REFERENCES
Agrawal, V. P., Sastry, K. V., & Kaushab, S. K. (1975). Digestive enzymes of three teleost fishes. Acta physiologica Academiae Scientiarum Hungaricae, 46 (2), 93-98.
Bakke, A. M., Glover, C., & Krogdahl, Å. (2010). 2 - Feeding, digestion and absorption of nutrients. In M. Grosell, A. P. Farrell, & C. J. Brauner (Eds.), Fish Physiology (Vol. 30, pp. 57-110): Academic Press.
Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., Zhang, M., Oh, P. L., Nehrenberg, D., Hua, K., Kachman, S. D., Moriyama, E. N., Walter, J., Peterson, D. A., & Pomp, D. (2010). Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences, 107 (44), 18933-18938. doi:https://doi.org/10.1073/pnas.1007028107
Bian, Y. H., Xu, X. Y., & Duan, Z. P. (2021). Effects of replacing fish meal with yeast culture on growth performance, serum biochemical indices and intestinal morphology of largemouth bass (Micropterus salmoides ). Chinese Journal of Animal Nutrition, 33 (9), 5182-5192.
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34 (17), i884-i890. doi:https://doi.org/10.1093/bioinformatics/bty560
Clements, K. D., Angert, E. R., Montgomery, W. L., & Choat, J. H. (2014). Intestinal microbiota in fishes: what’s known and what’s not.Molecular Ecology, 23 (8), 1891-1898. doi:https://doi.org/10.1111/mec.12699
Day, R. D., Tibbetts, I. R., & Secor, S. M. (2014). Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes. Journal of Comparative Physiology B, 184 (4), 497-512. doi:10.1007/s00360-014-0813-4
Desai, A. R., Links, M. G., Collins, S. A., Mansfield, G. S., Drew, M. D., Van Kessel, A. G., & Hill, J. E. (2012). Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss ). Aquaculture, 350-353 , 134-142. doi:https://doi.org/10.1016/j.aquaculture.2012.04.005
Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10 (10), 996-998. doi:https://doi.org/10.1038/nmeth.2604
Fadrosh, D. W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R. M., & Ravel, J. (2014). An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform.Microbiome, 2 (1), 6. doi:https://doi.org/10.1186/2049-2618-2-6
Fan, Y., Wang, X., Wang, Y., Liu, H., Yu, X., Li, L., Ye, H., Wang, S., Gai, C., Xu, L., Diao, J., & Guo, P. (2021). Potential effects of dietary probiotics with Chinese herb polysaccharides on the growth performance, immunity, disease resistance, and intestinal microbiota of rainbow trout (Oncorhynchus mykiss ). Journal of the World Aquaculture Society, 52 (6), 1194-1208. doi:https://doi.org/10.1111/jwas.12757
FAO. (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation . Retrieved from Rome, Italy:
Ghanbari, M., Kneifel, W., & Domig, K. J. (2015). A new view of the fish gut microbiome: Advances from next-generation sequencing.Aquaculture, 448 , 464-475. doi:https://doi.org/10.1016/j.aquaculture.2015.06.033
Hidalgo, M. C., Urea, E., & Sanz, A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170 (3), 267-283. doi:https://doi.org/10.1016/S0044-8486(98)00413-X
Ingerslev, H. C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen, N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss ) is affected by first feeding and diet type. Aquaculture, 424-425 , 24-34. doi:https://doi.org/10.1016/j.aquaculture.2013.12.032
Kuang, T., He, A., Lin, Y., Huang, X., Liu, L., & Zhou, L. (2020). Comparative analysis of microbial communities associated with the gill, gut, and habitat of two filter-feeding fish. Aquaculture Reports, 18 , 100501. doi:https://doi.org/10.1016/j.aqrep.2020.100501
Kumar, S., Sahu, N. P., Pal, A. K., Choudhury, D., Yengkokpam, S., & Mukherjee, S. C. (2005). Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohitajuveniles. Fish & Shellfish Immunology, 19 (4), 331-344. doi:https://doi.org/10.1016/j.fsi.2005.03.001
Larsen, A. M., Mohammed, H. H., & Arias, C. R. (2014). Characterization of the gut microbiota of three commercially valuable warmwater fish species. Journal of Applied Microbiology, 116 (6), 1396-1404. doi:https://doi.org/10.1111/jam.12475
Li, H., Wu, S., Wirth, S., Hao, Y., Wang, W., Zou, H., Li, W., & Wang, G. (2016). Diversity and activity of cellulolytic bacteria, isolated from the gut contents of grass carp (Ctenopharyngodon idellus ) (Valenciennes) fed on Sudan grass (Sorghum sudanense ) or artificial feedstuffs. Aquaculture Research, 47 (1), 153-164. doi:https://doi.org/10.1111/are.12478
Li, S., Liu, H., Tan, B., Dong, X., Yang, Q., Chi, S., & Zhang, S. (2015a). Effects of dietary carbohydrate levels on the gene expression and the activity of PEPCK in marine fishes with different food habits.Acta Hydrobiologica Sinica, 39 (1), 80-89.
Li, T., Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2015b). Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microbial Ecology, 69 (1), 25-36. doi:https://doi.org/10.1007/s00248-014-0480-8
Li, X. S., Zhu, X. M., & Han, D. (2012). Comparative studies on carbohydrate utilization by three fishes of different food habits. Abstracts of Papers Presented at the Annual Conference of Chinese Fisheries Association .
Li, Z., Zhang, X., Aweya, J. J., Wang, S., Hu, Z., Li, S., & Wen, X. (2019). Formulated diet alters gut microbiota compositions in marine fish Nibea coibor and Nibea diacanthus . Aquaculture Research, 50 (1), 126-138. doi:https://doi.org/10.1111/are.13874
Limbu, S. M., Zhou, L., Sun, S.-X., Zhang, M.-L., & Du, Z.-Y. (2018). Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 115 , 205-219. doi:https://doi.org/10.1016/j.envint.2018.03.034
Liu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F., & Wang, W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6 (1), 24340. doi:https://doi.org/10.1038/srep24340
Liu, H., & Zhang, Y. (2001). The anatomy on the digestive system ofSilurus meridionalis . Journal of Quanzhou Normal College, 19 (6), 75-79.
Liu, M., Guo, W., Wu, F., Qu, Q., Tan, Q., & Gong, W. (2017). Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus ). Aquaculture Research, 48 (8), 4102-4111. doi:https://doi.org/10.1111/are.13230
Liu, Y., Li, X., Li, J., & Chen, W. (2021). The gut microbiome composition and degradation enzymes activity of black Amur bream (Megalobrama terminalis ) in response to breeding migratory behavior. Ecology and Evolution, 11 (10), 5150-5163. doi:https://doi.org/10.1002/ece3.7407
Liu, Y. Z., He, G., & Zhou, H. H. (2014). Substitution system of animal and plant protein source in aquatic feed and its relationship with feeding habits of cultured fish. Hebei Fisheries, 8 , 54-57.
McFall-Ngai, M. J. (2015). The development of cooperative associations between animals and bacteria: Establishing détente among domains1.American Zoologist, 38 (4), 593-608. doi:https://doi.org/10.1093/icb/38.4.593
Meng, H., Zhang, Y., Zhao, L., Zhao, W., He, C., Honaker, C. F., Zhai, Z., Sun, Z., & Siegel, P. B. (2014). Body weight selection affects quantitative genetic correlated responses in gut microbiota. PLoS ONE, 9 (3), e89862. doi:https://doi.org/10.1371/journal.pone.0089862
Meng, X., & Nie, G. (2019). Advances of intestinal microbiota and lipid metabolism of fish. Journal of Fishery Sciences of China, 26 , 1221–1229.
Miyake, S., Ngugi, D. K., & Stingl, U. (2015). Diet strongly influences the gut microbiota of surgeonfishes. Molecular Ecology, 24 (3), 656-672. doi:https://doi.org/10.1111/mec.13050
Pan, Q., Guo, G., Fang, Z., & Li, Z. (1996). The comparative anatomy studies on digestive system of 6 fish species of stomach-containing teleost in freshwater. Journal Huazhong Agricultural University, 15 (5), 463-469.
Pan, W., Qin, C., Zuo, T., Yu, G., Zhu, W., Ma, H., & Xi, S. (2021). Is metagenomic analysis an effective way to analyze fish feeding habits? A case of the yellowfin sea bream Acanthopagrus latus (Houttuyn) in Daya Bay. Frontiers in Marine Science, 8 . doi:https://doi.org/10.3389/fmars.2021.634651
Parrizas, M., Planas, J., Plisetskaya, E. M., & Gutierrez, J. (1994). Insulin binding and receptor tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 266 (6), R1944-R1950. doi:https://doi.org/10.1152/ajpregu.1994.266.6.R1944
Roeselers, G., Mittge, E. K., Stephens, W. Z., Parichy, D. M., Cavanaugh, C. M., Guillemin, K., & Rawls, J. F. (2011). Evidence for a core gut microbiota in the zebrafish. The ISME journal, 5 (10), 1595-1608. doi:https://doi.org/10.1038/ismej.2011.38
Shen, Y., Li, H., Zhao, J., Tang, S., Zhao, Y., Bi, Y., & Chen, X. (2021). The digestive system of mandarin fish (Siniperca chuatsi ) can adapt to domestication by feeding with artificial diet.Aquaculture, 538 , 736546. doi:https://doi.org/10.1016/j.aquaculture.2021.736546
Shi, X., Luo, Z., Chen, F., Wei, C.-C., Wu, K., Zhu, X.-M., & Liu, X. (2017). Effect of fish meal replacement by Chlorella meal with dietary cellulase addition on growth performance, digestive enzymatic activities, histology and myogenic genes’ expression for crucian carpCarassius auratus . Aquaculture Research, 48 (6), 3244-3256. doi:https://doi.org/10.1111/are.13154
Spor, A., Koren, O., & Ley, R. (2011). Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 9 (4), 279-290. doi:https://doi.org/10.1038/nrmicro2540
Sullam, K. E., Essinger, S. D., Lozupone, C. A., O’connor, M. P., Rosen, G. L., Knight, R., Kilham, S. S., & Russell, J. A. (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Molecular Ecology, 21 (13), 3363-3378. doi:https://doi.org/10.1111/j.1365-294X.2012.05552.x
Sun, Y. X., Dong, H. B., & Duan, Y. F. (2019). Progresses in stress damage and protection studies on fish intestine. Transactions of Oceanology and Limnology, 3 , 174-183.
Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361 , k2179. doi:https://doi.org/10.1136/bmj.k2179
Wang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2018). Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 10 (3), 626-640. doi:https://doi.org/10.1111/raq.12191
Xu, B. H., Wang, Y. N., & Xiao, D. Y. (2011). The comparative histology studies on digestive system of four species of economic freshwater fishes. Chinese Agricultural Science Bulletin, 27 (32), 47-55.
Youngblut, N. D., Reischer, G. H., Walters, W., Schuster, N., Walzer, C., Stalder, G., Ley, R. E., & Farnleitner, A. H. (2019). Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nature Communications, 10 (1), 2200. doi:https://doi.org/10.1038/s41467-019-10191-3
Zeng, D., & Ye, Y. (1998). Studies on digestive system and different feeding habits of some fishes in freshwater. Journal of Southwest Agricultural University, 20 (4), 361-364.
Zhang, C., Zheng, X., Ren, X., Li, Y., & Wang, Y. (2019). Bacterial diversity in gut of large yellow croaker Larimichthys crocea and black sea bream Sparus macrocephalus reared in an inshore net pen. Fisheries Science, 85 (6), 1027-1036. doi:https://doi.org/10.1007/s12562-019-01349-5
Zhang, Y., Wen, B., Meng, L.-J., Gao, J.-Z., & Chen, Z.-Z. (2021). Dynamic changes of gut microbiota of discus fish (Symphysodon haraldi ) at different feeding stages. Aquaculture, 531 , 735912. doi:https://doi.org/10.1016/j.aquaculture.2020.735912
Zheng, Z., Yu, E., Li, Z., Ou, H., & Wang, G. (2016). The complete mitochondrial genome of Shizothorax grahami (Cypriniformes: Cyprinidae). Mitochondrial DNA Part B, 1 (1), 775-776. doi:https://doi.org/10.1080/23802359.2016.1238757
Zhou, L., Lin, K.-T., Gan, L., Sun, J.-J., Guo, C.-J., Liu, L., & Huang, X.-D. (2019). Intestinal microbiota of grass carp fed faba beans: A comparative study. Microorganisms, 7 (10), 465. doi:https://doi.org/10.3390/microorganisms7100465
Zhou, Y.-L., He, G.-L., Jin, T., Chen, Y.-J., Dai, F.-Y., Luo, L., & Lin, S.-M. (2021). High dietary starch impairs intestinal health and microbiota of largemouth bass, Micropterus salmoides .Aquaculture, 534 , 736261. doi:https://doi.org/10.1016/j.aquaculture.2020.736261