References
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.
Benarroch, E. E. (1993). The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clinic Proceedings. Mayo Clinic, 68(10), 988–1001.
Blumberger, D. M., Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., Giacobbe, P., Knyahnytska, Y., Kennedy, S. H., Lam, R. W., Daskalakis, Z. J., & Downar, J. (2018). Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. The Lancet,391(10131), 1683–1692.
Borrione, L., Brunoni, A. R., Sampaio-Junior, B., Aparicio, L. M., Kemp, A. H., Benseñor, I., Lotufo, P. A., & Fraguas, R. (2018). Associations between symptoms of depression and heart rate variability: An exploratory study.Psychiatry Research, 262, 482–487.
Cameron, O. G. (2009). Visceral brain-body information transfer. NeuroImage,47(3), 787–794.
Cash, R. F. H., Cocchi, L., Lv, J., Wu, Y., Fitzgerald, P. B., & Zalesky, A. (2021). Personalized connectivity-guided DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility. Human Brain Mapping,42(13), 4155–4172.
Caulfield, K. A., Indahlastari, A., Nissim, N. R., Lopez, J. W., Fleischmann, H. H., Woods, A. J., & George, M. S. (2022). Electric Field Strength From Prefrontal Transcranial Direct Current Stimulation Determines Degree of Working Memory Response: A Potential Application of Reverse-Calculation Modeling? Neuromodulation: Journal of the International Neuromodulation Society, 25(4), 578–587.
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.Cerebral Cortex , 26(8), 3508–3526.
Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D., & Pascual-Leone, A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate.Biological Psychiatry, 72(7), 595–603.
Francis, J. (2016). ECG monitoring leads and special leads. Indian Pacing and Electrophysiology Journal, 16(3), 92–95.
Goldsworthy, M. R., & Hordacre, B. (2017). Dose dependency of transcranial direct current stimulation: implications for neuroplasticity induction in health and disease [Review of Dose dependency of transcranial direct current stimulation: implications for neuroplasticity induction in health and disease]. The Journal of Physiology,595(11), 3265–3266.
Koch, C., Wilhelm, M., Salzmann, S., Rief, W., & Euteneuer, F. (2019). A meta-analysis of heart rate variability in major depression. Psychological Medicine, 49(12), 1948–1957.
Lefaucheur, J.-P., & Wendling, F. (2019). Mechanisms of action of tDCS: A brief and practical overview. Neurophysiologie Clinique = Clinical Neurophysiology,49(4), 269–275.
Makovac, E., Thayer, J. F., & Ottaviani, C. (2017). A meta-analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease. Neuroscience and Biobehavioral Reviews,74(Pt B), 330–341.
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381.
Mulcahy, J. S., Larsson, D. E. O., Garfinkel, S. N., & Critchley, H. D. (2019). Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. NeuroImage, 202, 116072.
Nikolin, S., Boonstra, T. W., Loo, C. K., & Martin, D. (2017). Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability. PloS One, 12(8), e0181833.
Polanía, R., Nitsche, M. A., & Ruff, C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience,21(2), 174–187.
Puonti, O., Van Leemput, K., Saturnino, G. B., Siebner, H. R., Madsen, K. H., & Thielscher, A. (2020). Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling. NeuroImage,219, 117044.
Razza, L. B., da Silva, P. H. R., Busatto, G. F., Duran, F. L. de S., Pereira, J., De Smet, S., Klein, I., Zanão, T. A., Luethi, M. S., Baeken, C., Vanderhasselt, M.-A., Buchpiguel, C. A., & Brunoni, A. R. (2022). Brain Perfusion Alterations Induced by Standalone and Combined Non-Invasive Brain Stimulation over the Dorsolateral Prefrontal Cortex. Biomedicines, 10(10). https://doi.org/10.3390/biomedicines10102410
Razza, L. B., De Smet, S., Van Hoornweder, S., De Witte, S., Luethi, M. S., Baeken, C., Brunoni, A. R., & Vanderhasselt, M.-A. (2023). The effects of prefrontal tDCS on working memory associate with the magnitude of the individual electric field in the brain. https://doi.org/10.1101/2023.06.13.544810
Razza, L. B., Wischnewski, M., Suen, P., De Smet, S., da Silva, P. H. R., Catoira, B., Brunoni, A. R., & Vanderhasselt, M.-A. (2023). A meta-analysis and electric field modeling to understand the antidepressant effects of tDCS. Revista Brasileira de Psiquiatria (Sao Paulo, Brazil : 1999). https://doi.org/10.47626/1516-4446-2023-3116
Sallet, J., Mars, R. B., Noonan, M. P., Neubert, F.-X., Jbabdi, S., O’Reilly, J. X., Filippini, N., Thomas, A. G., & Rushworth, M. F. (2013). The organization of dorsal frontal cortex in humans and macaques. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,33(30), 12255–12274.
Saturnino, G. B., Puonti, O., Nielsen, J. D., Antonenko, D., Madsen, K. H., & Thielscher, A. (2019). SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field Modelling for Transcranial Brain Stimulation. In S. Makarov, M. Horner, & G. Noetscher (Eds.), Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018. Springer.
Schmaußer, M., Hoffmann, S., Raab, M., & Laborde, S. (2022). The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta-analysis. Journal of Neuroscience Research,100(9), 1664–1694.
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability.Frontiers in Psychology, 5, 1040.
Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). STAI Manual for the State-trait Anxiety Inventory (“Self-evaluation Questionnaire”).
Suen, P. J. C., Doll, S., Batistuzzo, M. C., Busatto, G., Razza, L. B., Padberg, F., Mezger, E., Bulubas, L., Keeser, D., Deng, Z.-D., & Brunoni, A. R. (2020). Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT-TDCS trial. European Archives of Psychiatry and Clinical Neuroscience. https://doi.org/10.1007/s00406-020-01127-w
Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2002). An advanced detrending method with application to HRV analysis. IEEE Transactions on Bio-Medical Engineering, 49(2), 172–175.
Thomas, B. L., Claassen, N., Becker, P., & Viljoen, M. (2019). Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function.Neuropsychobiology, 78(1), 14–26.
Vanderhasselt, M.-A., & Ottaviani, C. (2022). Combining top-down and bottom-up interventions targeting the vagus nerve to increase resilience. Neuroscience and Biobehavioral Reviews, 132, 725–729.
Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., Kozák, G., Kincses, Z. T., Iványi, B., Buzsáki, G., & Berényi, A. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 9(1), 483.
Wei, L., Chen, H., & Wu, G.-R. (2018). Heart rate variability associated with grey matter volumes in striatal and limbic structures of the central autonomic network.Brain Research, 1681, 14–20.
Wischnewski, M., Mantell, K. E., & Opitz, A. (2021). Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neuroscience and Biobehavioral Reviews, 130, 147–161.