝑙. 143 

Although an elastic constant looks like a second-rank tensor (𝐶𝑖𝑗) with this notation, it is 144 

indeed a fourth-rank tensor; when one performs a coordinate transformation, one must go 145 

back to the full notation and follow the transformation rules for a fourth-rank tensor. The 146 

usual tensor transformation law is no longer valid. However, the change of coordinates 147 

for 𝐶𝑖𝑗  is more efficiently performed with the 6 × 6 Bond Transformation Matrices, M 148 

(Mavko et al., 2009). The advantage of the Bond method for transforming compliances is 149 

that it can be applied directly to the elastic constants given in 2-index notation, as 150 

expressed as follows: 151 

 152 

[𝐶′] = [𝑀][𝐶][𝑀]𝑇 

 153 

M 154 
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=

[
 
 
 
 
 
 

𝛽11
2 𝛽12

2 𝛽13
2 2𝛽12𝛽13 2𝛽13𝛽11 2𝛽11𝛽12

𝛽21
2 𝛽22

2 𝛽23
2 2𝛽22𝛽23 2𝛽23𝛽21 2𝛽21𝛽22

𝛽31
2 𝛽32

2 𝛽33
2 2𝛽32𝛽33 2𝛽33𝛽31 2𝛽31𝛽32

𝛽21𝛽31 𝛽22𝛽32 𝛽23𝛽33 𝛽22𝛽33 + 𝛽23𝛽32 𝛽21𝛽33 + 𝛽23𝛽31 𝛽22𝛽31 + 𝛽21𝛽32

𝛽31𝛽11 𝛽32𝛽12 𝛽33𝛽13 𝛽12𝛽33 + 𝛽13𝛽32 𝛽11𝛽33 + 𝛽13𝛽31 𝛽11𝛽32 + 𝛽12𝛽31

𝛽11𝛽21 𝛽12𝛽22 𝛽13𝛽23 𝛽22𝛽13 + 𝛽12𝛽23 𝛽11𝛽23 + 𝛽13𝛽21 𝛽22𝛽11 + 𝛽12𝛽21]
 
 
 
 
 
 

. 155 

 156 

Then, we obtain 𝐶′𝑖𝑗(φ) as 157 

 158 

𝐶11
′ (φ) =  𝑐𝑜𝑠4φ 𝐶11 + 2𝑠𝑖𝑛2φ 𝑐𝑜𝑠2φ 𝐶12 + 𝑠𝑖𝑛4φ 𝐶22 + 4𝑠𝑖𝑛2φ𝑐𝑜𝑠2φ 𝐶55 

 159 

𝐶22
′ (φ) =  𝑠𝑖𝑛4φ 𝐶11 + 2𝑠𝑖𝑛2φ 𝑐𝑜𝑠2φ 𝐶12 + 𝑐𝑜𝑠4φ 𝐶22 + 4𝑠𝑖𝑛2φ𝑐𝑜𝑠2φ 𝐶55 

 160 

𝐶12
′ (φ) = 𝐶21

′ (φ)
=  𝑠𝑖𝑛2φ 𝑐𝑜𝑠2φ 𝐶11 + (𝑠𝑖𝑛4φ + 𝑐𝑜𝑠4φ) 𝐶12 + 𝑠𝑖𝑛2φ 𝑠𝑖𝑛2φ 𝐶22

− 4𝑠𝑖𝑛2φ 𝑐𝑜𝑠2φ 𝐶55 

 161 

𝐶13
′ (φ) = 𝐶31

′ (φ) =  𝑐𝑜𝑠2φ 𝐶12 + 𝑠𝑖𝑛2φ 𝐶23 

 162 

𝐶23
′ (φ) = 𝐶32

′ (φ) =  𝑠𝑖𝑛2φ 𝐶12 + 𝑐𝑜𝑠2φ 𝐶23 

 163 

𝐶33
′ (φ) =  𝐶22 

 164 

𝐶44
′ (φ) =  𝑐𝑜𝑠2φ 𝐶44 + 𝑠𝑖𝑛2φ 𝐶55 

 165 

𝐶55
′ (φ) =  𝑠𝑖𝑛2φ 𝐶44 + 𝑐𝑜𝑠2φ 𝐶55 

 166 

𝐶66
′ (φ) =  𝑠𝑖𝑛2φ 𝑐𝑜𝑠2φ 𝐶11 − 2𝑠𝑖𝑛2φ 𝑐𝑜𝑠2φ 𝐶12 + 𝑠𝑖𝑛2φ 𝑐𝑜𝑠2φ 𝐶22 + (𝑐𝑜𝑠2φ −167 

𝑠𝑖𝑛2φ)2 𝐶55. 168 

 169 

The following non-zero elements are zero in the next step 4, taking the rotational 170 

average: 171 

 172 

𝐶16
′ (φ), 𝐶61

′ (φ), 𝐶26
′ (φ), 𝐶62

′ (φ), 𝐶36
′ (φ), 𝐶63

′ (φ), 𝐶45
′ (φ), 𝐶54

′ (φ). 173 

 174 

 175 

4. 𝑪̂𝒊𝒋 elastic constants for rock material with transversely isotropic symmetry 176 

along the x-3 axis (z-axis) and a vertical crack distribution (Figure S2d) 177 

 178 

We took the rotational average of 𝐶𝑖𝑗 around the x-3 axis (z-axis) to obtain 𝐶̂𝑖𝑗  that 179 

showed transversely isotropic symmetry along the x-3 axis (z-axis) in the case of a 180 

random vertical crack distribution as follows: 181 

 182 

𝐶̂𝑖𝑗 = 
1

2𝜋
 ∫ 𝐶′

𝑖𝑗(φ)
2𝜋

0
 𝑑φ, 183 
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 184 

which uses  185 

 186 

1

2𝜋
 ∫ 𝑠𝑖𝑛4φ dφ =  

3

8

2𝜋

0

 ,   
1

2𝜋
 ∫ 𝑐𝑜𝑠4φ dφ =  

3

8

2𝜋

0

 ,   
1

2𝜋
 ∫ 𝑠𝑖𝑛2φ 𝑐𝑜𝑠2φ dφ =  

1

8

2𝜋

0

 ,    

 187 

1

2𝜋
 ∫ 𝑠𝑖𝑛2φ dφ =  

1

2

2𝜋

0

 ,   
1

2𝜋
 ∫ 𝑐𝑜𝑠2φ dφ =  

1

2
 .

2𝜋

0

 

 188 

𝐶̂𝑖𝑗 shows hexagonal symmetry or transversely isotropic symmetry with the x-3 axis (z-189 

axis) in which there are five independent constants: 190 

 191 

𝐶̂11 = 
1

2𝜋
 ∫ 𝐶′

11(φ)
2𝜋

0

 𝑑φ =  
3

8
 𝐶11 + 

1

4
 𝐶12 + 

3

8
 𝐶22 + 

1

2
 𝐶55 

 192 

𝐶̂12 = 
1

2𝜋
 ∫ 𝐶′

12(φ)
2𝜋

0

 𝑑φ =  
1

8
 𝐶11 + 

3

4
 𝐶12 + 

1

8
 𝐶22 − 

1

2
 𝐶55 

 193 

𝐶̂13 = 
1

2𝜋
 ∫ 𝐶′

13(φ)
2𝜋

0

 𝑑φ =  
1

2
 𝐶12 + 

1

2
 𝐶23 

 194 

𝐶̂33 = 𝐶22 

 195 

𝐶̂44 = 
1

2𝜋
 ∫ 𝐶′

44(φ)
2𝜋

0

 𝑑φ =  
1

2
 𝐶44 + 

1

2
 𝐶55 

 196 

𝐶̂66 = 
1

2𝜋
 ∫ 𝐶′

66(φ)
2𝜋

0

 𝑑φ =  
1

8
 𝐶11 − 

1

4
 𝐶12 + 

1

8
 𝐶22 + 

1

2
 𝐶55 = 

1

2
 (𝐶̂11 − 𝐶̂12). 

 197 

 198 

5. Wave velocities which propagate in the horizontal directions 199 

 200 

In the material with transversely isotropic symmetry, there are three modes of wave 201 

propagation, and their velocities are dependent on the angle θ between the axis of 202 

symmetry (in this case, x-3 axis or z-axis) and the direction of the wave vector: 203 

 204 

𝑉𝑃 = √
𝐶̂11 𝑠𝑖𝑛

2𝜃 + 𝐶̂33 𝑐𝑜𝑠2𝜃 + 𝐶̂44 + 𝐴

2𝜌
 

 205 

𝑉𝑆𝑉 = √
𝐶̂11 𝑠𝑖𝑛

2𝜃 + 𝐶̂33 𝑐𝑜𝑠2𝜃 + 𝐶̂44 − 𝐴

2𝜌
 

 206 
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𝑉𝑆𝐻 = √
𝐶̂66 𝑠𝑖𝑛

2𝜃 + 𝐶̂44 𝑐𝑜𝑠2𝜃

2𝜌
 , 

 207 

where 𝐴 =  √[(𝐶̂11 − 𝐶̂44)𝑠𝑖𝑛
2𝜃 + (𝐶̂33 − 𝐶̂44)𝑐𝑜𝑠2𝜃]

2
+  (𝐶̂13 + 𝐶̂44)

2
𝑠𝑖𝑛22𝜃 . 208 

 209 

For θ = 90°, the relationship simplifies to 𝐴 =  𝐶̂33 − 𝐶̂44 and the wave velocity vectors 210 

that propagate perpendicular to the x-3 axis in horizontal directions (Figure S1c) are 211 

 212 

𝑉𝑃 = √
𝐶̂11

𝜌
 ,    𝑉𝑆𝑉 = √

𝐶̂44

𝜌
 ,    𝑉𝑆𝐻 = √

𝐶̂66

𝜌
 ,  

 213 

where VP, VSV, and VSH are the longitudinal-wave velocity, shear-wave velocity with 214 

vertical polarization, and shear-wave velocity with horizontal polarization, respectively. 215 

 216 

We consider low-porosity aggregate and flat cracks, and have ignored the effect of 217 

porosity on the density of the composite (Anderson et al., 1974).  218 

For the dry case, using 𝜆 = 𝜇, 219 

 220 

𝑉𝑃
2 = 

𝐶̂11

𝜌
=  

𝜆 + 2𝜇

𝜌
 (1 −

71

21
𝜀) =  𝑉𝑃0

2 (1 −
71

21
𝜀)  

 221 

𝑉𝑆𝑉
2 = 

𝐶̂44

𝜌
=  

𝜇

𝜌
 (1 −

8

7
𝜀) =  𝑉𝑆𝑉0

2 (1 −
8

7
𝜀) 

 222 

𝑉𝑆𝐻
2 = 

𝐶̂66

𝜌
=  

𝜇

𝜌
 (1 −

15

7
𝜀) =  𝑉𝑆𝐻0

2 (1 −
15

7
𝜀) , 

 223 

where V with a subscript 0 are the velocities without cracks. 224 

 225 

For the wet case, 226 

 227 

𝑉𝑃
2 = 

𝐶̂11

𝜌
=  

𝜆 + 2𝜇

𝜌
 (1 −

8

21
𝜀) =  𝑉𝑃0

2 (1 −
8

21
𝜀)  

 228 

𝑉𝑆𝑉
2 = 

𝐶̂44

𝜌
=  

𝜇

𝜌
 (1 −

8

7
𝜀) =  𝑉𝑆𝑉0

2 (1 −
8

7
𝜀) 

 229 

𝑉𝑆𝐻
2 = 

𝐶̂66

𝜌
= 

𝜇

𝜌
 (1 −

8

7
𝜀) =  𝑉𝑆𝐻0

2 (1 −
8

7
𝜀) . 230 

 231 

The effect of cracks on velocity, in terms of the ratio of velocities with and without 232 

cracks, is proportional to the crack density parameter ε at small values of ε: 233 
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 234 

(
𝑉

𝑉0
)
2

= 1 − 𝑝𝑖 𝜀 . 

 235 

 236 

 237 

 238 

Figure S1. The basic assumptions in this study: (a) the coordinate system, (b) vertical 239 

cross section of transversely isotropic rock with vertical cracks, and (c) side view of the 240 

direction of wave propagation and crack distribution.  241 

Figure S2. Procedure for calculating the elastic constants in the transversely isotropic 242 

rock with vertical cracks: (a) 𝑪𝒊𝒋
𝟎  elastic constants of the rock matrix; (b) 𝑪𝒊𝒋 elastic 243 

constants for the rock material with vertical cracks for which the plane-normal direction 244 

is along the x-1 axis (x-axis); (c) 𝑪′𝒊𝒋(𝛗) elastic constants for rock material with vertical 245 

cracks for which the angle between the plane-normal direction and the x-1 axis (x-axis) is 246 

𝛗; and (d) 𝑪̂𝒊𝒋 elastic constants for rock material with transversely isotropic symmetry 247 

along the x-3 axis (z-axis) with vertical cracks with random values of 𝛗. 248 

 249 


