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Abstract 21 

At continental mid-latitude, soil moisture (SM) is a key component of the climate systems and 22 
land surface initialization is crucial for subseasonal-to-seasonal (S2S) predictions. We introduce a 23 
new stochastic global land reanalysis system called the Norwegian Climate Prediction Model Land 24 
(NorCPM-Land), which will be used to initialize the land component of the Norwegian Climate 25 
Prediction Model (NorCPM). We assimilate the blended SM from the European Space Agency's 26 
Climate Change Initiative (ESA CCI) into a 30-member offline simulation of the land surface 27 
Community Land Model (CLM). Fluxes are provided by 30-member historical simulations of the 28 
full coupled NorCPM.  The Ensemble Kalman Filter (EnKF) updates daily the soil column from 29 
the SM data using the cumulative density function matching method.The NorCPM-Land is 30 
currently produced for 40 years from 1980 to 2019. Assimilation significantly improves the land 31 
surface state variability and reduces error by 10.5% when validated using independent SM 32 
observations and by reanalysis estimates from ERA5-Land. It also yields an improvement of land 33 
surface energy, runoff and net primary production. We demonstrate that adjusting the underlying 34 
soil moisture considerably enhances the ability to simulate land surface state dynamics. 35 

Plain Language Summary 36 

Soil moisture (SM) is a key element of the climate system, and the insitial land surface condtion 37 
is important for accurate subseasonal-to-seasonal (S2S) predictions. We have developed the 38 
Norwegian Climate Prediction Model Land (NorCPM-Land), which is a new land reanalysis 39 
system providing improved land initial condition. It will be used to initialise the land part of the 40 
Norwegian Climate Prediction Model (NorCPM). We assimilate the combined SM from the 41 
Climate Change Initiative of the European Space Agency (ESA CCI) into an offline simulation of 42 
the land surface using thirty realizations of the Community Land Model (CLM). Input to the CLM 43 
are given by historical simulations of the NorCPM with all 30 members. SM data are used by the 44 
Ensemble Kalman Filter (EnKF) to update the soil column every day. This is done by matching 45 
the cumulative distribution function. The improved land condition from NorCPM-Land has been 46 
made available for the past 40 years, from 1980 to 2019. Assimilation makes a big difference in 47 
the variability of the state of the land surface and cuts error by 10.5% when validated with 48 
independent SM observations.  It also leads to an improvement in land surface energy, runoff, and 49 
vegetation productivity. We show that changing the moisture of the soil makes it much easier to 50 
accurately model the state of the land surface. 51 

1 Introduction 52 

Subseasonal to seasonal (S2S) forecasting has substantial societal implications, especially 53 
in the water management, agribusiness, and emergency response sectors (Merryfield et al., 2020). 54 
There is, however, a considerable gap in accurate prediction at S2S range because of the chaotic 55 
processes underlying predictability sources (Meehl et al., 2021; Mariotti et al., 2018). Thus, it is 56 
essential to get better understanding of such predictability and to develop more accurate 57 
monitoring and prediction systems. It is largely accepted that the land surface is an important factor 58 
in determining the predictability and variability of the climate at S2S timescales (Koster et al. 59 
2004; Guo et al. 2011). Regional climate can change in response to alterations in land-atmosphere 60 
feedbacks and/or surface conditions (Dirmeyer and Halder, 2016). In regions where there is 61 
substantial land-atmosphere coupling, the soil moisture (SM) exerts a direct influence on the 62 
atmosphere. The exchange of latent and sensible heat fluxes in these places changes the land-63 
atmosphere feedbacks that are influenced by SM (Koster et al. 2004). SM has also been found to 64 
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influence hydro-meteorological factors such as temperature and precipitation (Koster et al., 2004; 65 
Seneviratne et al., 2010; Taylor et al., 2012). Previous studies have shown that SM affects the 66 
accuracy of seasonal predictions (Fischer et al., 2007; Koster et al., 2010; Dirmeyer and Halder, 67 
2016; Dirmeyer et al., 2018; Seo et al., 2019; Seo et al., 2020). The persistence of SM anomalies 68 
over time (also known as SM memory) is stronger than that of meteorological variables, hence 69 
enhancing subseasonal forecasts (Orth and Seneviratne, 2012; McColl et al., 2017; Santanello et 70 
al., 2018). Therefore, land surface is one of the primary factors influencing S2S forecasts with a 71 
2- to 4-week lead time (Mariotti et al., 2018). Consequently, improving the initial condition of the 72 
SM is crucial for enhancing the S2S prediction capabilities.  73 

In this paper, we introduce a data assimilation (DA) scheme for improving the SM 74 
initialisation in the Norwegian Climate Prediction Model (NorCPM) with the long-term aim to 75 
improve S2S predictions. NorCPM is based on the Norwegian Earth System Model version 1 76 
(NorESM1) and the Ensemble Kalman Filter (EnKF; Evensen, 2003) to provide climate reanalyses 77 
(Counillon et al., 2016) and seasonal-to-decadal climate predictions (Counillon et al., 2014, Bethke 78 
et al. 2021). The present version of NorCPM uses a closely coupled DA framework to update the 79 
states of the ocean and sea ice components (Penny et al. 2017). However, the current version of 80 
NorCPM does not update the states of the atmosphere and the land components in the DA phase. 81 
Here we build a reanalysis product to improve the NorCPM’s land initialization but preserving the 82 
model climatology so that hindcast drift are minimized. 83 

This study relies on the offline community land model (CLM) in NorESM to develop the 84 
new Norwegian Land Reanalysis System (NorCPM-Land). To simulate the main land surface 85 
processes, the CLM leverages water and energy balance equations (Oleson et al., 2013). Among 86 
the several land surface state variables, SM plays a vital role in regulating the exchange of water 87 
and energy between the land and atmosphere. The development of the planetary boundary layer 88 
and near-surface atmospheric fluxes are known to be affected by fluctuations in SM (Santanello et 89 
al., 2011). The prevailing SM state is characterized by a large degree of temporal and spatial 90 
variability. This is because it is profoundly affected by a wide range of factors, including 91 
precipitation, land cover, and soil texture. The CLM provides spatially and temporally continuous 92 
estimates of SM at a range of soil depths down to the water table at configurable resolutions. CLM 93 
simulation skills, on the other hand, are susceptible to uncertainty because of bias in atmospheric 94 
forcing and the inability of model physics to replicate accurate land surface processes. SM 95 
observations are frequently obtained using sparse in situ networks or satellite remote sensing, and 96 
their spatiotemporal coverage is thus limited. One of the most severe constraints is that the 97 
currently available remote sensing can only offer measurements of the surface SM. To circumvent 98 
these constraints, satellite SM measurements are integrated synergistically with a land surface 99 
model (LSM) using the DA method (Reichle and Koster, 2004; Drush et al., 2009; de Rosnay et 100 
al., 2013; Kumar et al., 2012; Nair and Indu, 2016; Nair and Indu, 2019; Nair et al., 2020). The 101 
DA method delivers improved land initial states for prediction models in several applications, 102 
including S2S forecasting. Assimilation of satellite SM estimate enhances the ability to forecast 103 
surface humidity, air temperature, geopotential height, and precipitation (Zheng et al., 2018).     104 

Satellite remote sensing in the microwave range of the electromagnetic spectrum, 105 
especially in the L-band (1-2 GHz) and C-band (4-8 GHz), is ideal for SM monitoring (Carver et 106 
al., 1985). At low frequencies (1-5 GHz), the sharp difference in dielectric constant between dry 107 
soil (approximately 3) and water (approximately 80) underpins ability of microwave remote 108 
sensing to capture SM (Ulaby et al., 1996). With increasing frequency, the sensitivity of the 109 
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dielectric constant to SM diminishes (Hallikainen et al., 1985). Low-frequency microwave 110 
channels are also known for having less vegetation interference. A variety of satellite-borne 111 
sensors working in the passive and active microwave areas have provided near-surface SM 112 
products. Unlike passive microwave sensors, which estimate SM from the surface emitted 113 
brightness temperature, active microwave sensors offer near-surface SM at global scales by 114 
detecting the backscattered value from the surface. Some of the widely used satellite SM products 115 
stems from  Advanced Scatterometer (ASCAT) aboard Meteorological Operational (METOP) 116 
satellites (Wagner et al., 2013), multi-frequency polarimetric microwave radiometer WindSat 117 
aboard Coriolis satellite (Gaiser et al., 2004), Advanced Microwave Scanning Radiometer Earth 118 
Observing System (AMSR-E; Njoku et al., 2003) aboard Aqua satellite, Advanced Microwave 119 
Scanning Radiometer 2 (AMSR2; Imaoka et al., 2010) aboard the Global Change Observation 120 
Mission-Water (GCOM-W) satellite, the recent satellites in L band from the Soil Moisture Ocean 121 
Salinity (SMOS) mission (Kerr et al., 2010) and the Soil Moisture Active Passive (SMAP) mission 122 
(Entekhabi et al., 2010). The availability of these satellite missions has paved the way for different 123 
SM products from individual satellites as well as blended multi-satellite products such as the 124 
European Space Agency’s Climate Change Initiative (ESA CCI). The offline assimilation system 125 
developed in this study is designed to incorporate daily SM data from the ESA CCI into the CLM 126 
using the EnKF method. In the following sections, we describe in detail the assimilation strategy 127 
utilized in this study and the assessment standards used. 128 

2 Land Reanalysis with the Norwegian Climate Prediction Model (NorCPM-Land) 129 

The NorCPM-Land provides daily estimates of different land surface state variables 130 
pertaining to water and energy balance, globally at a spatial resolution of 1.9° × 2.5° of the model 131 
and by assimilating SM data from ESA-CCI. Although direct assimilation of SM data into 132 
NorCPM would be ideal, the system is currently only working with offline assimilation - meaning 133 
that the model is stopped, the state written on disk, data assimilation applied on the files and the 134 
model restarted. The time required for initializing the model and writing the input/output is 135 
burdensome (see, e.g., Karspeck et al. 2018), and the required daily frequency for SM data 136 
assimilation is not feasible with our current configuration. Therefore, we produce a land reanalysis 137 
from the offline land component forced with atmospheric fluxes from an ensemble of historical 138 
runs of NorESM (the ESM used in NorCPM) and by assimilating daily SM data. As such the 139 
reanalysis and the model used for running the prediction are the same. This will prevent numerical 140 
shocks that can emerge when the initial state is taken from a different model system. 141 

2.1 Norwegian Earth System Model 142 

This study employs NorESM1-ME (Bentsen et al., 2013; Tjiputra et al., 2013).  NorESM1 143 
is based on the Community Earth System Model version 1.0.3 (CESM1; Hurrell et al., 2012), with 144 
difference in the ocean component, atmospheric chemistry, and ocean biogeochemistry. The ocean 145 
component in NorESM is an updated version of the isopycnal coordinate ocean model MICOM 146 
(Bleck et al., 1992). The new model (referred to as Bergen Layered Ocean Model) includes 147 
implementation of an incremental remapping for isopycnal advection, calculation of pressure 148 
gradient force by correct vertical integration of in-situ density, changed parameterization of 149 
isopycnal and diapycnal mixing processes, and a novel split-mixed layer formulation (Bentsen et 150 
al., 2013). It uses 51 isopycnal layers and two layers for representing the bulk mixed layer with 151 
time-evolving thicknesses and densities. The ocean biogeochemistry is based on the Hamburg 152 
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Ocean Carbon Cycle Model (HAMOCC, Assmann et al., 2010; Tjiputra et al., 2012). The sea ice 153 
component is a version of the Los Alamos Sea ice model (CICE4, Gent et al. 2011; Holland et al. 154 
2012). The ocean and the sea-ice model have a horizontal resolution of approximately 1◦. The 155 
atmosphere component is a version of the Community Atmosphere Model (CAM4-Oslo, Kirkevåg 156 
et al. 2013), which provides choices for aerosol and cloud chemistry (Kirkevåg et al., 157 
2013).   CAM4 has a horizontal resolution of 1.9° latitude and 2.5° longitude and 26 vertical levels 158 
in a hybrid sigma-pressure coordinate; CLM4 follows the same horizontal grid as CAM4. CLM4 159 
is described in more details in the next section. 160 

2.2 Community Land Model 161 

The CLM 4.0 coupled in the NorESM is used in this work to develop an offline assimilation 162 
system. The CLM model is an integrated land model that is based on water and energy balance 163 
equations. Land surface in CLM 4.0 follows a subgrid hierarchy, with each grid cell consisting of 164 
land units, columns, and plant functional types (PFTs). Grid cells can have different numbers of 165 
land units, like lakes, glaciers, vegetation, and urban areas. Each column in the vegetated land units 166 
has 15 layers of soil and 5 layers of snow, depending on the snow depth. The soil profile in CLM 167 
4.5 consists of 15 strata with depths ranging from 7.100635 mm, 27.925 mm, 62.25858 mm, 168 
118.8651 mm, 212.1934 mm, 366.0658 mm, 619.7585 mm, 1038.027 mm, 1727.635 mm, 169 
2864.607 mm, 4739.157 mm, 7829.766 mm, 12925.32 mm in each active grid cell. The top 10 170 
hydrologically active strata are used to compute the soil moisture. To simulate changes in canopy 171 
water, surface water, snow water, soil water, soil ice, and water in the unconfined aquifer, the 172 
model parameterizes interception, throughfall, canopy drip, snow accumulation and melt, water 173 
transfer between snow layers, infiltration, evaporation, surface runoff, sub-surface drainage, 174 
redistribution within the soil column, and groundwater discharge and recharge. In CLM the 175 
multilayer vertical moisture and energy transfer in a one-dimensional soil model are predicted 176 
using a modified Richard’s equation. Similarly, to derive the land surface fluxes, the similarity 177 
theory developed by Monin and Obukhov is adopted. CLM4.5 considers the spatial heterogeneity 178 
of the land surface, and it simulates the soil moisture, soil temperature, infiltration, 179 
evapotranspiration, sensible heat flux, latent heat flux, and soil heat flux (Oleson et al., 2013). The 180 
soil hydraulic and thermal characteristics in CLM4.5 are derived from the pedotransfer functions 181 
of sand and clay (Cosby et al., 1984) and organic properties of the soil (Lawrence and Slater, 182 
2007). In this work, the CLM is configured by incorporating following components: DATM; 183 
CLM; SICE; SOCN; RTM; SGLC; SWAV. The resolution of the model is set to f19_g16 globally, 184 
with a total of 288 (longitude) 192 (latitude) grid cells. 185 

2.3 Data Assimilation using Ensemble Square Root Filter 186 

Data assimilation system in this study is built on the Ensemble Kalman Filter (EnKF) 187 
approach, which implies that observations are related to the true model state (𝐱𝐓𝐫𝐮𝐞). 188 

𝐲 = 𝐇𝐱𝐓𝐫𝐮𝐞 + 	𝛆                                                              ….. (1) 189 

The linear operator 𝐇 converts the model space to observations space, where 𝐲 is the 190 
observation vector, 𝛆 is assumed to be a Gaussian random error with zero mean and observation 191 
error covariance matrix R. Similarly, the prediction for 𝐱 at time with mean 𝐱𝐟 is also assumed to 192 
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be an unbiased Gaussian error with error covariance matrix 𝐏𝐟. In accordance with these postulates, 193 
the ensemble mean can be updated as follows. 194 

𝐱𝐚 =		 𝐱𝐟 + 𝐊(𝐲 − 𝐇𝐱𝐟)                                               ….. (2) 195 

  196 

where K is called as Kalman gain matrix computed as in Eqn. 3 197 

𝐊 =	𝐏𝐟	𝐇𝐓-𝐇𝐏𝐟	𝐇𝐓 + 𝐑/'𝟏                                          ….. (3) 198 

The superscript 𝑓 and 𝑎 denotes the prior (forecast or background) and the analysis 199 
(posterior) estimates.  200 

We use the Ensemble Square Root Filter (EnSRF) to sequentially solve the analysis without 201 
the need to perturb observation values, which performs more optimally than the stochastic EnKF 202 
(Whitaker and Hamill 2002). The ensemble anomalies are computed as follows: 203 

𝐱)𝐚 = 𝐱)𝐟 	+ 𝛂𝐊-−𝐇𝐱)𝐟/	                                              ….. (4) 204 

Where 𝐱)𝐚 represents the ensemble anomaly, 𝐱)𝐟 indicates forecast ensemble anomaly and,         205 

  𝛂 = 3𝟏	 +	5 𝐑
𝐇𝐏𝐟𝐇𝐓-𝐑

6
'𝟏

. 206 

The term 𝐏𝐟𝐇𝐓 in Eqn. 3 is the cross-covariance computed from the ensemble between the 207 
observation and the state variables updated by assimilation.  208 

2.4 Satellite Soil Moisture Estimates 209 

The ESA CCI SM v 06.1 incorporates over four decades of scatterometer-based active and 210 
radiometer-based passive microwave sensors from several satellite platforms. Datasets based on 211 
active sensors stems from the C-band (5.3 GHz) Active Microwave Instrument Wind 212 
Scatterometer (AMI-WS ERS-1/2 SCAT, 1991–2006; AMI-WS ERS-2, 1997–2007), Advanced 213 
Scatterometer (ASCAT), MetOp-A (2007–19), and MetOp–B (2012–19). While the passive 214 
sensors used to generate SM are from the C-band (6.6 GHz) Scanning Multichannel Microwave 215 
Radiometer (SMMR, 1979–87), the K-band (19.3 GHz) Special Sensor Microwave Imager 216 
(SSM/I, 1987–2013), the X-band (10.7 GHz) Tropical Rainfall Measuring Mission (TRMM) 217 
Microwave Imager (TMI, 1998–2015), the X-band (10.7 GHz) FengYun-3B Microwave Radiation 218 
Imager (FY-3B/MWRI, 2011-19), and the X-band (10.7 GHz) Global Precipitation Measurement 219 
(GPM, 2014–20). The Advanced Microwave Scanning Radiometer 2 (AMSR-2, 20012–19), 220 
WindSat (2007–12), and the Advanced Microwave Scanning Radiometer for Earth Observing 221 
System (AMSR-E, 2002–11) are three more passive platforms that measure in the X band and C 222 
band. The Soil Moisture Active and Passive mission (SMAP, 2015–19) and Soil Moisture and 223 
Ocean Salinity (SMOS, 2010-19) are the other two passive sensors that measure in the L band (1.4 224 
GHz). The ESA CCI SM algorithm combines and harmonizes these many active and passive 225 
satellite SM retrievals to provide a consistently intercalibrated and quality-controlled SM product 226 
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with a wider spatial and temporal coverage than any single-sensor SM products. The combined 227 
dataset, which combines both active and passive products, spans 41 years (1979–2020), has a 228 
geographical resolution of 0.25°, a temporal resolution of 1 day, and a perceived soil thickness of 229 
5 cm, although it does have data gaps where and when there are no measurements. 230 

2.5 Workflow and practical implementation 231 

The NorCPM-Land processing phase can be broken down into two distinct stages. In stage 232 
1, the ensemble of atmospheric forcing required to run the offline CLM simulation is generated 233 
using historical runs of NorESM for the period 1980 to 2019 at a temporal resolution of 3 hours. 234 
In stage 2, soil moisture from ESA CCI is assimilated daily into the offline CLM. Figure 1 shows 235 
the flowchart of NorCPM-Land processing steps.  236 

In stage 1, the fully coupled NorESM generates precipitation, air temperature, humidity, 237 
pressure, and radiation forcing components at 3 hourly intervals that are needed to run offline 238 
CLM. The 30 member ensemble historical simulations are produced by selecting random initial 239 
conditions from a stable preindustrial simulation and integrating the ensemble from 1850 to 2019 240 
using CMIP5 historical forcings and there after the RCP8.5 is used (Taylor et al. 2012).  241 

In stage 2, daily surface SM is assimilated daily to update CLM soil profile. The ensemble 242 
forecast, 𝐱𝐭𝐟 consists of the 30-model snapshot of SM from NorESM.  The SM observations from 243 
ESA CCI are used to update the model SM using Eqn. (4) and (2). Only the first ten layers of the 244 
15 that comprise the CLM state are updated, while the other variables of the state vector remain 245 
intact (e.g. temperature). We update every vertical profile independently. Assimilation of SM 246 
occurs solely on land units defined by vegetation. We do not incorporate densely vegetated 247 
regions, however, due to the uncertainty in SM estimations from the ESA CCI over thick canopy 248 
cover. In addition, we exclusively update the liquid SM in soil profiles, so avoiding erroneous 249 
updates in ice SM, which are challenging to estimate by microwave remote sensing (Ulaby et al., 250 
1992). This implies that we do not assimilate SM in the presence of snow or frozen SM. There is 251 
a very strong mismatch between SM observations from ESA CCI and the corresponding model 252 
estimates. This is handled by using cumulative distribution function (CDF) mapping (Reichle and 253 
Koster, 2004; Kumar et al., 2012).  The CDF mapping is done for each calendar month and for 254 
each grid point. The CDF is computed from the daily values of the calendar month over the 40 255 
years of the observations and from the daily output of the ensemble mean of the 30 member offline 256 
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CLM run without assimilation. Finally, we use a small multiplicative inflation (Anderson 2001) 257 
of 1.05 to prevent a collapse of the ensemble spread. 258 

 259 

Figure 1. Flowchart of NorCPM-Land 260 

3 Validation data sets 261 

3.1 In Situ Soil Moisture Measurement 262 

This study utilizes in situ soil moisture observations from the International SM Network 263 
for continental domain validation (ISMN; Dorigo et al. 2011) as primary source of SM validation. 264 
We concentrate on three locations with rather dense observational coverage. Over the CONUS, 265 
the Atmospheric Radiation Measurement (ARM), the FLUXNET–AMERIFLUX, the Cosmic-Ray 266 
Soil Moisture Observing System (COSMOS; Zreda et al. 2012), the Plate Boundary Observatory 267 
(PBO H2O; Larson et al. 2008), the Soil Climate Analysis Network (SCAN; Schaefer et al. 2007), 268 
the Snowpack Telemetry (SNOTEL). For validation over Europe, the FR_Aqui (Al-Yaari et al. 269 
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2018), Danish Hydrological Observatory and Exploratorium (HOBE; Jensen and Refsgaard 2018), 270 
ORACLE, REMEDHUS (González-Zamora et al. 2019), the Norwegian water resources and 271 
energy directorate (NVE), the Finnish network (FMI; Ikonen et al., 2018). For validation over 272 
Asia, the central Tibetan Plateau (CTP_SMTMN; Yang et al., 2013), MAQU (Dente et al., 2012) 273 
networks are used. This study further includes only hourly readings to a depth of 5 centimeters 274 
that are classified as "excellent quality" and concurrently measured for validation purposes. After 275 
filtering the hourly data, the daily mean soil moisture is calculated, and only locations with more 276 
than thirty percent of the validation date range are used for validation.  277 

3.2 ERA5-Land 278 

One of the independent data sources used to validate our reanalysis is the ECMWF ERA5-279 
land reanalysis. The new ERA5-Land reanalysis was generated by forcing offline LSM with the 280 
ERA5 (Hersbach et al. 2020) data. Because the atmospheric analysis of ERA5 is forcing this 281 
product, the assimilated data indirectly impact simulations. The system does not assimilate SM 282 
observations explicitly.  The Copernicus Climate Change Service provides it with the same 283 
temporal resolution as ERA5 (hourly resolution), but with a higher spatial resolution of 0.1°x0.1°. 284 
The primary properties of this product were outlined in Müloz-Sabater et al. (2021), and it is now 285 
accessible from 1950 to the present at https://cds.climate.copernicus.eu. ERA5-Land is built 286 
around the ECMWF land surface model: the Carbon Hydrology-Tiled ECMWF Scheme for 287 
Surface Exchanges over Land (HTESSEL). Under the HTESSEL system, each land grid-box is 288 
subdivided into up to six fractions (tiles) (bare ground, low and high vegetation, intercepted water, 289 
shaded and exposed snow). Each fraction has features that define distinct heat and water fluxes 290 
utilized to solve an energy balance equation for the tile skin temperature. According to Müloz-291 
Sabater et al. (2021), ERA5-Land considers grids with more than 50% of their area covered by 292 
glaciers to be glacier grids, assuming a constant snow depth of 10 m.  293 

The ERA5-Land is forced by ERA5, which is produced from data assimilations and 294 
dynamic models, and integrates observations into globally comprehensive fields. ERA5 295 
assimilates additional observations and input data, which enhances the observed changes in 296 
climatic forcing compared to the preceding product (ERA-Interim) and at a higher temporal and 297 
horizontal resolution. The average number of observations absorbed by ERA5 has risen from 298 
around 0.75 million per day in 1979 to nearly 24 million per day by the end of 2018. The 299 
observation operators, which convert model values to observation equivalents, and the processing 300 
of observations in the forecast system have been vastly improved in ERA5 compared to ERA-301 
Interim. Instead of the RTTOV-7 operator used in ERA-Interim, it employs RTTOV-11 as the 302 
observation operator for radiance data. Additionally, it assimilates several humidity-sensitive 303 
satellite channels utilizing the all-sky technique as opposed to the clear-sky strategy used by ERA-304 
Interim. This resolves an issue with an older assimilation method of radiances under rainy 305 
circumstances that resulted in anomalous precipitation in ERA-Interim across the entire ocean in 306 
the 1990s, in addition to offering new information in overcast and precipitating locations. ERA5 307 
used multiple reprocessed satellite datasets gathered from space organizations and institutions in 308 
Europe, the United States, and Japan. These include atmospheric motion vector winds; ozone, 309 
radio occultation, and altimetry data; scatterometer soil moisture and wind data; and the SSMI 310 
record of satellite data sensitive to humidity over the ocean. In general, ERA5 has used many more 311 
observations than ERA-Interim, which cannot include data from the most recent satellite sensors, 312 
such as hyperspectral data from IASI and CrIS or ground-based radar data. ERA5 used around 24 313 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

million observations per day at the end of 2018, almost five times as many as ERA-Interim. ERA5 314 
relies on 4D-Var (Courtier et al., 1994) for upper air and near surface components, an optimum 315 
interpolation (OI) approach for ocean-wave and a Land Data Assimilation System (LDAS) (de 316 
Rosnay et al., 2013). The LDAS relies on a 2D-OI for the analysis of 2m temperature and relative 317 
humidity, as well as for snow depth and density, a simplified extended Kalman filter (de Rosnay 318 
et al., 2013) for soil layers and 1D-OI for soil, ice and snow temperatures respectively.   319 

 3.3 GLDAS 320 

The third independent validation data used in this study stems from the Global Land Data 321 
Assimilation System (GLDAS) (Rodell et al., 2004) from NASA. GLDAS is an uncoupled land 322 
data assimilation system, that drives different offline LSMs. The GLDAS currently drives five 323 
different LSMs, namely Noah (Chen et al., 1996), the Community Land Model (CLM; Dai et al., 324 
2003), the Variable Infiltration Capacity Model (VIC; Liang et al., 1994), Mosaic (Koster and 325 
Suarez, 1992), and the Catchment land surface model (CLSM; Koster et al., 2000). GLDAS 326 
version 1 (GLDAS-1) relies on the atmospheric analysis fields from the Global Data Assimilation 327 
System (GDAS) of NCEP, the NOAA Climate Prediction Center's Merged Analysis of 328 
Precipitation (CMAP) pentad dataset, and observation-based downward shortwave and longwave 329 
radiation fields derived from the AGRicultural METeorological modeling system (AGRMET). 330 
The LSMs are forced with this combination forcing (Rodell et al., 2004). In GLDAS version 2 331 
(GLDAS-2), two different forcing data are used, one is driven by Princeton meteorological forcing 332 
data (Sheffield et al., 2006), while the other is driven by a mixture of model and observation-based 333 
forcing datasets as utilized in GLDAS-1. In GLDAS-2 CMAP precipitation is replaced with a field 334 
from the Global Precipitation Climatology Project (GPCP), it also employs a better disaggregation 335 
method, and applies quality control to the AGRMET dataset. GLDAS-2 has three subcomponents: 336 
GLDAS-2.0, GLDAS-2.1, and GLDAS-2.2. GLDAS-2.0 is forced only with Princeton 337 
meteorological forcing and delivers a continuous record from 1948 to 2014. GLDAS-2.1 is forced 338 
by combined model and observation-based data from 2000 to the present. The GLDAS-2.0 and 339 
GLDAS-2.1 products do not assimilate any observations while, the GLDAS-2.2 products 340 
assimilate observations like surface temperature, snow cover, and Total Water Storage (TWS). 341 
There are many distinct GLDAS-2.2 products, each of which has its own unique selection of 342 
forcing data, as well as DA observation source, variable, and scheme. We use GLDAS-2.1 with 343 
CLSM as the LSM to evaluate NorCPM-land results along with ERA5-Land. It should be noted 344 
that even in GLDAS there is no explicit assimilation of SM observations.  We utilise ERA5-Land 345 
and GLDAS as reference datasets to evaluate NorCPM-Land improvements because independent 346 
global in-situ SM measurements are sparse and not uniformly distributed. 347 

3.4 Surface Runoff Data 348 

Freshwater resources are extremely important to society, and understanding their 349 
variability is critical to water management in the context of climate change. To evaluate surface 350 
runoff, this study uses the global gridded monthly reconstruction of runoff (GRUN) from 1980 to 351 
2014. This data was generated by leveraging in-situ streamflow measurements to train a machine 352 
learning algorithm that forecasts monthly runoff rates based on antecedent precipitation and 353 
temperature from an atmospheric reanalysis. Cross-validation is used to check the correctness of 354 
this reconstruction, which is then compared to an independent set of discharge data for major river 355 
basins. This dataset agrees with streamflow measurements on average better than an ensemble of 356 
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13 state-of-the-art global hydrological model runoff simulations (Ghiggi et al., 2019). The 357 
reconstruction's temporal span provides an unparalleled perspective of large-scale runoff 358 
variability characteristics in places with low data coverage, making it a suitable independent 359 
dataset for large-scale hydro-climatic process investigations and validation. The GRUN dataset 360 
can be found online at https://doi.org/10.6084/m9.figshare.9228176. 361 

3.5 Net Primary Productivity 362 

The biogeophysical processes that CLM4 simulates include the interactions of solar and 363 
longwave radiation with vegetation and soil, momentum and turbulent fluxes from vegetation and 364 
soil, heat transfer in soil and snow, hydrology of vegetation and soil, and stomatal physiology in 365 
addition to photosynthesis. The carbon-nitrogen (CN) cycle model in CLM4 simulates how carbon 366 
and nitrogen are bio-geochemically arranged in plant, litter, and soil-organic matter (Thornton et 367 
al., 2007). Plants convert carbon dioxide in the air into oxygen while producing their own 368 
sustenance. Thus, plants give the energy and oxygen that most living forms on Earth require. Plant 369 
productivity also contributes significantly to the global carbon cycle by absorbing part of the CO2 370 
emitted when people consume coal, oil, and other fossil fuels. Carbon that plants consume forms 371 
a part of their leaves, roots, stalks, or tree trunks, and, eventually, the soil. The net primary 372 
productivity (NPP) is the difference between the amount of carbon dioxide vegetation absorbs 373 
during photosynthesis and the amount of carbon dioxide plants emit during respiration. A negative 374 
score indicates that breakdown or respiration exceeded carbon absorption; the plants expelled more 375 
carbon into the atmosphere than they absorbed. The improvement in SM states will be propagated 376 
into the carbon cycle and enhance NPP estimations since SM is a crucial factor in plant 377 
productivity. In this study we utilize NPP estimates from Moderate Resolution Imaging 378 
Spectroradiometer (MODIS) on board Terra satellite to validate our reanalysis results. The 379 
monthly NPP data from MODIS (MOD17A3) is used as reference in this study. These datasets are 380 
available at a spatial resolution of 1km from https://lpdaac.usgs.gov/data_access/. It contains 381 
estimates of gross primary productivity (GPP), NPP and net direct quality control (NP_QC). 382 
Previous studies have reported outstanding performance of MOD17A3 NPP dataset with the 383 
observations at the global or country scale (Turner et a., 2006; Shim et al., 2014). 384 

4 Metrics for skill assessment of NorCPM-Land 385 

The skill of SM assimilation is evaluated by comparing reanalysis estimates with the 386 
assimilated ESA CCI SM product and with other independent measurements (as discussed in 387 
section 3). The improvement in NorCPM-Land is quantified by comparing it with performance of 388 
30-member ensemble of offline CLM run with same initial conditions and meteorological forcing 389 
as NorCPM-Land (hereafter referred to as FREE). The ensemble-mean and reference datasets are 390 
used to calculate the performance indices. The performance indices used in this study are the Root 391 
Mean Square Error (RMSE), the anomaly correlation coefficient (ACC). Because amplitude of the 392 
seasonal changes is large and predictable, computing correlation based on estimated SM and 393 
reference data may yield misleadingly high values on the usefulness of a prediction system. As a 394 
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result, it is common practice to subtract the seasonal cycle from both datasets to validate the 395 
estimated (FREE and NorCPM-Land) and reference (ERA5-Land) before computing the ACC 396 

𝐑𝐌𝐒𝐄 = 	 :𝟏
𝐧
∑ (𝐗𝐢 − 𝐘𝐢)𝟐𝐧
𝐢2𝟏 >

𝟏
𝟐                                                 ….. (5) 397 

𝐀𝐂𝐂 = 	 ∑ (𝐗𝐢'𝐗6)(𝐘𝐢'𝐘6)𝐧
𝐢'𝟏
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𝐢'𝟏

                                                ….. (6) 398 

For validation we use daily as well as monthly model state estimates. Therefore, n 399 
represents the number of estimates during the 40 years study period from 1980 to 2019. 𝐗𝐢 and 𝐘𝐢 400 
are the daily or monthly land surface state estimates (NorCPM-Land, FREE) and independent 401 
reference observations, respectively. 𝐗A, 𝐘A are the monthly mean of land surface state estimates and 402 
independent reference observations respectively. It should be noted that in this study, the ACC is 403 
calculated using monthly values.  The improvement in NorCPM-land skill after DA is represented 404 
using the reduction of RMSE (RRMSE).  405 

𝑹𝑹𝑴𝑺𝑬 =	𝑹𝑴𝑺𝑬𝑭𝑹𝑬𝑬'	𝑹𝑴𝑺𝑬𝑵𝒐𝒓𝑪𝑷𝑴1𝑳𝒂𝒏𝒅
𝑹𝑴𝑺𝑬𝑭𝑹𝑬𝑬

	                               ….. (7) 406 

We also investigate the reliability of NorCPM-Land. The reliability is evaluated by 407 
examining the spatial and temporal collocation of the total DA uncertainty with the RMSE 408 
(Counillon et al., 2016; Rodwell et al., 2016). The RMSE is calculated in this case against 409 
imperfect observations with an error variance (𝝈𝒐𝟐), and the overall error is the sum of the 410 
observation and model uncertainty (𝝈𝒎𝟐 ). The standard deviation of the model ensemble state 411 
serves as a measure for model uncertainty.    412 

𝑻𝒐𝒕𝒂𝒍	𝑬𝒓𝒓𝒐𝒓 = 	M𝝈𝒐𝟐 + 𝝈𝒎𝟐 	                                              ….. (8) 413 

The reliability of ensemble system is evaluated by dividing RMSE by the total error 414 
(hereafter referred to as reliability index). The reliability index provides a quantitative comparison 415 
of ensemble spread with respect to its predictive skill. A reliability index of one implies that the 416 
spread is ideal (Fortin et al., 2014), whereas a value more than one suggests a narrow spread (under 417 
dispersive), and a value less than one indicates a wide ensemble (over dispersive).    418 

Because the primary purpose of this reanalysis approach is to improve S2S prediction 419 
capabilities in NorCPM, it is critical to assess the influence of SM assimilation on terrestrial 420 
atmospheric coupling. We demonstrate this using the atmospheric coupling index (ACI) (Müller 421 
et al., 2021). This index shows whether alterations to a surface flux variable can or cannot affect 422 
precipitation changes. The areas where the coupling between the land and the atmosphere is 423 
strongest are known as the land-atmosphere hot spots. The ACI is computed using latent heat flux 424 
(𝝀𝑬), and precipitation (𝑷) as in Eqn. 9. 425 

𝑨𝑪𝑰 = 	 𝒄𝒐𝒗(𝝀𝑬,𝑷)
𝝈(𝝀𝑬)

 ,                                                        ….. (9) 426 

        where  𝒄𝒐𝒗(𝝀𝑬, 𝑷) represents covariance between latent heat flux and precipitation, while 427 
𝝈(𝝀𝑬) represents the standard deviation along the time space. Areas where latent heat fluxes have 428 
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an impact on precipitation are highlighted by this indicator. This completes the full cycle of land-429 
atmosphere coupling and is a potent sign of the direct feedback from the atmosphere to the land. 430 
The reference ACI is calculated using ERA5-Land precipitation and latent heat flux.   431 

5 Results 432 

5.1 Verification against assimilated SM 433 

The accuracy of NorCPM-Land in monitoring the variability of SM is evaluated using root 434 
mean square error (RMSE) with respect to assimilated observations (i.e., the CDF match ESA-435 
CCI), and the results are compared to the FREE run. Because the evaluation is performed using 436 
the exact same assimilated ESA CCI SM data, it is anticipated that NorCPM-Land will 437 
demonstrate a lower level of error than FREE (sanity check).         438 

The RMSE in a perfectly reliable system equals the total error. Figure 2a shows the RMSE 439 
of FREE with respect to assimilated ESA CCI SM. Error in FREE is large because internal 440 
variability is not constrained. Similarly, Figure 2b indicates the total error in the system as defined 441 
in Eqn 8. The reduction of RMSE (RRMSE, Eqn. 7) in NorCPM-Land from FREE is shown in 442 
Figure 2c. There is a prominent reduction in RMSE throughout the domain as expected.   443 

 444 
Figure 2. Depicts error indices for (a) FREE in kg/m2, (b) Total model and observation error as 445 
indicated in Eqn. 8 in NorCPM-Land in kg/m2, (c) Percentage reduction in RMSE in NorCPM-446 
Land. 447 
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Figure 3 shows the reliability index for FREE and NorCPM-Land respectively. We can 448 
notice that the system is strongly over dispersive (meaning that it overestimates its error) – most 449 
particularly at northern hemisphere mid-latitudes (except few regions which are under dispersive 450 
such as northeast Asia and Alaska). We can notice that FREE is already overdispersive with a 451 
global mean value of about 0.55 meaning that the spread is nearly twice the error of the ensemble 452 
mean - the observation error is much smaller than the ensemble spread. In the assimilation system 453 
the reliability is degraded, reaching a global average of about 0.19. This implies that the spread is 454 
now about 5 times larger than the error of the ensemble mean. While the spread of NorCPM-Land 455 
is smaller than in FREE, the RMSE has reduced more.  We think that the reason for this is twofold. 456 
First, during the daily assimilation cycle, an ensemble of atmospheric fluxes (at every 3 hourly 457 
interval) with unsynchronised internal variability provides the atmospheric fluxes. While the 458 
ensemble mean is poorly affected by that (error of the fluxes cancels out), the ensemble spread 459 
will grow rapidly. Second, the bias correction strategy (i.e. CDF matching) contributes actively to 460 
the worsening of the reliability. The CDF matching function is computed a-priori from FREE, 461 
which overestimates the spread because of the climatological fluxes. As such, using the function 462 
as a reference during the assimilation tends to sustain a too-large spread during analysis while the 463 
error of the mean is reduced. Therefore, in our system, assimilation reduces error in the mean more 464 
than it reduces the spread causing a degradation in the reliability index.   465 

466 
Figure 3.Depicts (a) ensemble spread for FREE (b), ensemble spread for NorCPM-Land (c), 467 
observation uncertainty (d) reliability index for FREE (e), and reliability index for NorCPM-Land. 468 

We foresee that in future versions of the system where fluxes will be provided by a version 469 
of NorCPM with constrained atmospheric variability, the reliability of the FREE run would be 470 
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improved.  If the reliability of FREE is good, then CDF matching will not cause a degradation of 471 
reliability. If not, one may use adaptive inflation (El Gharamti, 2018), which can inflate or deflate 472 
the spread based on reliability statistics. Another approach is to estimate the CDF function from 473 
the evolving ensemble -also known as Gaussian anamorphosis (Bertino and Evensen 2003). 474 

5.2 Comparison with independent Soil Moisture Estimates 475 

The simulated daily average SM from NorCPM-Land is validated with independent in-situ 476 
observations from ISMN (section 3.3.1).  FREE has a large error in SM over west United states of 477 
America and over Sahel in Africa (Figure 4a). These regions are of primary interest for improving 478 
sub-seasonal forecast, as they have strong coupling with the atmosphere. NorCPM-Land reduce 479 
considerably the error - overall by 10.5% globally and by 40 % over parts of USA, the Sahel along 480 
with other regions. This accuracy is compared to two well-established land reanalysis products 481 
which are ERA5-Land and Global Land Data Assimilation System (GLDAS). We can notice that 482 
NorCPM-Land shows lower RMSE than both products, but it should be reminded that those 483 
reanalyses products do not assimilate SM explicitly. The domain average of reanalysis products 484 
and NorCPM-Land are shown in Figure 4c-e.  485 

 486 

 487 

Figure 4. Daily average RMSE for FREE (a), RRMSE of NorCPM-Land (blue color indicates 488 
regions with improvement), (c) domain average of RMSE over USA, (d) domain average of RMSE 489 
over Europe, (e) domain average of RMSE over Asia 490 
 491 
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To assess performance of NorCPM-Land compared to FREE in the rest of the domain and 492 
where independent data are not available, or for other quantity than soil moisture, we use the 493 
ERA5-land. Figure 5a shows the pointwise RMSE of monthly average SM from FREE compared 494 
to ERA5-L. This is computed after removing the monthly climatology (seasonal cycle) from the 495 
simulated SM, therefore the RMSE computed here is termed as deseasoned RMSE. The 496 
assimilation significantly improved SM (see Figure 5b) particularly, over dry regions of the 497 
Sahara, Mexico, and Australia. The improvement in RMSE is shown in terms of RRMSE in 498 
percentage. NorCPM-Land improves the simulation skill of SM by reducing an error of 12.75% 499 
globally when compared to FREE run (Figure 5b).    500 

 501 

Figure 5. Deseasoned monthly average RMSE of FREE (a), RRMSE of NorCPM-Land (b) where 502 
cool colors indicates regions with reduced RMSE and warm color indicates degradation of regions. 503 
ACC of monthly averaged SM with respect to ERA for (c) FREE, (d) NorCPM-Land (Grid with 504 
significant correlation coefficient is marked with green dot) 505 

We analyse anomaly correlation coefficient (ACC) (see Figure 5c,d), which is computed 506 
after removing the mean and so is not directly influenced by model bias. In FREE the 30 members 507 
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are only constrained by external forcing. There are some significant changes in places where trends 508 
caused by climate change has been most noticeable.  The improvement in SM estimates in 509 
NorCPM-Land after assimilation is evident from the ACC in Figure 5d as compared to FREE 510 
(Figure 5c). This analysis demonstrates that SM assimilation enhances ACC after assimilation, 511 
with a global average of 0.35 for NorCPM-Land against 0.1 for FREE run. In particular, the 512 
improvement is more noticeable across Sahel, which has demonstrated enhanced ACC and lower 513 
RMSE (Figure 5b) in NorCPM-Land.  514 

5.3 Improvement in Land-Atmospheric Coupling 515 

The latent heat flux (LHF) in the land-atmosphere energy exchange is directly related to 516 
evaporation, which moistens the atmosphere. Precipitation causes the atmosphere to dry by 517 
releasing latent heat into the atmosphere, resulting in a strong heating source and moist convection. 518 
One of the important variables influencing the latent heat flux is SM. We first evaluate the 519 
estimates of LHF with reference to ERA5-Land data to provide a dynamical assessment on the 520 
impact of the assimilation. This analysis will indicate the improvement in LHF following 521 
improvement in the SM assimilation framework. Figure 6a indicates RMSE in LHF in FREE after 522 
removing monthly climatology (deseasoned RMSE). The impact of improved SM estimates after 523 
assimilated propagates into LHF with reduced RMSE, as shown in Figure 6b. The domain average 524 
of reduction in LHF is 2.1% after assimilation of SM but is more evident over parts of Sahel and 525 
USA which has strong land-atmospheric coupling and where it reaches values up to 30 %.  There 526 
are also a few regions where the error for LHF has increased following SM assimilation. However, 527 
most of these areas exhibit lower RMSE (Figure 5b) and greater ACC (Figure 5d) than FREE run. 528 
Therefore, these regions exhibiting deteriorating performance must be studied further to determine 529 
the factors triggering this deterioration. 530 

 531 

 532 

Figure 6. Spatial variability of monthly deseasoned LHF RMSE from FREE (a), and the reduction 533 
of RMSE by SM assimilation in NorCPM-Land – blue color indicates regions with improvement- 534 
(b).  535 

The improvement in land-atmosphere feedback is further evaluated by computing ACI (See 536 
Section 4, Eqn. 9). This analysis is carried out for four seasons: March to May (MAM), June to 537 
August (JJA), September to November (SON), and December to February (DJF). During MAM 538 
there is long precipitation season over east Africa which has a strong coupling with latent heat flux 539 
as seen in reference ACI (Figure 7a). However, FREE (Figure 7c) does not exhibit such coupling. 540 
The improved latent heat flux after SM assimilation Improves this coupling (Figure 7c). Some of 541 
the major locations showing improvement in coupling after SM assimilation are highlighted by 542 
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circles. Similarly, During JJA there is in increase coupling strength over India after SM 543 
assimilation (Figure 7e) matching with ERA5-Land coupling map (Figure 7d). Similarly, coupling 544 
strength increases over Sahel (highlighted in black rectangle) during JJA. Furthermore, during 545 
SON the influence of latent heat flux on precipitation improves with reference over the USA as 546 
observed in Figure 7g, h. A consistent improvement is observed over Australia, particularly during 547 
DJF (Figure 7k,j). 548 

 549 

Figure 7. Atmospheric Coupling Index for ERA5-Land (a,d,g,j), (b,e,h,k) NorCPM-Land, and 550 
(c,f,i,l) FREE for different seasons. Note different scales for ERA5-Land and the NorCPM and 551 
FREE results. 552 

5.4 Runoff 553 

To assess the potential of improving runoff estimates by assimilating SM, nonrouted 554 
observational gridded monthly runoff data from GRUN (details in section 3.3.3) are utilized as an 555 
independent source of information to compare the results. To compare with GRUN runoff data, 556 
total runoff is computed as the sum of surface and subsurface runoff for each grid cell for a duration 557 
of 34 years from 1980 to 2014. Figure 8a indicates RMSE in runoff estimates from FREE. The 558 
reduction in RMSE after assimilation of SM is indicated in Figure 8b. Though there is an 559 
improvement in surface runoff estimates at global mean of 0.31mm/month, there is no large 560 
reduction over major basins (such as Amazon, Mississippi, Congo, etc.).  This is because another 561 
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key component influencing runoff is precipitation, which is not constrained or improved in the 562 
historical runs of NorESM in this study. 563 

 564 

Figure 8. Depicts RMSE in surface runoff with reference to GRUN for (a) FREE, (b) NorCPM-565 
Land (blue color indicates regions with improvement) 566 

5.5 Net Primary Productivity 567 

With reference to independent measurement from satellite data (details provided in section 568 
3.3.4), we assess the propagation of enhanced SM states in NorCPM-Land on simulating NPP. It 569 
is well known that the availability of SM can effect plant productivity and is most frequently 570 
employed to assess vegetation dryness stress (Liu et al., 2020). If plants are unable to sustain 571 
turgor, decreased SM may result in biophysical drought stress, which would lower primary 572 
production by closing stomata. Alternately, lower SM may limit nutrient mass movement in the 573 
soil and microbial activity, reducing nitrogen mineralization and availability and thereby reducing 574 
primary output. Figure 9a depicts the RMSE in FREE.  Substantial error is detected in the tropical 575 
rainforest of the Congo basin, as well as in other places. Improved SM condition in NorCPM-Land 576 
minimizes inaccuracy in NPP over a few locations. Figure 9b shows that the RMSE of NPP is 577 
reduced by SM assimilation. However, it has less of an influence on huge thick forests (such as 578 
those in the Congo basin) since SM is not assimilated in densely vegetated areas as mentioned in 579 
section 2.5. After SM assimilation, an overall reduction in global average NPP error of 0.28 580 
gC/m2/day (around 9.3% reduction) is observed. 581 

 582 
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 583 

Figure 9. RMSE of monthly NPP compared to MODIS NPP for (a) FREE, (b) and reduction of 584 
RMSE from FREE in NorCPM-Land (blue color indicates regions with improvement) 585 

6 Summary and Conclusions 586 

In this study, we developed a new global land reanalysis system (NorCPM-Land) that 587 
simulates surface soil moisture and other land surface water and energy flux components by 588 
assimilating daily the blended satellite SM data from ESA CCI. The merging of multi-satellite data 589 
in the ESA CCI has enabled this study to perform daily assimilation. Assimilating SM considerably 590 
improved the skill of CLM in simulating land surface states.  The system is run offline but uses 591 
fluxes from an ensemble of the same coupled system as used for running the NorCPM climate 592 
predictions and uses CDF matching to handle the mismatch between the model SM and ESA-CCI 593 
observations. As such the reanalysis can provide improved land initialization and maintains the 594 
numerical compatibility of NorCPM-Land with NorCPM and avoids numerical shocks during 595 
initialization of predictions with the same model.   596 

Using NorCPM-Land, an improved land initial state is produced over a period of four 597 
decades, from 1980 to 2019 inclusive. The system depends on stochastic assimilation of SM data 598 
using the EnSRF into CLM. The system is overdispersive for SM, and the overdispersion already 599 
present in the ensemble without assimilation is degraded. We have identified different factors that 600 
contribute to this large ensemble spread, including (i) bias correction approach of matching the 601 
CDF of CCI SM with FREE run prior to assimilation, (ii) adopting a constant inflation factor, and 602 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

(iii) unconstrained atmospheric forcing for offline CLM run. The CDF matching approach converts 603 
observations to model (FREE) climatology. After assimilation step, the analysis states are attracted 604 
to the substantial variability of the FREE ensemble spread. As a result, despite the reduction in 605 
error of the ensemble mean after assimilation, it has a higher spread than error causing over 606 
dispersive reliability index in most of the regions. The conventional CDF matching approach 607 
assumes that the model and observation biases are stationary, making it difficult to adapt to 608 
dynamic changes in the bias characteristics. To overcome this in future work we intend to adapt 609 
flow dependent bias correction techniques. We further anticipate that using adaptive inflation and 610 
adding an atmospheric constraint on the system that provide the ensemble of atmospheric flux 611 
would improve reliability in the future versions of the system.   612 

In comparison to independent datasets, NorCPM-Land enhances the ability to capture the 613 
spatiotemporal dynamics of SM. Validation of results using in-situ SM data shows a 10.5% 614 
reduction in error for NorCPM-Land simulated SM compared to FREE. NorCPM-Land SM 615 
estimations consistently outperform GLDAS and ERA5-Land on a global scale. In addition, the 616 
NorCPM-Land decreases the error by 12.75  on a global scale with reference to ERA5-Land when 617 
compared to FREE SM estimations.  This study also highlights the added value of improving SM 618 
estimates in other land surface state variables. The NorCPM-Land minimizes the error in latent 619 
heat flux, an important variable in the energy exchange between land and atmosphere. The 620 
enhancements in latent heat flux are most evident in midlatitudes, namely over the United States 621 
of America, Sahel, and India, which have considerable land-atmosphere coupling. When 622 
evaluating the land-atmosphere coupling of NorCPM-Land, ERA5-Land is used as a reference. 623 
The results of NorCPM-Land consistently reflect the spatial coupling pattern of ERA for all four 624 
seasons. In some regions, the improvement in SM condition substantially improves runoff 625 
estimates when compared to GRUN runoff reconstruction data, but the uncertainty in precipitation 626 
forcing limits the extent of the improvement. The improvement is also observed in interaction 627 
between SM and vegetation productivity with respect to NPP. When compared with satellite NPP 628 
as reference, NorCPM-Land indicated a reduction in error of 9.3% in comparison to FREE. This 629 
indicates the contribution of SM assimilation in improving the terrestrial carbon cycle and 630 
vegetation dynamics.  631 

In conclusion, the current re-analysis system has been thoroughly validated and we will 632 
test its potential to provide land initial condition to NorCPM to enhance the skill of S2S 633 
predictions. In addition, future work will focus on integrating different data for other land surface 634 
variables, such as snow and skin temperature, as well as improved forcing data. This will aid in 635 
the improvement of high-latitude prediction skills. 636 
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land?tab=form). The insitu soil moisture from International Soil Moisture network can be found 654 
at data hosting facility (https://ismn.earth/en/). The Global runoff dataset can be found online at 655 
https://doi.org/10.6084/m9.figshare.9228176. The GLDAS data can be obtained from 656 
(https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS). The Net Primary Productivity dataset 657 
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