This paper has been prepared by the above mentioned authors and reviewed and agreed upon for submission. The requirements for authorship as stated above in this document have been met, and that each author believes that the manuscript represents honest work.
References:
  1. Gupta SL, Basu S, Soni V, Jaiswal RK. Immunotherapy: an alternative promising therapeutic approach against cancers. Mol Biol Rep. 2022 Oct; 49(10):9903-9913. doi: 10.1007/s11033-022-07525-8.
  2. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H et al. Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol. 2022 Apr 24; 29(5): 3044-3060. doi: 10.3390/curroncol29050247.
  3. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020 Aug; 17(8):807-821. doi: 10.1038/s41423-020-0488-6.
  4. Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityńska B, Wojtukiewicz AM et al. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021 Sep;40(3):949-982. doi: 10.1007/s10555-021-09976-0.
  5. Basudan AM. The Role of Immune Checkpoint Inhibitors in Cancer Therapy. Clin Pract. 2022 Dec 27;13(1):22-40. doi: 10.3390/clinpract13010003.
  6. Cai L, Li Y, Tan J, Xu L, Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol. 2023 Sep 5;16(1):101. doi: 10.1186/s13045-023-01499-1.
  7. Mei Z, Huang J, Qiao B, Lam AK. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. Int J Oral Sci. 2020 May 28;12(1):16. doi: 10.1038/s41368-020-0084-8.
  8. Wuerdemann N, Pütz K, Eckel H, Jain R, Wittekindt C, Huebbers CU et al. LAG-3, TIM-3 and VISTA Expression on Tumor-Infiltrating Lymphocytes in Oropharyngeal Squamous Cell Carcinoma-Potential Biomarkers for Targeted Therapy Concepts. Int J Mol Sci. 2020 Dec 31;22(1):379. doi: 10.3390/ijms22010379.
  9. Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 2020 May;200(2):108-119. doi: 10.1111/cei.13407.
  10. Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy. J Immunother Cancer. 2020 Sep;8(2):e000957. doi: 10.1136/jitc-2020-000957.
  11. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009 Jan;10(1):48-57. doi: 10.1038/ni.1674.
  12. Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG et al. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol. 2009 Mar;39(3):695-703. doi: 10.1002/eji.200839116.
  13. Yue C, Gao S, Li S, Xing Z, Qian H, Hu Y et al. TIGIT as a Promising Therapeutic Target in Autoimmune Diseases. Front Immunol. 2022 Jun 3;13:911919. doi: 10.3389/fimmu.2022.911919.
  14. Zhao J, Li L, Yin H, Feng X, Lu Q. TIGIT: An emerging immune checkpoint target for immunotherapy in autoimmune disease and cancer. Int Immunopharmacol. 2023 Jul;120:110358. doi: 10.1016/j.intimp.2023.110358.
  15. Bevelacqua V, Bevelacqua Y, Candido S, Skarmoutsou E, Amoroso A, Guarneri C et al. Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget. 2012 Aug;3(8):882-92. doi: 10.18632/oncotarget.594.
  16. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P et al. Overexpression of the CD155 gene in human colorectal carcinoma. Gut. 2001 Aug;49(2):236-40. doi: 10.1136/gut.49.2.236.
  17. Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I, Akahori T et al. Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 2015 Apr;35(4):2287-97.
  18. Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, Okita Y et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 2010 May;101(5):1326-30. doi: 10.1111/j.1349-7006.2010.01530.x.
  19. Sloan KE, Eustace BK, Stewart JK, Zehetmeier C, Torella C, Simeone M et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer. 2004 Oct 7;4:73. doi: 10.1186/1471-2407-4-73.
  20. Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer. 2022 Apr;10(4):e004711. doi: 10.1136/jitc-2022-004711.
  21. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014 Dec 8;26(6):923-937. doi: 10.1016/j.ccell.2014.10.018.
  22. O’Brien SM, Klampatsa A, Thompson JC, Martinez MC, Hwang WT, Rao AS et al. Function of Human Tumor-Infiltrating Lymphocytes in Early-Stage Non-Small Cell Lung Cancer. Cancer Immunol Res. 2019 Jun;7(6):896-909. doi: 10.1158/2326-6066.CIR-18-0713.
  23. Shao Q, Wang L, Yuan M, Jin X, Chen Z, Wu C. TIGIT Induces (CD3+) T Cell Dysfunction in Colorectal Cancer by Inhibiting Glucose Metabolism. Front Immunol. 2021 Sep 29;12:688961. doi: 10.3389/fimmu.2021.688961.
  24. He W, Zhang H, Han F, Chen X, Lin R, Wang W et al. CD155T/TIGIT Signaling Regulates CD8+ T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer. Cancer Res. 2017 Nov 15;77(22):6375-6388. doi: 10.1158/0008-5472.CAN-17-0381.
  25. Tang L, Sha M, Guo T, Lu H, Qian J, Shao Q et al. Expression and Clinical Significance of TIGIT  in Primary Breast Cancer. Int J Gen Med. 2023 Jun 12;16:2405-2417. doi: 10.2147/IJGM.S407725.
  26. Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC et al. T-Cell Immunoglobulin and ITIM Domain (TIGIT) Associates with CD8+ T-Cell Exhaustion and Poor Clinical Outcome in AML Patients. Clin Cancer Res. 2016 Jun 15;22(12):3057-66. doi: 10.1158/1078-0432.CCR-15-2626.
  27. Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, Miles K et al. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood. 2018 Oct 18;132(16):1689-1694. doi: 10.1182/blood-2018-01-825265.
  28. Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015 Nov 2;125(11):4053-62. doi: 10.1172/JCI81187.
  29. Fourcade J, Sun Z, Chauvin JM, Ka M, Davar D, Pagliano O et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight. 2018 Jul 26;3(14):e121157. doi: 10.1172/jci.insight.121157.
  30. Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 2018 Jul;19(7):723-732. doi: 10.1038/s41590-018-0132-0.
  31. Eichberger J, Spoerl S, Spanier G, Erber R, Taxis J, Schuderer J et al. TIGIT Expression on Intratumoral Lymphocytes Correlates with Improved Prognosis in Oral Squamous Cell Carcinoma. Biomedicines. 2022 Dec 13;10(12):3236. doi: 10.3390/biomedicines10123236.
  32. Stålhammar G, Seregard S, Grossniklaus HE. Expression of immune checkpoint receptors Indoleamine 2,3-dioxygenase and T cell Ig and ITIM domain in metastatic versus nonmetastatic choroidal melanoma. Cancer Med. 2019 Jun;8(6):2784-2792. doi: 10.1002/cam4.2167.
  33. Xiao K, Xiao K, Li K, Xue P, Zhu S. Prognostic Role of TIGIT Expression in Patients with Solid Tumors: A Meta-Analysis. J Immunol Res. 2021 Nov 30;2021:5440572. doi: 10.1155/2021/5440572.
  34. Sun Y, Luo J, Chen Y, Cui J, Lei Y, Cui Y et al. Combined evaluation of the expression status of CD155 and TIGIT plays an important role in the prognosis of LUAD (lung adenocarcinoma). Int Immunopharmacol. 2020 Mar;80:106198. doi: 10.1016/j.intimp.2020.106198.
  35. Liu X, Li M, Wang X, Dang Z, Jiang Y, Wang X et al. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunol Immunother. 2019 Dec;68(12):2041-2054. doi: 10.1007/s00262-019-02426-5.
  36. Degos C, Heinemann M, Barrou J, Boucherit N, Lambaudie E, Savina A et al. Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function. Front Immunol. 2019 Apr 26;10:877. doi: 10.3389/fimmu.2019.00877.
  37. Ma J. Bioinformatics-guided analysis uncovers TIGIT as an epigenetically regulated immunomodulator affecting immunotherapeutic sensitivity of gastric cancer. Cancer Biomark. 2022;33(3):349-358. doi: 10.3233/CBM-210159.
  38. Chiu DK, Yuen VW, Cheu JW, Wei LL, Ting V, Fehlings M et al. Hepatocellular Carcinoma Cells Up-regulate PVRL1, Stabilizing PVR and Inhibiting the Cytotoxic T-Cell Response via TIGIT to Mediate Tumor Resistance to PD1 Inhibitors in Mice. Gastroenterology. 2020 Aug; 159(2):609-623. doi: 10.1053/j.gastro.2020.03.074.
  39. Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, Luksik AS et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology. 2018 May 24;7(8):e1466769. doi: 10.1080/2162402X.2018.1466769.
  40. Cho BC, Abreu DR, Hussein M, Cobo M, Patel AJ et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022 Jun;23(6):781-792. doi: 10.1016/S1470-2045(22)00226-1.
  41. Siebert N, Zumpe M, Schwencke CH, Biskupski S, Troschke-Meurer S, Leopold J et al. Combined Blockade of TIGIT and PD-L1 Enhances Anti-Neuroblastoma Efficacy of GD2-Directed Immunotherapy with Dinutuximab Beta. Cancers (Basel). 2023 Jun 23; 15(13):3317. doi: 10.3390/cancers15133317.
  42. Zhang X, Zhang H, Chen L, Feng Z, Gao L, Li Q. TIGIT expression is upregulated in T cells and causes T cell dysfunction independent of PD-1 and Tim-3 in adult B lineage acute lymphoblastic leukemia. Cell Immunol. 2019 Oct; 344:103958. doi: 10.1016/j.cellimm.2019.103958.
  43. Dixon KO, Schorer M, Nevin J, Etminan Y, Amoozgar Z, Kondo T et al. Functional Anti-TIGIT Antibodies Regulate Development of Autoimmunity and Antitumor Immunity. J Immunol. 2018 Apr 15;200(8):3000-3007. doi: 10.4049/jimmunol.1700407..
  44. Rousseau A, Parisi C, Barlesi F. Anti-TIGIT therapies for solid tumors: a systematic review. ESMO Open. 2023 Apr;8(2):101184. doi: 10.1016/j.esmoop.2023.101184.
  45. Rotte A, Sahasranaman S, Budha N. Targeting TIGIT for Immunotherapy of Cancer: Update on Clinical Development. Biomedicines. 2021 Sep 21;9(9):1277. doi: 10.3390/biomedicines9091277.
  46. Shaw G, Cavalcante L, Giles FJ, Taylor A. Elraglusib (9-ING-41), a selective small-molecule inhibitor of glycogen synthase kinase-3 beta, reduces expression of immune checkpoint molecules PD-1, TIGIT and LAG-3 and enhances CD8+ T cell cytolytic killing of melanoma cells. J Hematol Oncol. 2022 Sep 14;15(1):134. doi: 10.1186/s13045-022-01352-x.
  47. Mariuzza RA, Shahid S, Karade SS. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. J Biol Chem. 2024 May;300(5):107241. doi: 10.1016/j.jbc.2024.107241.
  48. Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin Immunol. 2019 Apr;42:101305. doi: 10.1016/j.smim.2019.101305.
  49. Chocarro L, Blanco E, Arasanz H, Fernández-Rubio L, Bocanegra A, Echaide M et al. Clinical landscape of LAG-3-targeted therapy. Immunooncol Technol. 2022 Mar 17;14:100079. doi: 10.1016/j.iotech.2022.100079.
  50. Saleh R, Toor SM, Sasidharan Nair V, Elkord E. Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression. Front Immunol. 2020 Jul 14;11:1469. doi: 10.3389/fimmu.2020.01469.
  51. Huard B, Tournier M, Hercend T, Triebel F, Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994 Dec;24(12):3216-21.
  52. Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007 Nov;117(11):3383-92. doi: 10.1172/JCI31184.)
  53. Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernández-Rubio L et al. Understanding LAG-3 Signaling. Int J Mol Sci. 2021 May 17;22(10):5282. doi: 10.3390/ijms22105282.
  54. Maruhashi T, Sugiura D, Okazaki IM, Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer. 2020 Sep;8(2):e001014. doi: 10.1136/jitc-2020-001014.
  55. Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol. 2011 May 1;186(9):5173-83. doi: 10.4049/jimmunol.1002050.
  56. Buisson S, Triebel F. LAG-3 (CD223) reduces macrophage and dendritic cell differentiation from monocyte precursors. Immunology. 2005 Mar;114(3):369-74. doi: 10.1111/j.1365-2567.2004.02087.x.
  57. Rodríguez-Guilarte L, Ramírez MA, Andrade CA, Kalergis AM. LAG-3 Contribution to T Cell Downmodulation during Acute Respiratory Viral Infections. Viruses. 2023 Jan 3;15(1):147. doi: 10.3390/v15010147.
  58. Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer. 2018 May;9(5-6):176-189. doi: 10.18632/genesandcancer.180.
  59. Maruhashi T, Sugiura D, Okazaki IM, Shimizu K, Maeda TK, Ikubo J et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity. 2022 May 10;55(5):912-924.e8. doi: 10.1016/j.immuni.2022.03.013.
  60. Zhao L, Wang H, Xu K, Liu X, He Y. Update on lymphocyte-activation gene 3 (LAG-3) in cancers: from biological properties to clinical applications. Chin Med J (Engl). 2022 May 20;135(10):1203-1212. doi: 10.1097/CM9.0000000000001981.
  61. Sauer N, Szlasa W, Jonderko L, Oślizło M, Kunachowicz D, Kulbacka J et al. LAG-3 as a Potent Target for Novel Anticancer Therapies of a Wide Range of Tumors. Int J Mol Sci. 2022 Sep 1;23(17):9958. doi: 10.3390/ijms23179958.
  62. Huo JL, Wang YT, Fu WJ, Lu N, Liu ZS. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front Immunol. 2022 Jul 26;13:956090. doi: 10.3389/fimmu.2022.956090.
  63. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7875-80. doi: 10.1073/pnas.1003345107.
  64. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012 Feb 15;72(4):917-27. doi: 10.1158/0008-5472.CAN-11-1620.
  65. Wang Y, Dong T, Xuan Q, Zhao H, Qin L, Zhang Q. Lymphocyte-Activation Gene-3 Expression and Prognostic Value in Neoadjuvant-Treated Triple-Negative Breast Cancer. J Breast Cancer. 2018 Jun;21(2):124-133. doi: 10.4048/jbc.2018.21.2.124.
  66. Brignone C, Escudier B, Grygar C, Marcu M, Triebel F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res. 2009 Oct 1;15(19):6225-31. doi: 10.1158/1078-0432.CCR-09-0068.
  67. Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018 Apr 5;131(14):1617-1621. doi: 10.1182/blood-2017-06-792267.
  68. Chocarro L, Bocanegra A, Blanco E, Fernández-Rubio L, Arasanz H, Echaide M et al. Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells. 2022 Jul 30;11(15):2351. doi: 10.3390/cells11152351.
  69. Thudium K, Selby M, Zorn JA, Rak G, Wang XT, Bunch RT et al. Preclinical Characterization of Relatlimab, a Human LAG-3-Blocking Antibody, Alone or in Combination with Nivolumab. Cancer Immunol Res. 2022 Oct 4;10(10):1175-1189. doi: 10.1158/2326-6066.CIR-22-0057.
  70. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E et al.; RELATIVITY-047 Investigators. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N Engl J Med. 2022 Jan 6;386(1):24-34. doi: 10.1056/NEJMoa2109970.
  71. Paik J. Nivolumab Plus Relatlimab: First Approval. Drugs. 2022 Jun;82(8):925-931. doi: 10.1007/s40265-022-01723-1.
  72. Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol. 2022 Aug 17;15(1):111. doi: 10.1186/s13045-022-01325-0.
  73. Hosseinkhani N, Derakhshani A, Shadbad MA, Argentiero A, Racanelli V, Kazemi T et al. The Role of V-Domain Ig Suppressor of T Cell Activation (VISTA) in Cancer Therapy: Lessons Learned and the Road Ahead. Front Immunol. 2021 May 19;12:676181. doi: 10.3389/fimmu.2021.676181.
  74. Schaafsma E, Croteau W, El Tanbouly M, Nowak EC, Smits NC, Deng J et al. VISTA Targeting of T-cell Quiescence and Myeloid Suppression Overcomes Adaptive Resistance. Cancer Immunol Res. 2023 Jan 3;11(1):38-55. doi: 10.1158/2326-6066.CIR-22-0116.
  75. Yuan L, Tatineni J, Mahoney KM, Freeman GJ. VISTA: A Mediator of Quiescence and a Promising Target in Cancer Immunotherapy. Trends Immunol. 2021 Mar;42(3):209-227. doi: 10.1016/j.it.2020.12.008.
  76. Martin AS, Molloy M, Ugolkov A, von Roemeling RW, Noelle RJ, Lewis LD et al. VISTA expression and patient selection for immune-based anticancer therapy. Front Immunol. 2023 Feb 20;14:1086102. doi: 10.3389/fimmu.2023.1086102.
  77. Im E, Sim DY, Lee HJ, Park JE, Park WY, Ko S, Kim B, Shim BS, Kim SH. Immune functions as a ligand or a receptor, cancer prognosis potential, clinical implication of VISTA in cancer immunotherapy. Semin Cancer Biol. 2022 Nov;86(Pt 2):1066-1075. doi: 10.1016/j.semcancer.2021.08.008.
  78. Shekari N, Shanehbandi D, Kazemi T, Zarredar H, Baradaran B, Jalali SA. VISTA and its ligands: the next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int. 2023 Nov 7;23(1):265. doi: 10.1186/s12935-023-03116-0.
  79. Xu W, Dong J, Zheng Y, Zhou J, Yuan Y, Ta HM et al. Immune-Checkpoint Protein VISTA Regulates Antitumor Immunity by Controlling Myeloid Cell-Mediated Inflammation and Immunosuppression. Cancer Immunol Res. 2019 Sep;7(9):1497-1510. doi: 10.1158/2326-6066.CIR-18-0489.
  80. Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P et al. VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res. 2014 Apr 1;74(7):1933-44. doi: 10.1158/0008-5472.CAN-13-1506.
  81. Flies DB, Wang S, Xu H, Chen L. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J Immunol. 2011 Aug 15;187(4):1537-41. doi: 10.4049/jimmunol.1100660.
  82. Oliveira P, Carvalho J, Rocha S, Azevedo M, Reis I, Camilo V et al. Dies1/VISTA expression loss is a recurrent event in gastric cancer due to epigenetic regulation. Sci Rep. 2016 Oct 10;6:34860. doi: 10.1038/srep34860.
  83. Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H et al. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother. 2018 Nov;67(11):1685-1694. doi: 10.1007/s00262-018-2227-8.
  84. Kuklinski LF, Yan S, Li Z, Fisher JL, Cheng C, Noelle RJ et al. VISTA expression on tumor-infiltrating inflammatory cells in primary cutaneous melanoma correlates with poor disease-specific survival. Cancer Immunol Immunother. 2018 Jul;67(7):1113-1121. doi: 10.1007/s00262-018-2169-1.
  85. Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017 May;23(5):551-555. doi: 10.1038/nm.4308.
  86. Cao X, Ren X, Zhou Y, Mao F, Lin Y, Wu H et al. VISTA Expression on Immune Cells Correlates With Favorable Prognosis in Patients With Triple-Negative Breast Cancer. Front Oncol. 2021 Jan 11;10:583966. doi: 10.3389/fonc.2020.583966.
  87. Wang L, Jia B, Claxton DF, Ehmann WC, Rybka WB, Mineishi S et al. VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AML. Oncoimmunology. 2018 Jul 11;7(9):e1469594. doi: 10.1080/2162402X.2018.1469594.
  88. Villarroel-Espindola F, Yu X, Datar I, Mani N, Sanmamed M, Velcheti V et al. Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer. Clin Cancer Res. 2018 Apr 1;24(7):1562-1573. doi: 10.1158/1078-0432.CCR-17-2542.
  89. Loeser H, Kraemer M, Gebauer F, Bruns C, Schröder W, Zander T et al. The expression of the immune checkpoint regulator VISTA correlates with improved overall survival in pT1/2 tumor stages in esophageal adenocarcinoma. Oncoimmunology. 2019 Feb 27;8(5):e1581546. doi: 10.1080/2162402X.2019.1581546.
  90. Zong L, Mo S, Sun Z, Lu Z, Yu S, Chen J et al. Analysis of the immune checkpoint V-domain Ig-containing suppressor of T-cell activation (VISTA) in endometrial cancer. Mod Pathol. 2022 Feb;35(2):266-273. doi: 10.1038/s41379-021-00901-y.
  91. Liao H, Zhu H, Liu S, Wang H. Expression of V-domain immunoglobulin suppressor of T cell activation is associated with the advanced stage and presence of lymph node metastasis in ovarian cancer. Oncol Lett. 2018 Sep;16(3):3465-3472. doi: 10.3892/ol.2018.9059.
  92. Zapała Ł, Kunc M, Sharma S, Pęksa R, Popęda M, Biernat W et al. Immune checkpoint receptor VISTA on immune cells is associated with expression of T-cell exhaustion marker TOX and worse prognosis in renal cell carcinoma with venous tumor thrombus. J Cancer Res Clin Oncol. 2023 Jul;149(7):4131-4139. doi: 10.1007/s00432-022-04329-y.
  93. Mulati K, Hamanishi J, Matsumura N, Chamoto K, Mise N, Abiko K et al. VISTA expressed in tumour cells regulates T cell function. Br J Cancer. 2019 Jan;120(1):115-127. doi: 10.1038/s41416-018-0313-5.
  94. Böger C, Behrens HM, Krüger S, Röcken C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? Oncoimmunology. 2017 Feb 21;6(4):e1293215. doi: 10.1080/2162402X.2017.1293215.
  95. Zhang M, Pang HJ, Zhao W, Li YF, Yan LX, Dong ZY et al. VISTA expression associated with CD8 confers a favorable immune microenvironment and better overall survival in hepatocellular carcinoma. BMC Cancer. 2018 May 2;18(1):511. doi: 10.1186/s12885-018-4435-1.
  96. Yum JI, Hong YK. Terminating Cancer by Blocking VISTA as a Novel Immunotherapy: Hasta la vista, baby . Front Oncol. 2021 Apr 16;11:658488. doi: 10.3389/fonc.2021.658488.
  97. Sasikumar PG, Sudarshan NS, Adurthi S, Ramachandra RK, Samiulla DS, Lakshminarasimhan A et al. PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti-tumor efficacy. Commun Biol. 2021 Jun 8;4(1):699. doi: 10.1038/s42003-021-02191-1.
  98. Thakkar D, Paliwal S, Dharmadhikari B, Guan S, Liu L, Kar S et al. Rationally targeted anti-VISTA antibody that blockades the C-C’ loop region can reverse VISTA immune suppression and remodel the immune microenvironment to potently inhibit tumor growth in an Fc independent manner. J Immunother Cancer. 2022 Feb;10(2):e003382. doi: 10.1136/jitc-2021-003382.
  99. Mehta N, Maddineni S, Kelly RL, Lee RB, Hunter SA, Silberstein JL et al. An engineered antibody binds a distinct epitope and is a potent inhibitor of murine and human VISTA. Sci Rep. 2020 Sep 16;10(1):15171. doi: 10.1038/s41598-020-71519-4.
  100. Zappasodi R, Merghoub T, Wolchok JD. Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell. 2018 Apr 9;33(4):581-598. doi: 10.1016/j.ccell.2018.03.005. Erratum in: Cancer Cell. 2018 Oct 8;34(4):690. doi: 10.1016/j.ccell.2018.09.008.
  101. Wu C, Cao X, Zhang X. VISTA inhibitors in cancer immunotherapy: a short perspective on recent progresses. RSC Med Chem. 2021 Jul 6;12(10):1672-1679. doi: 10.1039/d1md00185j.
  102. Noelle R, Johnson M, Rodon J, Zauderer M, Lewis L, Severgini M, et al.. Pharmacokinetic and pharmacodynamic data from a phase 1 study of CI-8993 anti-VISTA antibody in patients with advanced solid tumors. Soc Immunother Cancer  (2022) 10. doi: 10.1136/jitc-2022-SITC2022.0761.
  103. Radhakrishnan V, Banavali S, Gupta S, Kumar A, Deshmukh CD, Nag S, et al.. Excellent CBR and prolonged PFS in non-squamous NSCLC with oral CA-170, an inhibitor of VISTA and PD-L1. Ann Oncol  (2019) 30:v494. doi:  10.1093/annonc/mdz253.035.
  104. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002 Jan 31;415(6871):536-41. doi: 10.1038/415536a
  105. Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020 Mar;20(3):173-185. doi: 10.1038/s41577-019-0224-6.
  106. Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, Pipkin ME et al. The transcription factor NFAT promotes exhaustion of activated CD8⁺ T cells. Immunity. 2015 Feb 17;42(2):265-278. doi: 10.1016/j.immuni.2015.01.006.
  107. Banerjee H, Kane LP. Immune regulation by Tim-3. F1000Res. 2018 Mar 14;7:316. doi: 10.12688/f1000research.13446.1.
  108. Tang R, Rangachari M, Kuchroo VK. Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Semin Immunol. 2019 Apr;42:101302. doi: 10.1016/j.smim.2019.101302.
  109. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sánchez-Fueyo A, Zheng XX et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003 Nov;4(11):1102-10. doi: 10.1038/ni988.
  110. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science. 2007 Nov 16;318(5853):1141-3. doi: 10.1126/science.
  111. Ocaña-Guzman R, Torre-Bouscoulet L, Sada-Ovalle I. TIM-3 Regulates Distinct Functions in Macrophages. Front Immunol. 2016 Jun 13;7:229. doi: 10.3389/fimmu.2016.00229.
  112. Ocaña-Guzman R, Vázquez-Bolaños L, Sada-Ovalle I. Receptors That Inhibit Macrophage Activation: Mechanisms and Signals of Regulation and Tolerance. J Immunol Res. 2018 Feb 11;2018:8695157. doi: 10.1155/2018/8695157.
  113. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010 Sep 27;207(10):2175-86. doi: 10.1084/jem.20100637.
  114. Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kołodzińska K, Dwernicka W et al. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother. 2023 Nov; 72(11): 3405-3425. doi: 10.1007/s00262-023-03516-1.
  115. Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, Yan M et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021 Feb 5; 12(1):832. doi: 10.1038/s41467-021-21099-2.
  116. Friedlaender A, Addeo A, Banna G. New emerging targets in cancer immunotherapy: the role of TIM3. ESMO Open. 2019 Jun 12;4(Suppl 3):e000497. doi: 10.1136/esmoopen-2019-000497.
  117. Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res. 2011 May 15;71(10):3540-51. doi: 10.1158/0008-5472.CAN-11-0096.
  118. Kikushige Y, Miyamoto T. TIM-3 as a novel therapeutic target for eradicating acute myelogenous leukemia stem cells. Int J Hematol. 2013 Dec;98(6):627-33. doi: 10.1007/s12185-013-1433-6.
  119. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010 Sep 27;207(10):2187-94. doi: 10.1084/jem.20100643.
  120. Tian T, Li Z. Targeting Tim-3 in Cancer With Resistance to PD-1/PD-L1 Blockade. Front Oncol. 2021 Sep 22;11:731175. doi: 10.3389/fonc.2021.731175.
  121. Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020 Jun;8(1):e000911. doi: 10.1136/jitc-2020-000911.
  122. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011 Apr 28;117(17):4501-10. doi: 10.1182/blood-2010-10-310425.
  123. Fourcade J, Sun Z, Pagliano O, Chauvin JM, Sander C, Janjic B et al. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8⁺ T cells induced by melanoma vaccines. Cancer Res. 2014 Feb 15;74(4):1045-55. doi: 10.1158/0008-5472.CAN-13-2908.
  124. Guo Z, Cheng D, Xia Z, Luan M, Wu L, Wang G et al. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J Transl Med. 2013 Sep 17;11:215. doi: 10.1186/1479-5876-11-215.
  125. Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res. 2024 Jan 17;12(1):8. doi: 10.1186/s40364-024-00556-2.
  126. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 2003 Jul;4(7):670-9. doi: 10.1038/ni944.
  127. Gonzalez LC, Loyet KM, Calemine-Fenaux J, Chauhan V, Wranik B, Ouyang W et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1116-21. doi: 10.1073/pnas.0409071102.
  128. Garapati VP, Lefranc MP. IMGT Colliers de Perles and IgSF domain standardization for T cell costimulatory activatory (CD28, ICOS) and inhibitory (CTLA4, PDCD1 and BTLA) receptors. Dev Comp Immunol. 2007;31(10):1050-72. doi: 10.1016/j.dci.2007.01.008.
  129. Gavrieli M, Sedy J, Nelson CA, Murphy KM. BTLA and HVEM cross talk regulates inhibition and costimulation. Adv Immunol. 2006;92:157-85. doi: 10.1016/S0065-2776(06)92004-5.
  130. Ning Z, Liu K, Xiong H. Roles of BTLA in Immunity and Immune Disorders. Front Immunol. 2021 Mar 29;12:654960. doi: 10.3389/fimmu.2021.654960.
  131. Vendel AC, Calemine-Fenaux J, Izrael-Tomasevic A, Chauhan V, Arnott D, Eaton DL. B and T lymphocyte attenuator regulates B cell receptor signaling by targeting Syk and BLNK. J Immunol. 2009 Feb 1;182(3):1509-17. doi: 10.4049/jimmunol.182.3.1509.
  132. Compaan DM, Gonzalez LC, Tom I, Loyet KM, Eaton D, Hymowitz SG. Attenuating lymphocyte activity: the crystal structure of the BTLA-HVEM complex. J Biol Chem. 2005 Nov 25;280(47):39553-61. doi: 10.1074/jbc.M507629200.
  133. Xu X, Hou B, Fulzele A, Masubuchi T, Zhao Y, Wu Z, et al. PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2. J Cell Biol.  2020;219 :e201905085. doi: 10.1083/jcb.201905085.
  134. Celis-Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Grégoire C, et al. Quantitative interactomics in primary T cells provides a rationale for concomitant PD-1 and BTLA coinhibitor blockade in cancer immunotherapy. Cell Rep.  2019;27 :3315–3330e7. doi: 10.1016/j.celrep.2019.05.041.
  135. Sedy JR, Balmert MO, Ware BC, Smith W, Nemčovičova I, Norris PS et al. A herpesvirus entry mediator mutein with selective agonist action for the inhibitory receptor B and T lymphocyte attenuator. J Biol Chem. 2017 Dec 22;292(51):21060-21070. doi: 10.1074/jbc.M117.813295.
  136. Cheung TC, Humphreys IR, Potter KG, Norris PS, Shumway HM, Tran BR et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13218-23. doi: 10.1073/pnas.0506172102.
  137. Cheung TC, Oborne LM, Steinberg MW, Macauley MG, Fukuyama S, Sanjo H et al. T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment. J Immunol. 2009 Dec 1;183(11):7286-96. doi: 10.4049/jimmunol.0902490.
  138. Oguro S, Ino Y, Shimada K, Hatanaka Y, Matsuno Y, Esaki M et al. Clinical significance of tumor-infiltrating immune cells focusing on BTLA and Cbl-b in patients with gallbladder cancer. Cancer Sci. 2015 Dec;106(12):1750-60. doi: 10.1111/cas.12825.
  139. Wang XF, Chen YJ, Wang Q, Ge Y, Dai Q, Yang KF et al. Distinct expression and inhibitory function of B and T lymphocyte attenuator on human T cells. Tissue Antigens. 2007 Feb;69(2):145-53. doi: 10.1111/j.1399-0039.2006.00710.x.
  140. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C et al. CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res. 2012 Feb 15;72(4):887-96. doi: 10.1158/0008-5472.CAN-11-2637.
  141. Derré L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest. 2010 Jan;120(1):157-67. doi: 10.1172/JCI40070.
  142. Chen YL, Lin HW, Chien CL, Lai YL, Sun WZ, Chen CA et al. BTLA blockade enhances Cancer therapy by inhibiting IL-6/IL-10-induced CD19high B lymphocytes. J Immunother Cancer. 2019 Nov 21;7(1):313. doi: 10.1186/s40425-019-0744-4.
  143. Sekar D, Govene L, Del Río ML, Sirait-Fischer E, Fink AF, Brüne B, et al. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma. Int J Mol Sci. 2018 Mar 7;19(3):752. doi: 10.3390/ijms19030752.
  144. Quan L, Lan X, Meng Y, Guo X, Guo Y, Zhao L et al. BTLA marks a less cytotoxic T-cell subset in diffuse large B-cell lymphoma with high expression of checkpoints. Exp Hematol. 2018 Apr; 60: 47-56.e1. doi: 10.1016/j.exphem.2018.01.003.
  145. Song J, Wu L. Friend or Foe: Prognostic and Immunotherapy Roles of BTLA in Colorectal Cancer. Front Mol Biosci. 2020 Jul 21;7:148. doi: 10.3389/fmolb.2020.00148.
  146. Murphy TL, Murphy KM. Slow down and survive: Enigmatic immunoregulation by BTLA and HVEM. Annu Rev Immunol. 2010;28:389-411. doi: 10.1146/annurev-immunol-030409-101202.
  147. Lasaro MO, Sazanovich M, Giles-Davis W, Mrass P, Bunte RM, Sewell DA et al. Active immunotherapy combined with blockade of a coinhibitory pathway achieves regression of large tumor masses in cancer-prone mice. Mol Ther. 2011 Sep;19(9):1727-1736. doi: 10.1038/mt.2011.88.
  148. Sun WZ, Lin HW, Chen WY, Chien CL, Lai YL, Chen J et al. Dual inhibition of BTLA and PD-1 can enhance therapeutic efficacy of paclitaxel on intraperitoneally disseminated tumors. J Immunother Cancer. 2023 Jul;11(7):e006694. doi: 10.1136/jitc-2023-006694.
  149. Getu AA, Tigabu A, Zhou M, Lu J, Fodstad Ø, Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol Cancer. 2023 Mar 2;22(1):43. doi: 10.1186/s12943-023-01751-9.
  150. Ni L, Dong C. New B7 Family Checkpoints in Human Cancers. Mol Cancer Ther. 2017 Jul;16(7):1203-1211. doi: 10.1158/1535-7163.MCT-16-0761.
  151. Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y et al. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol. 2022 Oct 25;15(1):153. doi: 10.1186/s13045-022-01364-7.
  152. Rasic P, Jovanovic-Tucovic M, Jeremic M, Djuricic SM, Vasiljevic ZV, Milickovic M et al. B7 homologue 3 as a prognostic biomarker and potential therapeutic target in gastrointestinal tumors. World J Gastrointest Oncol. 2021 Aug 15; 13(8):799-821. doi: 10.4251/wjgo.v13.i8.799.
  153. Inamura K, Takazawa Y, Inoue Y, Yokouchi Y, Kobayashi M, Saiura A et al. Tumor B7-H3 (CD276) Expression and Survival in Pancreatic Cancer. J Clin Med. 2018 Jul 10; 7(7):172. doi: 10.3390/jcm7070172.
  154. Amori G, Sugawara E, Shigematsu Y, Akiya M, Kunieda J, Yuasa T et al. Tumor B7-H3 expression in diagnostic biopsy specimens and survival in patients with metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021 Sep; 24(3):767-774. doi: 10.1038/s41391-021-00331-6.
  155. Zang X, Sullivan PS, Soslow RA, Waitz R, Reuter VE, Wilton A et al. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod Pathol. 2010 Aug;23(8):1104-12. doi: 10.1038/modpathol.2010.95.
  156. Cong F, Yu H, Gao X. Expression of CD24 and B7-H3 in breast cancer and the clinical significance. Oncol Lett. 2017 Dec;14(6):7185-7190. doi: 10.3892/ol.2017.7142.
  157. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2001 Mar;2(3):269-74. doi: 10.1038/85339.
  158. Loos M, Hedderich DM, Ottenhausen M, Giese NA, Laschinger M, Esposito I et al. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer. BMC Cancer. 2009 Dec 26;9:463. doi: 10.1186/1471-2407-9-463.
  159. Wang L, Kang FB, Shan BE. B7-H3-mediated tumor immunology: Friend or foe? Int J Cancer. 2014 Jun 15;134(12):2764-71. doi: 10.1002/ijc.28474.
  160. Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol. 2003 Sep;4(9):899-906. doi: 10.1038/ni967.
  161. Veenstra RG, Flynn R, Kreymborg K, McDonald-Hyman C, Saha A, Taylor PA et al. B7-H3 expression in donor T cells and host cells negatively regulates acute graft-versus-host disease lethality. Blood. 2015 May 21;125(21):3335-46. doi: 10.1182/blood-2014-09-603357.
  162. Wang L, Zhang Q, Chen W, Shan B, Ding Y, Zhang G et al. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS One. 2013 Aug 5;8(8):e70689. doi: 10.1371/journal.pone.0070689.
  163. Katayama A, Takahara M, Kishibe K, Nagato T, Kunibe I, Katada A et al. Expression of B7-H3 in hypopharyngeal squamous cell carcinoma as a predictive indicator for tumor metastasis and prognosis. Int J Oncol. 2011 May;38(5):1219-26. doi: 10.3892/ijo.2011.949.
  164. Mao Y, Li W, Chen K, Xie Y, Liu Q, Yao M et al. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget. 2015 Feb 20;6(5):3452-61. doi: 10.18632/oncotarget.3097.
  165. Saeednejad Zanjani L, Madjd Z, Axcrona U, Abolhasani M, Rasti A, Asgari M et al. Cytoplasmic expression of B7-H3 and membranous EpCAM expression are associated with higher grade and survival outcomes in patients with clear cell renal cell carcinoma. Ann Diagn Pathol. 2020 Jun;46:151483. doi: 10.1016/j.anndiagpath.2020.151483.
  166. Kanchan RK, Doss D, Khan P, Nasser MW, Mahapatra S. To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim Biophys Acta Rev Cancer. 2022 Sep;1877(5):188783. doi: 10.1016/j.bbcan.2022.188783.
  167. Jiang B, Liu F, Liu Z, Zhang T, Hua D. B7-H3 increases thymidylate synthase expression via the PI3k-Akt pathway. Tumour Biol. 2016 Jul;37(7):9465-72. doi: 10.1007/s13277-015-4740-0.
  168. Zhao X, Zhang GB, Gan WJ, Xiong F, Li Z, Zhao H et al. Silencing of B7-H3 increases gemcitabine sensitivity by promoting apoptosis in pancreatic carcinoma. Oncol Lett. 2013 Mar;5(3):805-812. doi: 10.3892/ol.2013.1118.
  169. Rasic P, Jeremic M, Jeremic R, Dusanovic Pjevic M, Rasic M, Djuricic SM et al. Targeting B7-H3-A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment. Molecules. 2023 Apr 11;28(8):3356. doi: 10.3390/molecules28083356.
  170. Modak S, Kramer K, Gultekin SH, Guo HF, Cheung NK. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res. 2001 May 15;61(10):4048-54.
  171. Ma J, Ma P, Zhao C, Xue X, Han H, Liu C et al. B7-H3 as a promising target for cytotoxicity T cell in human cancer therapy. Oncotarget. 2016 May 17;7(20):29480-91. doi: 10.18632/oncotarget.8784.
  172. Kendsersky NM, Lindsay J, Kolb EA, Smith MA, Teicher BA, Erickson SW et al. The B7-H3-Targeting Antibody-Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. Clin Cancer Res. 2021 May 15;27(10):2938-2946. doi: 10.1158/1078-0432.CCR-20-4221.
  173. Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer. 2024 Feb 7;24(1):182. doi: 10.1186/s12885-024-11933-3.
  174. Patel MR, Johnson ML, Falchook GS, Doi T, Friedman CF, Piha-Paul SA, et al. DS-7300 (B7-H3 DXd-ADC) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC): a subgroup analysis of a phase 1/2 multicenter study. J Clin Oncol. 2022;40:87. doi: 10.1200/JCO.2022.40.6_suppl.087.
  175. Kramer K, Kushner BH, Modak S, Pandit-Taskar N, Smith-Jones P, Zanzonico P et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol. 2010 May;97(3):409-18. doi: 10.1007/s11060-009-0038-7.
  176. Sica GL, Choi IH, Zhu G, Tamada K, Wang SD, Tamura H et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. 2003 Jun;18(6):849-61. doi: 10.1016/s1074-7613(03)00152-3.
  177. Zhou L, Ruan M, Liu Y, Zhu Y, Fu D, Wu K et al. B7H4 expression in tumor cells impairs CD8 T cell responses and tumor immunity. Cancer Immunol Immunother. 2020 Feb;69(2):163-174. doi: 10.1007/s00262-019-02451-4.
  178. Podojil JR, Miller SD. Potential targeting of B7-H4 for the treatment of cancer. Immunol Rev. 2017 Mar;276(1):40-51. doi: 10.1111/imr.12530.
  179. Fan M, Zhuang Q, Chen Y, Ding T, Yao H, Chen L et al. B7-H4 expression is correlated with tumor progression and clinical outcome in urothelial cell carcinoma. Int J Clin Exp Pathol. 2014 Sep 15;7(10):6768-75.
  180. Zhang L, Wu H, Lu D, Li G, Sun C, Song H et al. The costimulatory molecule B7-H4 promote tumor progression and cell proliferation through translocating into nucleus. Oncogene. 2013 Nov 14;32(46):5347-58. doi: 10.1038/onc.2012.600.
  181. Quandt D, Fiedler E, Boettcher D, Marsch WCh, Seliger B. B7-h4 expression in human melanoma: its association with patients’ survival and antitumor immune response. Clin Cancer Res. 2011 May 15;17(10):3100-11. doi: 10.1158/1078-0432.CCR-10-2268.
  182. Zhao LW, Li C, Zhang RL, Xue HG, Zhang FX et al. B7-H1 and B7-H4 expression in colorectal carcinoma: correlation with tumor FOXP3(+) regulatory T-cell infiltration. Acta Histochem. 2014 Sep;116(7):1163-8. doi: 10.1016/j.acthis.2014.06.003.
  183. Wang X, Hao J, Metzger DL, Ao Z, Chen L, Ou D et al. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation. PLoS One. 2012;7(1):e28232. doi: 10.1371/journal.pone.0028232.
  184. Kryczek I, Wei S, Zhu G, Myers L, Mottram P, Cheng P, Chen L, Coukos G, Zou W. Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res. 2007 Sep 15;67(18):8900-5. doi: 10.1158/0008-5472.CAN-07-1866.
  185. Wang X, Wang T, Xu M, Xiao L, Luo Y, Huang W, et al. B7-H4 overexpression impairs the immune response of T cells in human cervical carcinomas. Hum Immunol. 2014 Dec;75(12):1203-9. doi: 10.1016/j.humimm.2014.10.002.
  186. Smith JB, Stashwick C, Powell DJ. B7-H4 as a potential target for immunotherapy for gynecologic cancers: a closer look. Gynecol Oncol. 2014 Jul;134(1):181-189. doi: 10.1016/j.ygyno.2014.03.553.
  187. Dizman N, Buchbinder EI. Cancer Therapy Targeting CD47/SIRPα. Cancers (Basel). 2021 Dec 11;13(24):6229. doi: 10.3390/cancers13246229.
  188. Burger P, Hilarius-Stokman P, de Korte D, van den Berg TK, van Bruggen R. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood. 2012 Jun 7;119(23):5512-21. doi: 10.1182/blood-2011-10-386805.
  189. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science. 2000 Jun 16;288(5473):2051-4. doi: 10.1126/science.288.5473.2051.
  190. Oldenborg PA, Gresham HD, Lindberg FP. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med. 2001 Apr 2;193(7):855-62. doi: 10.1084/jem.193.7.855.
  191. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6662-7. doi: 10.1073/pnas.1121623109.
  192. Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 2001 Mar;11(3):130-5. doi: 10.1016/s0962-8924(00)01906-1.) (Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006 Jun;6(6):457-64. doi: 10.1038/nri1859.
  193. Poels LG, Peters D, van Megen Y, Vooijs GP, Verheyen RN, Willemen A et al. Monoclonal antibody against human ovarian tumor-associated antigens. J Natl Cancer Inst. 1986 May;76(5):781-91.
  194. Zhang H, Wang C, Fan J, Zhu Q, Feng Y, Pan J et al. CD47 promotes the proliferation and migration of adamantinomatous craniopharyngioma cells by activating the MAPK/ERK pathway, and CD47 blockade facilitates microglia-mediated phagocytosis. Neuropathol Appl Neurobiol. 2022 Jun;48(4):e12795. doi: 10.1111/nan.12795.
  195. Ye XJ, Yang JG, Tan YQ, Chen XJ, Zhou G. Targeting CD47 Inhibits Tumor Development and Increases Phagocytosis in Oral Squamous Cell Carcinoma. Anticancer Agents Med Chem. 2021;21(6):766-774. doi: 10.2174/1871520620999200730162915.
  196. Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012 Apr;24(2):225-32. doi: 10.1016/j.coi.2012.01.010.
  197. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009 Jul 23;138(2):286-99. doi: 10.1016/j.cell.2009.05.045.
  198. Kikuchi Y, Uno S, Kinoshita Y, Yoshimura Y, Iida S, Wakahara Y et al. Apoptosis inducing bivalent single-chain antibody fragments against CD47 showed antitumor potency for multiple myeloma. Leuk Res. 2005 Apr;29(4):445-50. doi: 10.1016/j.leukres.2004.09.005.
  199. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14016-21. doi: 10.1073/pnas.0906549106.
  200. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010 Sep 3;142(5):699-713. doi: 10.1016/j.cell.2010.07.044.
  201. Zhao XW, van Beek EM, Schornagel K, Van der Maaden H, Van Houdt M, Otten MA et al. CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18342-7. doi: 10.1073/pnas.1106550108.
  202. Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L et al. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS One. 2015 Sep 21;10(9):e0137345. doi: 10.1371/journal.pone.0137345.
  203. Sallman DA, Al Malki MM, Asch AS, Wang ES, Jurcic JG, Bradley TJ et al. Magrolimab in Combination With Azacitidine in Patients With Higher-Risk Myelodysplastic Syndromes: Final Results of a Phase Ib Study. J Clin Oncol. 2023 May 20;41(15):2815-2826. doi: 10.1200/JCO.22.01794.
  204. Paul B, Liedtke M, Khouri J, Rifkin R, Gandhi MD, Kin A et al. A phase II multi-arm study of magrolimab combinations in patients with relapsed/refractory multiple myeloma. Future Oncol. 2023 Jan;19(1):7-17. doi: 10.2217/fon-2022-0975.
  205. Bazinet A, Bravo GM. New Approaches to Myelodysplastic Syndrome Treatment. Curr Treat Options Oncol. 2022 May;23(5):668-687. doi: 10.1007/s11864-022-00965-1.
  206. Armengol M, Santos JC, Fernández-Serrano M, Profitós-Pelejà N, Ribeiro ML, Roué G. Immune-Checkpoint Inhibitors in B-Cell Lymphoma. Cancers (Basel). 2021 Jan 8;13(2):214. doi: 10.3390/cancers13020214.
  207. Llombart V, Mansour MR. Therapeutic targeting of ”undruggable” MYC. EBioMedicine. 2022 Jan;75:103756. doi: 10.1016/j.ebiom.2021.103756.
  208. Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med. 2019 Apr;25(4):656-666. doi: 10.1038/s41591-019-0374-x.
  209. Angata T, Tabuchi Y, Nakamura K, Nakamura M. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology. 2007 Aug;17(8):838-46. doi: 10.1093/glycob/cwm049.
  210. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007 Apr;7(4):255-66. doi: 10.1038/nri2056.
  211. Chen X, Mo S, Zhang Y, Ma H, Lu Z, Yu S et al. Analysis of a novel immune checkpoint, Siglec-15, in pancreatic ductal adenocarcinoma. J Pathol Clin Res. 2022 May;8(3):268-278. doi: 10.1002/cjp2.260.
  212. Shafi S, Aung TN, Xirou V, Gavrielatou N, Vathiotis IA, Fernandez A et al. Quantitative assessment of Siglec-15 expression in lung, breast, head, and neck squamous cell carcinoma and bladder cancer. Lab Invest. 2022 Oct;102(10):1143-1149. doi: 10.1038/s41374-022-00796-6.
  213. Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int. 2024 Jul 25. doi: 10.1002/cbin.12226.
  214. Chen Q, Chen B, Wang C, Hu L, Wu Q, Zhu Y et al. Dynamic change in Siglec-15 expression in peritumoral macrophages confers an immunosuppressive microenvironment and poor outcome in glioma. Front Immunol. 2023 May 10;14:1159085. doi: 10.3389/fimmu.2023.1159085.
  215. Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology. 2013 Feb;23(2): 178-87. doi: 10.1093/glycob/cws139.
  216. Fan MK, Zhang GC, Chen W, Qi LL, Xie MF, Zhang YY et al. Siglec-15 Promotes Tumor Progression in Osteosarcoma via  DUSP1/MAPK Pathway. Front Oncol. 2021 Jul 16;11:710689. doi: 10.3389/fonc.2021.710689.
  217. Jiang KY, Qi LL, Liu XB, Wang Y, Wang L. Prognostic value of Siglec-15 expression in patients with solid tumors: A meta-analysis. Front Oncol. 2023 Jan 11;12:1073932. doi: 10.3389/fonc.2022.1073932.
  218. Wang J, Xu L, Ding Q, Li X, Wang K, Xu S, Liu B. Siglec15 is a prognostic indicator and a potential tumor-related macrophage regulator that is involved in the suppressive immunomicroenvironment in gliomas. Front Immunol. 2023 May 30;14:1065062. doi: 10.3389/fimmu.2023.1065062.
  219. Saini P, Adeniji OS, Abdel-Mohsen M. Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections. EBioMedicine. 2022 Dec;86:104354. doi: 10.1016/j.ebiom.2022.104354.
  220. Boelaars K, van Kooyk Y. Targeting myeloid cells for cancer immunotherapy: Siglec-7/9/10/15 and their ligands. Trends Cancer. 2024 Mar;10(3):230-241. doi: 10.1016/j.trecan.2023.11.009.
  221. Huang Z, Guo Y, Li B, Shen M, Yi Y, Li L et al. Siglec-15 on macrophages suppress the immune microenvironment in patients with PD-L1 negative non-metastasis lung adenocarcinoma. Cancer Gene Ther. 2024 Mar;31(3):427-438. doi: 10.1038/s41417-023-00713-z.
  222. Li TJ, Jin KZ, Li H, Ye LY, Li PC, Jiang B et al. SIGLEC15 amplifies immunosuppressive properties of tumor-associated macrophages in pancreatic cancer. Cancer Lett. 2022 Apr 1;530:142-155. doi: 10.1016/j.canlet.2022.01.026.).
  223. Liu X, Zhang Q, Liang Y, Xiong S, Cai Y, Cao J et al. Nanoparticles (NPs)-mediated Siglec15 silencing and macrophage repolarization for enhanced cancer immunotherapy. Acta Pharm Sin B. 2023 Dec;13(12):5048-5059. doi: 10.1016/j.apsb.2023.07.012.
  224. Sun J, Lu Q, Sanmamed MF, Wang J. Siglec-15 as an Emerging Target for Next-generation Cancer Immunotherapy. Clin Cancer Res. 2021 Feb 1; 27(3): 680-688. doi: 10.1158/1078-0432.CCR-19-2925.
  225. Wang PL, O’Farrell S, Clayberger C, Krensky AM. Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol. 1992 Apr 15;148(8):2600-8.
  226. Feng S, Isayev O, Werner J, Bazhin AV. CD96 as a Potential Immune Regulator in Cancers. Int J Mol Sci. 2023 Jan 9;24(2):1303. doi: 10.3390/ijms24021303.
  227. Georgiev H, Ravens I, Papadogianni G, Bernhardt G. Coming of Age: CD96 Emerges as Modulator of Immune Responses. Front Immunol. 2018 May 17;9:1072. doi: 10.3389/fimmu.2018.01072.
  228. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol. 2004 Apr 1;172(7):3994-8. doi: 10.4049/jimmunol.172.7.3994.
  229. Jin HS, Park Y. Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy. BMB Rep. 2021 Jan;54(1):2-11. doi: 10.5483/BMBRep.2021.54.1.229.
  230. Gorvel L, Olive D. Targeting the ”PVR-TIGIT axis” with immune checkpoint therapies. F1000Res. 2020 May 13;9:F1000 Faculty Rev-354. doi: 10.12688/f1000research.22877.1.
  231. Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu TD, Harden Bowles K et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11731-E11740. doi: 10.1073/pnas.1814052115.
  232. Huang Z, Qi G, Miller JS, Zheng SG. CD226: An Emerging Role in Immunologic Diseases. Front Cell Dev Biol. 2020 Jul 24;8:564. doi: 10.3389/fcell.2020.00564.
  233. Conner M, Hance KW, Yadavilli S, Smothers J, Waight JD. Emergence of the CD226 Axis in Cancer Immunotherapy. Front Immunol. 2022 Jun 24;13:914406. doi: 10.3389/fimmu.2022.914406.
  234. Xu C, Fang H, Gu Y, Yu K, Wang J, Lin C,. Impact of intratumoural CD96 expression on clinical outcome and therapeutic benefit in gastric cancer. Cancer Sci. 2022 Dec;113(12):4070-4081. doi: 10.1111/cas.15537.
  235. Sun H, Huang Q, Huang M, Wen H, Lin R, Zheng M et al. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology. 2019 Jul;70(1):168-183. doi: 10.1002/hep.30347.
  236. Liu F, Huang J, He F, Ma X, Fan F, Meng M et al. CD96, a new immune checkpoint, correlates with immune profile and clinical outcome of glioma. Sci Rep. 2020 Jul 1;10(1):10768. doi: 10.1038/s41598-020-66806-z.
  237. Chiang EY, de Almeida PE, de Almeida Nagata DE, Bowles KH, Du X, Chitre AS et al. CD96 functions as a co-stimulatory receptor to enhance CD8+ T cell activation and effector responses. Eur J Immunol. 2020 Jun;50(6):891-902. doi: 10.1002/eji.201948405.
  238. Blake SJ, Stannard K, Liu J, Allen S, Yong MC, Mittal D et al. Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy. Cancer Discov. 2016 Apr;6(4):446-59. doi: 10.1158/2159-8290.CD-15-0944.
  239. Mittal D, Lepletier A, Madore J, Aguilera AR, Stannard K, Blake SJ et al. CD96 Is an Immune Checkpoint That Regulates CD8+ T-cell Antitumor Function. Cancer Immunol Res. 2019 Apr;7(4):559-571. doi: 10.1158/2326-6066.CIR-18-0637.
  240. Hamid O, Baxter D, Easton R, Siu L . Phase 1 trial of first-in-class anti-CD96 monoclonal antibody inhibitor, GSK6097608, monotherapy and combination with anti-PD-1 monoclonal antibody, dostarlimab, in advanced solid tumors Journal for ImmunoTherapy of Cancer  2021;9 doi: 10.1136/jitc-2021-SITC2021.488.
  241. Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT et al. Identification of CD112R as a novel checkpoint for human T cells. J Exp Med. 2016 Feb 8;213(2):167-76. doi: 10.1084/jem.20150785.
  242. Zeng T, Cao Y, Jin T, Tian Y, Dai C, Xu F. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy. J Exp Clin Cancer Res. 2021 Sep 10;40(1):285. doi: 10.1186/s13046-021-02053-y.
  243. Bekes I, Löb S, Holzheu I, Janni W, Baumann L, Wöckel A et al. Nectin-2 in ovarian cancer: How is it expressed and what might be its functional role? Cancer Sci. 2019 Jun;110(6):1872-1882. doi: 10.1111/cas.13992.
  244. Turin I, Delfanti S, Ferulli F, Brugnatelli S, Tanzi M, Maestri M et al. In Vitro Killing of Colorectal Carcinoma Cells by Autologous Activated NK Cells is Boosted by Anti-Epidermal Growth Factor Receptor-induced ADCC Regardless of RAS Mutation Status. J Immunother. 2018 May;41(4):190-200. doi: 10.1097/CJI.0000000000000205.
  245. Karabulut M, Gunaldi M, Alis H, Afsar CU, Karabulut S, Serilmez M et al. Serum nectin-2 levels are diagnostic and prognostic in patients with colorectal carcinoma. Clin Transl Oncol. 2016 Feb;18(2):160-71. doi: 10.1007/s12094-015-1348-1.
  246. Murter B, Pan X, Ophir E, Alteber Z, Azulay M, Sen R et al. Mouse PVRIG Has CD8+ T Cell-Specific Coinhibitory Functions and Dampens Antitumor Immunity. Cancer Immunol Res. 2019 Feb;7(2):244-256. doi: 10.1158/2326-6066.CIR-18-0460.
  247. Whelan S, Ophir E, Kotturi MF, Levy O, Ganguly S, Leung L et al. PVRIG and PVRL2 Are Induced in Cancer and Inhibit CD8+ T-cell Function. Cancer Immunol Res. 2019 Feb;7(2):257-268. doi: 10.1158/2326-6066.CIR-18-0442.
  248. Xue H, Zhang Z, Li L, Zhu C, Fei K, Sha H et al. Characterization of a novel anti-PVRIG antibody with Fc-competent function that exerts strong antitumor effects via NK activation in preclinical models. Cancer Immunol Immunother. 2024 Mar 30;73(5):81. doi: 10.1007/s00262-024-03671-z.
  249. Xu F, Sunderland A, Zhou Y, Schulick RD, Edil BH, Zhu Y. Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions. Cancer Immunol Immunother. 2017 Oct;66(10):1367-1375. doi: 10.1007/s00262-017-2031-x.
  250. Janakiram M, Chinai JM, Fineberg S, Fiser A, Montagna C, Medavarapu R et al. Expression, Clinical Significance, and Receptor Identification of the Newest B7 Family Member HHLA2 Protein. Clin Cancer Res. 2015 May 15;21(10):2359-66. doi: 10.1158/1078-0432.CCR-14-1495.
  251. Mager DL, Hunter DG, Schertzer M, Freeman JD. Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics. 1999 Aug 1;59(3):255-63. doi: 10.1006/geno.1999.5877.
  252. Qi Y, Deng G, Xu P, Zhang H, Yuan F, Geng R, Jiang H, Liu B, Chen Q. HHLA2 is a novel prognostic predictor and potential therapeutic target in malignant glioma. Oncol Rep. 2019 Dec;42(6):2309-2322. doi: 10.3892/or.2019.7343.).
  253. Li Y, Lv C, Yu Y, Wu B, Zhang Y, Lang Q et al. KIR3DL3-HHLA2 and TMIGD2-HHLA2 pathways: The dual role of HHLA2 in immune responses and its potential therapeutic approach for cancer immunotherapy. J Adv Res. 2023 May;47:137-150. doi: 10.1016/j.jare.2022.07.013.
  254. Bhatt RS, Berjis A, Konge JC, Mahoney KM, Klee AN, Freeman SS et al. KIR3DL3 Is an Inhibitory Receptor for HHLA2 that Mediates an Alternative Immunoinhibitory Pathway to PD1. Cancer Immunol Res. 2021 Feb;9(2):156-169. doi: 10.1158/2326-6066.CIR-20-0315.
  255. Wei Y, Ren X, Galbo PM Jr, Moerdler S, Wang H, Sica RA et al. KIR3DL3-HHLA2 is a human immunosuppressive pathway and a therapeutic target. Sci Immunol. 2021 Jul 9;6(61):eabf9792. doi: 10.1126/sciimmunol.abf9792.
  256. Koirala P, Roth ME, Gill J, Chinai JM, Ewart MR, Piperdi S et al. HHLA2, a member of the B7 family, is expressed in human osteosarcoma and is associated with metastases and worse survival. Sci Rep. 2016 Aug 17;6:31154. doi: 10.1038/srep31154.
  257. Chen L, Zhu D, Feng J, Zhou Y, Wang Q, Feng H et al. Overexpression of HHLA2 in human clear cell renal cell carcinoma is significantly associated with poor survival of the patients. Cancer Cell Int. 2019 Apr 16;19:101. doi: 10.1186/s12935-019-0813-2.
  258. Yan H, Qiu W, Koehne de Gonzalez AK, Wei JS, Tu M, Xi CH et al. HHLA2 is a novel immune checkpoint protein in pancreatic ductal adenocarcinoma and predicts post-surgical survival. Cancer Lett. 2019 Feb 1;442:333-340. doi: 10.1016/j.canlet.2018.11.007.
  259. Boor PPC, Sideras K, Biermann K, Hosein Aziz M, Levink IJM, Mancham S et al. HHLA2 is expressed in pancreatic and ampullary cancers and increased expression is associated with better post-surgical prognosis. Br J Cancer. 2020 Apr;122(8):1211-1218. doi: 10.1038/s41416-020-0755-4.
  260. Huang FX, Wu JW, Cheng XQ, Wang JH, Wen XZ, Li JJ et al. HHLA2 predicts improved prognosis of anti-PD-1/PD-L1 immunotherapy in patients with melanoma. Front Immunol. 2022 Aug 8;13:902167. doi: 10.3389/fimmu.2022.902167.
  261. Xu Y, Huang Z, Yu X, Li Z, Zheng L, Xu J. HHLA2 Expression is Associated with Poor Survival in Patients with Hepatocellular Carcinoma. Biologics. 2021 Aug 13;15:329-341. doi: 10.2147/BTT.S325019.
  262. Xu G, Shi Y, Ling X, Wang D, Liu Y, Lu H et al. HHLA2 predicts better survival and exhibits inhibited proliferation in epithelial ovarian cancer. Cancer Cell Int. 2021 May 7;21(1):252. doi: 10.1186/s12935-021-01930-y.
  263. Wei L, Tang L, Chang H, Huo S, Li Y. HHLA2 overexpression is a novel biomarker of malignant status and poor prognosis in gastric cancer. Hum Cell. 2020 Jan;33(1):116-122. doi: 10.1007/s13577-019-00280-2.
  264. Kula A, Dawidowicz M, Mielcarska S, Kiczmer P, Skiba H, Krygier M et al. Overexpression and Role of HHLA2, a Novel Immune Checkpoint, in Colorectal Cancer. Int J Mol Sci. 2023 Mar 20;24(6):5876. doi: 10.3390/ijms24065876.
  265. Chen Y, Hu R, Li X, Shi Z, Tian H, Feng J et al. B7-H4 and HHLA2, members of B7 family, are aberrantly expressed in EGFR mutated lung adenocarcinoma. Pathol Res Pract. 2020 Oct;216(10):153134. doi: 10.1016/j.prp.2020.153134.
  266. Kula A, Dawidowicz M, Mielcarska S, Świętochowska E, Waniczek D. Prognostic Value of HHLA2 in Patients with Solid Tumors: A Meta-Analysis. Int J Mol Sci. 2024 Apr 26;25(9):4760. doi: 10.3390/ijms25094760.
  267. Wang H, Sica RA, Kaur G, Galbo PM Jr, Jing Z, Nishimura CD et al. TMIGD2 is an orchestrator and therapeutic target on human acute myeloid leukemia stem cells. Nat Commun. 2024 Jan 2;15(1):11. doi: 10.1038/s41467-023-43843-6.).
  268. Magee CN, Boenisch O, Najafian N. The role of costimulatory molecules in directing the functional differentiation of alloreactive T helper cells. Am J Transplant. 2012 Oct;12(10):2588-600. doi: 10.1111/j.1600-6143.2012.04180.x.
  269. Pilat N, Sayegh MH, Wekerle T. Costimulatory pathways in transplantation. Semin Immunol. 2011 Aug;23(4):293-303. doi: 10.1016/j.smim.2011.04.002.
  270. Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther. 2023 Jun 19;8(1):235. doi: 10.1038/s41392-023-01471-y.
  271. Jeong S, Park SH. Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy. Immune Netw. 2020 Feb 7;20(1):e3. doi: 10.4110/in.2020.20.e3.).
  272. Meylan F, Siegel RM. TNF superfamily cytokines in the promotion of Th9 differentiation and immunopathology. Semin Immunopathol. 2017 Jan;39(1):21-28. doi: 10.1007/s00281-016-0612-y.
  273. Vyth-Dreese FA, Dellemijn TA, Frijhoff A, van Kooyk Y, Figdor CG. Role of LFA-1/ICAM-1 in interleukin-2-stimulated lymphocyte proliferation. Eur J Immunol. 1993 Dec;23(12):3292-9. doi: 10.1002/eji.1830231235.
  274. Franko JL, Levine AD. Antigen-independent adhesion and cell spreading by inducible costimulator engagement inhibits T cell migration in a PI-3K-dependent manner. J Leukoc Biol. 2009 Mar;85(3):526-38. doi: 10.1189/jlb.0808505.
  275. Alves Costa Silva C, Facchinetti F, Routy B, Derosa L. New pathways in immune stimulation: targeting OX40. ESMO Open. 2020 Feb;5(1):e000573. doi: 10.1136/esmoopen-2019-000573.
  276. Thapa B, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline MK et al. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev. 2024 Mar 25. doi: 10.1007/s10555-024-10184-9.
  277. Walling BL, Kim M. LFA-1 in T Cell Migration and Differentiation. Front Immunol. 2018 May 3;9:952. doi: 10.3389/fimmu.2018.00952.
  278. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002 Feb;16(2):311-23. doi: 10.1016/s1074-7613(02)00280-7.
  279. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature. 1999 Jan 21;397(6716):263-6. doi: 10.1038/16717.
  280. Mages HW, Hutloff A, Heuck C, Büchner K, Himmelbauer H, Oliveri F et al. Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur J Immunol. 2000 Apr;30(4):1040-7. doi: 10.1002/(SICI)1521-4141(200004)30:4<1040::AID-IMMU1040>3.0.CO;2-6.
  281. Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature. 1999 Dec 16;402(6763):827-32. doi: 10.1038/45582.
  282. Aicher A, Hayden-Ledbetter M, Brady WA, Pezzutto A, Richter G, Magaletti D et al. Characterization of human inducible costimulator ligand expression and function. J Immunol. 2000 May 1;164(9):4689-96. doi: 10.4049/jimmunol.164.9.4689.
  283. Swallow MM, Wallin JJ, Sha WC. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity. 1999 Oct;11(4):423-32. doi: 10.1016/s1074-7613(00)80117-x.
  284. Qian X, Agematsu K, Freeman GJ, Tagawa Y, Sugane K, Hayashi T. The ICOS-ligand B7-H2, expressed on human type II alveolar epithelial cells, plays a role in the pulmonary host defense system. Eur J Immunol. 2006 Apr;36(4):906-18. doi: 10.1002/eji.200535253.
  285. Solinas C, Gu-Trantien C, Willard-Gallo K. The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open. 2020 Jan;5(1):e000544. doi: 10.1136/esmoopen-2019-000544.
  286. Li DY, Xiong XZ. ICOS+ Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol. 2020 Aug 28;11:2104. doi: 10.3389/fimmu.2020.02104. Erratum in: Front Immunol. 2021 May 12;12:701515. doi: 10.3389/fimmu.2021.701515.
  287. Gigoux M, Shang J, Pak Y, Xu M, Choe J, Mak TW et al. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20371-6. doi: 10.1073/pnas.0911573106.
  288. Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 2014 Apr 7;211(4):715-25. doi: 10.1084/jem.20130590.
  289. Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A. 2017 May 9;114(19):4993-4998. doi: 10.1073/pnas.1705327114.
  290. Hilton JF, Ott PA, Hansen AR, Li Z, Mathew M, Messina CH et al. INDUCE-2: A Phase I/II, open-label, two-part study of feladilimab in combination with tremelimumab in patients with advanced solid tumors. Cancer Immunol Immunother. 2024 Feb 13;73(3):44. doi: 10.1007/s00262-023-03623-z.
  291. Yap TA, Gainor JF, Callahan MK, Falchook GS, Pachynski RK, LoRusso P et al. First-in-Human Phase I/II ICONIC Trial of the ICOS Agonist Vopratelimab Alone and with Nivolumab: ICOS-High CD4 T-Cell Populations and Predictors of Response. Clin Cancer Res. 2022 Sep 1;28(17):3695-3708. doi: 10.1158/1078-0432.CCR-21-4256.
  292. Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit Rev Immunol. 2009;29(3):187-201. doi: 10.1615/critrevimmunol.v29.i3.10.
  293. Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B. 2020 Mar;10(3):414-433. doi: 10.1016/j.apsb.2019.08.010. Epub 2019 Sep 3. PMID: 32140389; PMCID: PMC7049610.
  294. Postel-Vinay S, Lam VK, Ros W, Bauer TM, Hansen AR, Cho DC et al. First-in-human phase I study of the OX40 agonist GSK3174998 with or without pembrolizumab in patients with selected advanced solid tumors (ENGAGE-1). J Immunother Cancer. 2023 Mar;11(3):e005301. doi: 10.1136/jitc-2022-005301.
  295. Fromm G, de Silva S, Johannes K, Patel A, Hornblower JC, Schreiber TH. Agonist redirected checkpoint, PD1-Fc-OX40L, for cancer immunotherapy. J Immunother Cancer. 2018 Dec 18;6(1):149. doi: 10.1186/s40425-018-0454-3.
  296. Yang N, Wang Y, Liu S, Tariq SB, Luna JM, Mazo G et al. OX40L-expressing recombinant modified vaccinia virus Ankara induces potent antitumor immunity via reprogramming Tregs. J Exp Med. 2023 Aug 7;220(8):e20221166. doi: 10.1084/jem.20221166.
  297. Davis EJ, Martin-Liberal J, Kristeleit R, Cho DC, Blagden SP, Berthold D et al. First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. J Immunother Cancer. 2022 Oct;10(10):e004235. doi: 10.1136/jitc-2021-004235.
  298. Kuang Z, Jing H, Wu Z, Wang J, Li Y, Ni H et al. Development and characterization of a novel anti-OX40 antibody for potent immune activation. Cancer Immunol Immunother. 2020 Jun;69(6):939-950. doi: 10.1007/s00262-020-02501-2.
  299. Gutierrez M, Moreno V, Heinhuis KM, Olszanski AJ, Spreafico A, Ong M et al. OX40 Agonist BMS-986178 Alone or in Combination With Nivolumab and/or Ipilimumab in Patients With Advanced Solid Tumors. Clin Cancer Res. 2021 Jan 15;27(2):460-472. doi: 10.1158/1078-0432.CCR-20-1830.
  300. Hamid O, Chiappori AA, Thompson JA, Doi T, Hu-Lieskovan S, Eskens FALM et al. First-in-human study of an OX40 (ivuxolimab) and 4-1BB (utomilumab) agonistic antibody combination in patients with advanced solid tumors. J Immunother Cancer. 2022 Oct;10(10):e005471. doi: 10.1136/jitc-2022-005471.
  301. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078-1094. doi: 10.1038/s41578-021-00358-0.
  302. Campos Carrascosa L, van Beek AA, de Ruiter V, Doukas M, Wei J, Fisher TS et al. FcγRIIB engagement drives agonistic activity of Fc-engineered αOX40 antibody to stimulate human tumor-infiltrating T cells. J Immunother Cancer. 2020 Sep;8(2):e000816. doi: 10.1136/jitc-2020-000816.
  303. Reuter D, Staege MS, Kühnöl CD, Föll J. Immunostimulation by OX40 Ligand Transgenic Ewing Sarcoma Cells. Front Oncol. 2015 Oct 27;5:242. doi: 10.3389/fonc.2015.00242.
  304. . Zhou Z, Kim S, Hurtado J, Lee ZH, Kim KK, Pollok KE, Kwon BS. Characterization of human homologue of 4-1BB and its ligand. Immunol Lett. 1995 Feb;45(1-2):67-73. doi: 10.1016/0165-2478(94)00227-i.
  305. Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer. 2016 Feb;54:112-119. doi: 10.1016/j.ejca.2015.09.026.
  306. Vinay DS, Kwon BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep. 2014 Mar;47(3):122-9. doi: 10.5483/bmbrep.2014.47.3.283.
  307. Hashimoto K. CD137 as an Attractive T Cell Co-Stimulatory Target in the TNFRSF for Immuno-Oncology Drug Development. Cancers (Basel). 2021 May 11;13(10):2288. doi: 10.3390/cancers13102288.
  308. Oh HS, Choi BK, Kim YH, Lee DG, Hwang S, Lee MJ et al. 4-1BB Signaling Enhances Primary and Secondary Population Expansion of CD8+ T Cells by Maximizing Autocrine IL-2/IL-2 Receptor Signaling. PLoS One. 2015 May 11;10(5):e0126765. doi: 10.1371/journal.pone.0126765.
  309. Kim YJ, Kim SH, Mantel P, Kwon BS. Human 4-1BB regulates CD28 co-stimulation to promote Th1 cell responses. Eur J Immunol. 1998 Mar;28(3):881-90. doi: 10.1002/(SICI)1521-4141(199803)28:03<881::AID-IMMU881>3.0.CO;2-0.
  310. Gauttier V, Judor JP, Le Guen V, Cany J, Ferry N, Conchon S. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int J Cancer. 2014 Dec 15;135(12):2857-67. doi: 10.1002/ijc.28943.
  311. Narazaki H, Zhu Y, Luo L, Zhu G, Chen L. CD137 agonist antibody prevents cancer recurrence: contribution of CD137 on both hematopoietic and nonhematopoietic cells. Blood. 2010 Mar 11;115(10):1941-8. doi: 10.1182/blood-2008-12-192591.
  312. Claus C, Ferrara-Koller C, Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs. 2023 Jan-Dec;15(1):2167189. doi: 10.1080/19420862.2023.2167189.
  313. Sanmamed MF, Etxeberría I, Otano I, Melero I. Twists and turns to translating 4-1BB cancer immunotherapy. Sci Transl Med. 2019 Jun 12;11(496):eaax4738. doi: 10.1126/scitranslmed.aax4738.
  314. Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O et al. Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody. Clin Cancer Res. 2017 Apr 15;23(8):1929-1936. doi: 10.1158/1078-0432.CCR-16-1272.
  315. Tolcher AW, Sznol M, Hu-Lieskovan S, Papadopoulos KP, Patnaik A, Rasco DW et al. Phase Ib Study of Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Combination with Pembrolizumab (MK-3475) in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017 Sep 15;23(18):5349-5357. doi: 10.1158/1078-0432.CCR-17-1243.
  316. Yu X, Orr CM, Chan HTC, James S, Penfold CA, Kim J, Inzhelevskaya T, Mockridge CI, Cox KL, Essex JW, Tews I, Glennie MJ, Cragg MS. Reducing affinity as a strategy to boost immunomodulatory antibody agonism. Nature. 2023 Feb;614(7948):539-547. doi: 10.1038/s41586-022-05673-2.
  317. Ronchetti S, Ricci E, Petrillo MG, Cari L, Migliorati G, Nocentini G et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res. 2015;2015:171520. doi: 10.1155/2015/171520.
  318. Azuma M. Role of the glucocorticoid-induced TNFR-related protein (GITR)-GITR ligand pathway in innate and adaptive immunity. Crit Rev Immunol. 2010;30(6):547-57. doi: 10.1615/critrevimmunol.v30.i6.40.
  319. Tian J, Zhang B, Rui K, Wang S. The Role of GITR/GITRL Interaction in Autoimmune Diseases. Front Immunol. 2020 Oct 9;11:588682. doi: 10.3389/fimmu.2020.588682.
  320. Coe D, Begom S, Addey C, White M, Dyson J, Chai JG. Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol Immunother. 2010 Sep;59(9):1367-77. doi: 10.1007/s00262-010-0866-5.
  321. Petrillo MG, Ronchetti S, Ricci E, Alunno A, Gerli R, Nocentini G et al. GITR+ regulatory T cells in the treatment of autoimmune diseases. Autoimmun Rev. 2015 Feb;14(2):117-26. doi: 10.1016/j.autrev.2014.10.011.
  322. Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 2016 Nov;67:1-10. doi: 10.1016/j.ejca.2016.06.028.
  323. Buzzatti G, Dellepiane C, Del Mastro L. New emerging targets in cancer immunotherapy: the role of GITR. ESMO Open. 2020 Aug;4(Suppl 3):e000738. doi: 10.1136/esmoopen-2020-000738.
  324. Amoozgar Z, Kloepper J, Ren J, Tay RE, Kazer SW, Kiner E et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021 May 11;12(1):2582. doi: 10.1038/s41467-021-22885-8.
  325. Schoenhals JE, Cushman TR, Barsoumian HB, Li A, Cadena AP, Niknam S et al. Anti-glucocorticoid-induced Tumor Necrosis Factor-Related Protein (GITR) Therapy Overcomes Radiation-Induced Treg Immunosuppression and Drives Abscopal Effects. Front Immunol. 2018 Sep 20;9:2170. doi: 10.3389/fimmu.2018.02170.
  326. Hosseinalizadeh H, Rabiee F, Eghbalifard N, Rajabi H, Klionsky DJ, Rezaee A. Regulating the regulatory T cells as cell therapies in autoimmunity and cancer. Front Med (Lausanne). 2023 Sep 27;10:1244298. doi: 10.3389/fmed.2023.1244298.
  327. Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel M, Liu C et al. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019 May;25(5):759-766. doi: 10.1038/s41591-019-0420-8.
  328. Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci. 2001 Jan;58(1):4-43. doi: 10.1007/pl00000776.
  329. Paulie S, Rosén A, Ehlin-Henriksson B, Braesch-Andersen S, Jakobson E, Koho H et al. The human B lymphocyte and carcinoma antigen, CDw40, is a phosphoprotein involved in growth signal transduction. J Immunol. 1989 Jan 15;142(2):590-5.
  330. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009 May;229(1):152-72. doi: 10.1111/j.1600-065X.2009.00782.x.
  331. Ara A, Ahmed KA, Xiang J. Multiple effects of CD40-CD40L axis in immunity against infection and cancer. Immunotargets Ther. 2018 Jun 28;7:55-61. doi: 10.2147/ITT.S163614.
  332. Khalil M, Vonderheide RH. Anti-CD40 agonist antibodies: preclinical and clinical experience. Update Cancer Ther. 2007 Jun 1;2(2):61-65. doi: 10.1016/j.uct.2007.06.001.
  333. Vonderheide RH. Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res. 2007 Feb 15;13(4):1083-8. doi: 10.1158/1078-0432.CCR-06-1893.
  334. Vonderheide RH, Dutcher JP, Anderson JE, Eckhardt SG, Stephans KF, Razvillas B et al. Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol. 2001 Jul 1;19(13):3280-7. doi: 10.1200/JCO.2001.19.13.3280.
  335. Furman RR, Forero-Torres A, Shustov A, Drachman JG. A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2010 Feb;51(2):228-35. doi: 10.3109/10428190903440946.
  336. Advani R, Forero-Torres A, Furman RR, Rosenblatt JD, Younes A, Ren H et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol. 2009 Sep 10;27(26):4371-7. doi: 10.1200/JCO.2008.21.3017.
  337. Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open. 2020 Mar;4(Suppl 3):e000629. doi: 10.1136/esmoopen-2019-000629.
  338. van de Ven K, Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy. 2015;7(6):655-67. doi: 10.2217/imt.15.32.
  339. Tesselaar K, Xiao Y, Arens R, van Schijndel GM, Schuurhuis DH, Mebius RE et al. Expression of the murine CD27 ligand CD70 in vitro and in vivo. J Immunol. 2003 Jan 1;170(1):33-40. doi: 10.4049/jimmunol.170.1.33.
  340. Lens SM, Tesselaar K, van Oers MH, van Lier RA. Control of lymphocyte function through CD27-CD70 interactions. Semin Immunol. 1998 Dec;10(6):491-9. doi: 10.1006/smim.1998.0154.
  341. Arens R, Schepers K, Nolte MA, van Oosterwijk MF, van Lier RA, Schumacher TN et al. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation. J Exp Med. 2004 Jun 7;199(11):1595-605. doi: 10.1084/jem.20031111.
  342. Remedios KA, Meyer L, Zirak B, Pauli ML, Truong HA, Boda D et al. CD27 Promotes CD4+ Effector T Cell Survival in Response to Tissue Self-Antigen. J Immunol. 2019 Aug 1;203(3):639-646. doi: 10.4049/jimmunol.1900288.
  343. Roberts DJ, Franklin NA, Kingeter LM, Yagita H, Tutt AL, Glennie MJ et al. Control of established melanoma by CD27 stimulation is associated with enhanced effector function and persistence, and reduced PD-1 expression of tumor infiltrating CD8(+) T cells. J Immunother. 2010 Oct;33(8):769-79. doi: 10.1097/CJI.0b013e3181ee238f.
  344. Sakanishi T, Yagita H. Anti-tumor effects of depleting and non-depleting anti-CD27 monoclonal antibodies in immune-competent mice. Biochem Biophys Res Commun. 2010 Mar 19;393(4):829-35. doi: 10.1016/j.bbrc.2010.02.092.
  345. French RR, Taraban VY, Crowther GR, Rowley TF, Gray JC, Johnson PW et al. Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood. 2007 Jun 1;109(11):4810-5. doi: 10.1182/blood-2006-11-057216.
  346. Yang M, Tang X, Zhang Z, Gu L, Wei H, Zhao S et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics. 2020 Jun 18;10(17):7622-7634. doi: 10.7150/thno.43991.
  347. Ramakrishna V, Sundarapandiyan K, Zhao B, Bylesjo M, Marsh HC, Keler T. Characterization of the human T cell response to in vitro CD27 costimulation with varlilumab. J Immunother Cancer. 2015 Aug 18;3:37. doi: 10.1186/s40425-015-0080-2.
  348. He LZ, Prostak N, Thomas LJ, Vitale L, Weidlick J, Crocker A et al. Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice. J Immunol. 2013 Oct 15;191(8):4174-83. doi: 10.4049/jimmunol.1300409.
  349. Sanborn RE, Pishvaian MJ, Callahan MK, Weise A, Sikic BI, Rahma O et al. Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. J Immunother Cancer. 2022 Aug;10(8):e005147. doi: 10.1136/jitc-2022-005147.
  350. Ansell S, Northfelt D, Flinn I, Burris H, Dinner S, Villalobos V et al. A phase I study of an agonist anti-CD27 human antibody (CDX-1127) in patients with advanced hematologic malignancies or solid tumors. J Immunother Cancer. 2013 Nov 7;1(Suppl 1):P259. doi: 10.1186/2051-1426-1-S1-P259.
  351. Luo S, Liman N, Li C, Crossman A, Wang ECY, Meylan F, Park JH. The cytokine receptor DR3 identifies and promotes the activation of thymic NKT17 cells. Cell Mol Life Sci. 2023 Feb 27;80(3):76. doi: 10.1007/s00018-023-04726-7.
  352. Liman N, Lanasa D, Meylan F, Park JH. The ever-expanding role of cytokine receptor DR3 in T cells. Cytokine. 2024 Apr;176:156540. doi: 10.1016/j.cyto.2024.156540.
  353. Richard AC, Ferdinand JR, Meylan F, Hayes ET, Gabay O, Siegel RM. The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol. 2015 Sep;98(3):333-45. doi: 10.1189/jlb.3RI0315-095R.
  354. Meylan F, Davidson TS, Kahle E, Kinder M, Acharya K, Jankovic D et al. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 2008 Jul 18;29(1):79-89. doi: 10.1016/j.immuni.2008.04.021.
  355. Al-Lamki RS, Wang J, Pober JS, Bradley JR. Co-Expression and Functional Interactions of Death Receptor 3 and E-Selectin in Clear Cell Renal Cell Carcinoma. Am J Pathol. 2022 Apr;192(4):722-736. doi: 10.1016/j.ajpath.2021.12.010.
  356. Lyu X, Zhao L, Chen S, Li Y, Yang Y, Liu H et al. Targeting TNFRSF25 by agonistic antibodies and multimeric TL1A proteins co-stimulated CD8+ T cells and inhibited tumor growth. J Immunother Cancer. 2024 Aug 13;12(8):e008810. doi: 10.1136/jitc-2024-008810.
  357. Slebioda TJ, Rowley TF, Ferdinand JR, Willoughby JE, Buchan SL, Taraban VY et al. Triggering of TNFRSF25 promotes CD8⁺ T-cell responses and anti-tumor immunity. Eur J Immunol. 2011 Sep;41(9):2606-11. doi: 10.1002/eji.201141477.
  358. Aden D, Zaheer S, Ahluwalia H, Ranga S. Cancer-associated fibroblasts: Is it a key to an intricate lock of tumorigenesis? Cell Biol Int. 2023 May;47(5):859-893. doi: 10.1002/cbin.12004.
  359. Xia C, Yin S, To KKW, Fu L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 2023 Mar 2;22(1):44. doi: 10.1186/s12943-023-01733-x.
  360. Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013 Jun;19(6):355-67. doi: 10.1016/j.molmed.2013.03.005.
  361. Roh M, Wainwright DA, Wu JD, Wan Y, Zhang B. Targeting CD73 to augment cancer immunotherapy. Curr Opin Pharmacol. 2020 Aug;53:66-76. doi: 10.1016/j.coph.2020.07.001.
  362. Haskó G, Csóka B, Németh ZH, Vizi ES, Pacher P. A(2B) adenosine receptors in immunity and inflammation. Trends Immunol. 2009 Jun;30(6):263-70. doi: 10.1016/j.it.2009.04.001.
  363. Chhabra P, Linden J, Lobo P, Okusa MD, Brayman KL. The immunosuppressive role of adenosine A2A receptors in ischemia reperfusion injury and islet transplantation. Curr Diabetes Rev. 2012 Nov;8(6):419-33. doi: 10.2174/157339912803529878.
  364. Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5’-nucleotidase (CD73). Am J Physiol Cell Physiol. 2019 Dec 1;317(6):C1079-C1092. doi: 10.1152/ajpcell.00285.2019.
  365. Ye H, Zhao J, Xu X, Zhang D, Shen H, Wang S. Role of adenosine A2a receptor in cancers and autoimmune diseases. Immun Inflamm Dis. 2023 Apr;11(4):e826. doi: 10.1002/iid3.826.
  366. Petruk N, Tuominen S, Åkerfelt M, Mattsson J, Sandholm J, Nees M, Yegutkin GG, Jukkola A, Tuomela J, Selander KS. CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci Rep. 2021 Mar 16;11(1):6035. doi: 10.1038/s41598-021-85379-z.
  367. Yu J, Wang X, Lu Q, Wang J, Li L, Liao X, et al. Extracellular 5’-nucleotidase (CD73) promotes human breast cancer cells growth through AKT/GSK-3β/β-catenin/cyclinD1 signaling pathway. Int J Cancer. 2018 Mar 1;142(5):959-967. doi: 10.1002/ijc.31112.
  368. Gao ZW, Wang HP, Lin F, Wang X, Long M, Zhang HZ, Dong K. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity. BMC Cancer. 2017 Feb 15;17(1):135. doi: 10.1186/s12885-017-3128-5.
  369. Moesta AK, Li XY, Smyth MJ. Targeting CD39 in cancer. Nat Rev Immunol. 2020 Dec;20(12):739-755. doi: 10.1038/s41577-020-0376-4.
  370. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 2017 Mar;276(1):121-144. doi: 10.1111/imr.12528.
  371. Shuai C, Xia GQ, Yuan F, Wang S, Lv XW. CD39-mediated ATP-adenosine signalling promotes hepatic stellate cell activation and alcoholic liver disease. Eur J Pharmacol. 2021 Aug 15;905:174198. doi: 10.1016/j.ejphar.2021.174198.
  372. Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol. 2016 Feb;39(1): 98-106. doi: 10.1097/COC.0000000000000239.
  373. Nocentini A, Capasso C, Supuran CT. Small-molecule CD73 inhibitors for the immunotherapy of cancer: a patent and literature review (2017-present). Expert Opin Ther Pat. 2021 Oct;31(10):867-876. doi: 10.1080/13543776.2021.1923694.
  374. Bastid J, Regairaz A, Bonnefoy N, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunology Research. 2015 Mar;3(3):254-265. doi: 10.1158/2326-6066.cir-14-0018.
  375. Yan J, Li XY, Roman Aguilera A, Xiao C, Jacoberger-Foissac C, Nowlan B et al. Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunol Res. 2020 Mar;8(3):356-367. doi: 10.1158/2326-6066.CIR-19-0749.
  376. Qiao Z, Li X, Kang N, Yang Y, Chen C, Wu T, et al. A novel specific anti-CD73 antibody inhibits triple-negative breast cancer cell motility by regulating autophagy. Int J Mol Sci.  2019;20:1057. doi: 10.1200/JCO.2023.41.16_suppl.e145.
  377. Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 2010 Mar 15;70(6):2245-55. doi: 10.1158/0008-5472.CAN-09-3109.
  378. Allard B, Pommey S, Smyth MJ, Stagg J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res. 2013 Oct 15;19(20):5626-35. doi: 10.1158/1078-0432.CCR-13-0545.
  379. Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L et al. Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell Rep. 2019 May 21;27(8):2411-2425.e9. doi: 10.1016/j.celrep.2019.04.091.
  380. Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson SC, Ohta A. Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol. 2008 Mar;153 Suppl 1(Suppl 1):S457-64. doi: 10.1038/bjp.2008.23.
  381. van der Meer JH, van der Poll T, van ’t Veer C. TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood. 2014 Apr 17;123(16):2460-9. doi: 10.1182/blood-2013-09-528752.
  382. Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer. 2019 May 14;18(1):94. doi: 10.1186/s12943-019-1022-2.
  383. Rankin EB, Giaccia AJ. The Receptor Tyrosine Kinase AXL in Cancer Progression. Cancers (Basel). 2016 Nov 9;8(11):103. doi: 10.3390/cancers8110103.
  384. Lin JZ, Wang ZJ, De W, Zheng M, Xu WZ, Wu HF et al. Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer. Oncotarget. 2017 Jun 20;8(25):41064-41077. doi: 10.18632/oncotarget.17026.
  385. Taniguchi H, Yamada T, Wang R, Tanimura K, Adachi Y, Nishiyama A et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat Commun. 2019 Jan 16;10(1):259. doi: 10.1038/s41467-018-08074-0.
  386. Scherschinski L, Prem M, Kremenetskaia I, Tinhofer I, Vajkoczy P, Karbe AG, Onken JS. Regulation of the Receptor Tyrosine Kinase AXL in Response to Therapy and Its Role in Therapy Resistance in Glioblastoma. Int J Mol Sci. 2022 Jan 17;23(2):982. doi: 10.3390/ijms23020982.