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Elastic constants of rock material for the case of transversely isotropic symmetry
along the x-3 axis (z-axis) with randomly distributed vertical cracks

Here we describe the method of calculation of elastic constants for the case in which
plane normals of cracks are randomly distributed in directions perpendicular to the x-3
axis (z-axis). We also show that the ratio of the elastic constant of rock material that
includes cracks to that of the matrix or the square of velocity ratio is expressed as (V/Vo)
=1 - pi e, where V and Vj are the elastic-wave velocities with and without cracks,
respectively, and ¢ is the crack density parameter defined by
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where @ is the porosity and o = c/a is the aspect ratio of the crack (a = b > ¢). In
addition, we derive the coefficients p;.

The focus of this study is on a transversely isotropic medium with the x-3 axis (z-axis) as
the axis of symmetry and with a vertical crack distribution in which the plane normals of
the cracks are randomly distributed in horizontal directions (directions parallel to the x-
1,2 plane, x-y plane). The right-handed rectangular coordinate system is used in this
study (Figure Sla).
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Figure S1. The basic assumptions in this study: (a) the coordinate system, (b) vertical
cross section of transversely isotropic rock with vertical cracks, and (c) side view of the
direction of wave propagation and crack distribution.

First, based on the method of Hudson (1981), we calculated C;; for a material that
includes vertical cracks that are plane normal along the x-1 aX|s (x-axis) (Figure S1b).
Next, we took the rotational average of C;; around the x-3 axis (z-axis), resulting in C; T
which were shown to be transversely isotropic with the x-3 axis (z-axis) by using a
method similar to that of Nishizawa and Masuda (1991).
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Figure S2. Procedure for calculating the elastic constants in the transversely isotropic
rock with vertical cracks: (a) C elastic constants of the rock matrix; (b) C;; elastic
constants for the rock material Wlth vertical cracks for which the plane- normal direction
is along the x-1 axis (x-axis); (c) C';;(¢) elastic constants for rock material with vertical
cracks for which the angle between the plane-normal direction and the x-1 axis (x-axis) is
@; and (d) C elastic constants for rock material with transversely isotropic symmetry
along the x- 3 axis (z-axis) with vertical cracks with random values of ¢.
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1. C?j elastic constants of the isotropic rock matrix (Figure S2a)

In this study, we use abbreviated 2-index Voigt notation to express elastic constants such
as Cjj instead of 4-index notation for the fourth-rank tensor cjjq. We assume that the
matrix of rock without cracks or inclusions is isotropic with two independent constants:

(i Ch G 0 0 0 A+2u A A 000

C, Ch C 0 0 0 A A+2¢ A 0 0 0

o |G G oCh 0 0 0 |_| 2 A A+24 0 0 0
Y o o0 o0 ¢c) 0 0 0 0 0 g 0 0
\0 0 0 0 ¢ O \ 0 0 0 0 u O

o 0 0 0 0 cb 0 0 0 00 u

C102 = C101 - 26}1)4

The relationships between the elements Ci‘} and Lame’s parameters A and x of isotropic
linear elasticity are

Chh=2A+2u Ch=24 Ch=pn

2. C;j elastic constants for rock material with cracks that are plane normal along
the x-1 axis (x-axis) (Figure S2b)

Hudson (1981) modeled fractured rock as an elastic solid with thin, penny-shaped
ellipsoidal cracks or inclusions. The effective moduli C;; are given as

Cj = CY+ C,
where CY; are the isotropic background moduli and C; are the first-order corrections. For
the case in which the vertical cracks have crack normals along the x-1 axis (x-axis), the
axis of symmetry of the material lies along the x-1 axis (x-axis), which has hexagonal
symmetry with five independent constants as

(i C C 0 0 0
ChL C3, Ck O 0 0 \
C112 C213 Czlz 0 0 0 1
Cilj = 0 0 0 6434 0 0 ’ Cz}zx = 2 (Célz - C213) :
0 0 0 0 C&k o
0 0 0 0 0 CcC&

The following correction terms are given by Schon (2011, Table 6.15) for the case in
which the crack normals are aligned along the x-1 axis (x-axis), including the vertical
cracks:
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A+ 2p)?

ci = —T€U3
A4+ 2p)?

Ciz = _—( 2 e Us

U

/12

C33= —— € Us

C4:_L4: 0

Coe = —1e Uy

in which the correction terms Cl-lj are negative; thus, the elastic properties decrease with
fracturing. U; and U; depend on the crack conditions (Mavko et al., 2009; Schon 2011).
For dry cracks,

_ le(A+ 2/1). 4+ 2p)
17331+ 4p)’ T3+ )

For wet cracks, Hudson’s expressions for infinitely thin fluid-filled cracks are

B 16(1 + Z,u)_
17 3B+ 4p)’

U;=0.
Therefore, for the dry case, C;; are
Ci=Ch+ Ch=@A+20)(1-6¢)
Cis=Ch+Ch= A(1-6¢)

C33= C3s+ C33= (A+2w)( _g €)
Caa = Cis+ Cin = U

Cee = Ces + Cos = H(l—— 5)-

For the wet case,

Cu=Ch+ Ch =2A+2u

Ciz= Cs+ Cis = 4
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C33= C33+ C35= A +2u
Cas= Cia+ Chy= 1

0 1 16
Cee = Co + Co = H(1_7 €).

C;; has hexagonal symmetry with the x-1 axis (x-axis) expressed with five independent
moduli.

3. C';j(¢o) elastic constants for rock material with vertical cracks that have an

angle ¢ between the plane-normal direction and the x-1 axis (x-axis) (Figure
S2¢)

When we rotate C;; around the x-3 axis (z-axis) by an angle of ¢ from the x-1 axis (x
axis), C;; is a function of o, as expressed by C’;; ().

Regarding coordinate transformations, the elastic compliances cijq are, in general, fourth-
rank tensors and hence transform according to

Ci’jkl = Biplgjqﬁkrﬁlscpqrs’

where c;j,; and ¢, 4, are the elastic compliances after and before the coordinate
transformation, respectively. For rotation around the x-3 axis (z-axis), f;; is the following
matrix element

cosp sing 0
(—sin(p cos® O).
0 0 1

In this study, we use the abbreviated 2-index Voigt notation C;; instead of c;j;,; and c; ;.
Although an elastic constant looks like a second-rank tensor (C;;) with this notation, it is
indeed a fourth-rank tensor; when one performs a coordinate transformation, one must go
back to the full notation and follow the transformation rules for a fourth-rank tensor. The
usual tensor transformation law is no longer valid. However, the change of coordinates
for C;; is more efficiently performed with the 6 x 6 Bond Transformation Matrices, M
(Mavko et al., 2009). The advantage of the Bond method for transforming compliances is
that it can be applied directly to the elastic constants given in 2-index notation, as
expressed as follows:



[ Bh Btz B3 2pB12B13 2pB13B11 2pB11B12
B3 B3 B33 25523 2f23P21 2[51B22
155 = B3 B3 B35 2[332B33 23331 2331 B3> _
B21B31  B22B32  PB23B3z  Ba2B3s + B23Bsz  B21Pss + Baabsi B22B31 + B21Ps2
B31B11  B32B12 B3zbPiz  Bi2Bss + BisBsz  B11Bzz + Bi3Bs1  Pi1Bzz + B12B3
(B11B21  Bi2B22  B13B2z  B22biz + P12B23  Bi1Bas + PizB21 B22Bi1 + BizBai!

156
157  Then, we obtain C’;;(¢) as
158

C{1(@) = cos*@ Cy; + 2sin? cos?@ Cy, + sin*@ Cy, + 4sin®@cos?@ Cys
159

Cyo (@) = sin*@ Cyq + 2sin?@ cos?@ Cy, + cos*@ Cy, + 4sin?@cos? Css
160

Ci2(@) = C31(9)

= sin?@ cos?@ Cy; + (sin*@ + cos*@) Cy, + sin?@ sin?¢ Cy,
— 4sin?@ cos?@ Css

161

Ci3(@) = C31(@) = cos?@ Cy5 + sin@ Cy3
162

C33(@) = C35(@) = sin*@ Cyp + cos?@ Cp3
163

C33(@) = Cp
164

Caa(@) = c0s*@ Cyy + sin?@ Css
165

Cs5(@) = sin®@ Cay + cos?@ Css
166

167  Cie(@) = sin?@ cos?@ C1; — 2sin?@ cos?@ Cy, + sin®@ cos?@ C,, + (cos?@ —
168  sin?@)? Css.

169

170  The following non-zero elements are zero in the next step 4, taking the rotational
171  average:

172

173 C6(@), C41(9), C26(@), Ce2 (@), C36(@), Ce3(@), C45(), Cs4 ().
174
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176 4. Z’,-,- elastic constants for rock material with transversely isotropic symmetry
177 along the x-3 axis (z-axis) and a vertical crack distribution (Figure S2d)
178

179 We took the rotational average of C;; around the x-3 axis (z-axis) to obtain o ; that
180  showed transversely isotropic symmetry along the x-3 axis (z-axis) in the case of a
181  random vertical crack distribution as follows:

182

A 1 p2m .,
183 (i = - fonC ij (@) do,
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which uses

1 21 3 1 21 3
I in4 do = — — 4 do =
ano sin*e do 8,27Tf0 cos*@ do

2T 1
3’ EL sin?@ cos?@ d = 3’

1 IZTE 1 1 21
— sinfedp = =, — f cos?@de =
2 J, 2° 2m ),

C; ; shows hexagonal symmetry or transversely isotropic symmetry with the x-3 axis (z-
axis) in which there are five independent constants:

N 3 1 3

C11=§J0 Cll((p)d([):5611+ZC12+§622+§C55

.1 (o 1 3 1 1

Clzzgfo C12((P)d(P:§C11+ZC12+§C22_§CSS

.1 [ 1 1

Ci3 = %fo C'13(p) do = §C12+§C23

633=622

.1 (o 1

Cyq = %fo C'44(@) do = _C44+§Css

.1 [ 1 1 1 1 1.,
Coe = ﬁfo C'es() do = §C11—ZC12+§C22+5655: E(Cn— C12)-

5. Wauve velocities which propagate in the horizontal directions

In the material with transversely isotropic symmetry, there are three modes of wave
propagation, and their velocities are dependent on the angle 6 between the axis of
symmetry (in this case, x-3 axis or z-axis) and the direction of the wave vector:

VP=

\[CA’H sin20 + C33 c0s20 + C,y + A
2p

C11 5in20 + C33 c0s20 + Cpy — A
Vsy = 2p
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Cee Sin20 + Cy44 cos?6
Vs = 2
p

where 4= [[(Cus — Caa)sin?0 + (Cos — Cag)eos?6]" + (Cus +Cun)’sin?26

For 6 = 90°, the relationship simplifiesto A = C35 — C,, and the wave velocity vectors
that propagate perpendicular to the x-3 axis in horizontal directions (Figure S1c) are

’511 ’544 Cos
Vp = rE Vsy = >’ Vsu = FE

where Vp, Vgy, and Vgy are the longitudinal-wave velocity, shear-wave velocity with
vertical polarization, and shear-wave velocity with horizontal polarization, respectively.

We consider low-porosity aggregate and flat cracks, and have ignored the effect of
porosity on the density of the composite (Anderson et al., 1974).
For the dry case, using A = p,

C 15 15
m S 2150 - vinl1- 3.

where V with a subscript 0 are the velocities without cracks.

For the wet case,

G A+2u 8
V= —= (1——)— 2(1——)
P, P 21°) = "o\t f

644 U 8 8
viy= =t =0 (1-5¢) = Vi (1-7¢)

V2, = %= b(1-2e) = Véo(1-3¢).

The effect of cracks on velocity, in terms of the ratio of velocities with and without
cracks, is proportional to the crack density parameter ¢ at small values of :
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Figure S1. The basic assumptions in this study: (a) the coordinate system, (b) vertical
cross section of transversely isotropic rock with vertical cracks, and (c) side view of the
direction of wave propagation and crack distribution.

Figure S2. Procedure for calculating the elastic constants in the transversely isotropic
rock with vertical cracks: (a) C?j elastic constants of the rock matrix; (b) C;; elastic
constants for the rock material with vertical cracks for which the plane-normal direction
is along the x-1 axis (x-axis); (c) C';;(¢) elastic constants for rock material with vertical
cracks for which the angle between the plane-normal direction and the x-1 axis (x-axis) is
@; and (d) f,-j elastic constants for rock material with transversely isotropic symmetry
along the x-3 axis (z-axis) with vertical cracks with random values of ¢.
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