REFERENCES
1. Gu, Z., Biswas, A., Zhao, M., Tang, Y. (2011). Tailoring nanocarriers for intracellular protein delivery. Chemical Society Review ,40 , 3638-3655. https://doi.org/10.1039/c0cs00227e
2. Goswami, R., Jeon, T., Nagaraj, H., Zhai, S., Rotello, V. M. (2020). Accessing intracellular targets through nanocarrier-mediated cytosolic protein delivery. Trends Pharmacol Science , 41 , 743–754. https://doi.org/10.1016/j.tips.2020.08.005
3. Lv, J., Fan, Q., Wang, H., Cheng, Y. (2019). Polymers for cytosolic protein delivery. Biomaterials , 218 , 119358. https://doi.org/10.1016/j.biomaterials.2019.119358.
4. Liu, C., Wan, T., Wang, H., Zhang, S., Ping, Y., Cheng, Y. (2019). A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing.Science Advances , 5 , eaaw8922. https://doi.org/ 10.1126/sciadv.aaw8922
5. Futaki, S., Nakase, I. (2017). Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization. Accounts of Chemical Research , 50 , 2449−2456. https://doi.org/10.1021/acs.accounts.7b00221
6. Lee, Y., Ishii, T., Cabral, H., Kim, H. J., Seo, J.-H., Nishiyama, N., Oshima, H., Osada, K., Kataoka, K. (2009). Charge-conversional polyionic complex micelles-efficient nanocarriers for protein delivery into cytoplasm. Angewandte Chemie International Edition , 48, 5309-5312. https://doi.org/10.1002/anie.200900064
7. Du, S., Liew, S. S., Li, L., Yao, S. Q. (2018). Bypassing endocytosis: direct cytosolic delivery of proteins. Journal of the American Chemical Society , 140, 15986−15996. https://doi.org/10.1021/jacs.8b06584
8. Mogaki, R., Hashim, P. K., Okuro, K., Aida, T. (2017). Guanidinium-based “molecular glues” for modulation of biomolecular functions. Chemical Society Review , 46 , 6480−6491. https://doi.org/10.1039/c7cs00647k
9. Kube, S., Hersch, N., Naumovska, E., Gensch, T., Hendriks, J., Franzen, A., Landvogt, L., Siebrasse, J. P., Kubitscheck, U., Hoffmann, B., Merkel, R., Csiszar, A. (2017). Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins. Langmuir , 33 , 1051−1059. https://doi.org/10.1021/acs.langmuir.6b04304
10. Yang, J., Tu, J., Lamers, G. E. M., Olsthoorn, R. C. L., Kros, A. (2017). Membrane fusion mediated intracellular delivery of lipid bilayer coated mesoporous silica nanoparticles. Advanced Healthcare Materials , 6 , 1700759. https://doi.org/10.1002/adhm.201700759
11. Scaletti, F., Hardie, J., Lee, Y.-W., Luther, D. C., Ray, M., Rotello, V. M. (2018). Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chemical Society Review , 47 , 3421–3432. https://doi.org/10.1039/c8cs00008e
12. Futami, J., Kitazoe, M., Maeda, T., Nukui, E., Sakaguchi, M., Kosaka, J., Miyazaki, M., Kosaka, M., Tada, H., Seno, M., Sasaki, J., Huh, N.-H., Namba M., Yamada, H. (2005) Intracellular delivery of proteins into mammalian living cells by polyethylenimine-cationization.Journal of Bioscience Bioengineering , 99 , 95–103. https://doi.org/10.1263/jbb.99.95
13. Liu, B., Ejaz, W., Gong, S., Kurbanov, M., Canakci, M., Anson, F., Thayumanavan, S. (2020). Engineered interactions with mesoporous silica facilitate intracellular delivery of proteins and gene editing.Nano Letters , 20 , 4014–4021. https://doi.org/10.1021/acs.nanolett.0c01387
14. Nakase, I., Kobayashi, S., Futaki, S. (2010). Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules.Peptide Science , 94 , 763–770. https://doi.org/10.1002/bip.21487
15. Yao, P., Zhang, Y., Meng, H., Sun, H., Zhong, Z. (2019). Smart polymersomes dually functionalized with cRGD and fusogenic GALA peptides enable specific and high-efficiency cytosolic delivery of apoptotic proteins. Biomacromolecules , 20 , 184−191. https://doi.org/10.1021/acs.biomac.8b01243
16. Liu, C., Shen, W., Li, B., Li, T., Chang, H., Cheng, Y. (2019). Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chemistry of Materials, 31 , 1956−1965. https://doi.org/10.1021/acs.chemmater.8b04672
17. Das, P., Jana, N. R. (2016). Length-controlled synthesis of calcium phosphate nanorod and nanowire and application in intracellular protein delivery. ACS Applied Materials Interfaces , 8 , 8710−8720. https://doi.org/10.1021/acsami.6b01667
18. Berg, K., Selbo, P. K., Prasmickaite, L., Tjelle, T. E., Sandvig, K., Moan, J., Gaudernack, G., Fodstad, Ø., Kjølsrud, S., Anholt, H., Rodal, G. H., Rodal, S. K., Høgset, A. (1999). Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Research , 59 , 1180–1183.
19. Matsushita, M., Noguchi, H., Lu, Y.-F., Tomizawa, K., Michiue, H., Li, S.-T., Hirose, K., Bonner-Weir, S., Matsui, H. (2004). Photo-acceleration of protein release from endosome in the protein transduction system. FEBS Letters , 572 , 221–226. https://doi.org/10.1016/j.febslet.2004.07.033
20. Minamihata, K., Maeda, Y., Yamaguchi, S., Ishihara, W., Ishiwatari, A., Takamori, S., Yamahira, S., Nagamune, T. (2015). Photosensitizer and polycationic peptide-labeled streptavidin as a nano-carrier for light-controlled protein transduction. Journal of Bioscience Bioengineering , 120 , 630–636. https://doi.org/10.1016/j.jbiosc.2015.04.001
21. Soe, T. H., Watanabe K., Ohtsuki, T. (2021). Photoinduced endosomal escape mechanism: a view from photochemical internalization mediated by CPP-photosensitizer conjugates. Molecules , 26 , 36. https://doi.org/10.3390/molecules26010036
22. Li, Y., Zhou, Y., Wang, T., Long, K., Zhang, Y., Wang, W. (2021). Photoenhanced cytosolic protein delivery based on a photocleavable group-modified dendrimer. Nanoscale , 13 , 17784–17792. https://doi.org/10.1039/d1nr04430c
23. Eichler, J., Knof, J., Lenz, H. (1977). Measurements on the depth of penetration of light (0.35–1.0 microgram) in tissue. Radiation and Environmental Biophysics , 14 , 239–242. https://doi.org/10.1007/BF01323942
24. Tang, H., Zheng, Y., Chen, Y. (2017). Materials chemistry of nanoultrasonic biomedicine. Advanced Materials , 29 , 1604105. https://doi.org/10.1002/adma.201604105
25. Uesugi, Y., Kawata, H., Jo, J., Saito, Y., Tabata, Y. (2010). An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. Journal of Controlled Release , 147 , 269–277. https://doi.org/10.1016/j.jconrel.2010.07.127
26. Huebsch, N., Kearney, C. J., Zhao, X., Kim, J., Cezar, C. A., Suo, Z., Mooney, D. J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proceedings of the National Academy of Sciences of the United States of America , 111 , 9762–9767. https://doi.org/10.1073/pnas.1405469111
27. Yamaguchi, S., Higashi, K., Azuma, T., Okamoto, A. (2019). Supramolecular polymeric hydrogels for ultrasound-guided protein release. Biotechnology Journal , 14 , 1800530. https://doi.org/10.1002/biot.201800530
28. Lattin, J. R., Javadi, M., McRae, M., Pitt, W. G. (2015). Cytosolic delivery via escape from the endosome using emulsion droplets and ultrasound. Journal of Drug Targeting , 23 , 469–479. https://doi.org/10.3109/1061186X.2015.1009074
29. Lee, Y.-H., Iijima, M., Kado, Y., Mizohata, E., Inoue, T., Sugiyama, A., Doi, H., Shibasaki, Y., Kodama, T. (2013). Construction and characterization of functional anti-epiregulin humanized monoclonal antibodies. Biochemical Biophysical Research Communications ,441 , 1011–1017. https://doi.org/10.1016/j.bbrc.2013.11.014
30. Ishijima, A., Minamihata, K., Yamaguchi, S., Yamahira, S., Ichikawa, R., Kobayashi, E., Iijima, M., Shibasaki, Y., Azuma, T., Nagamune, T., Sakuma, I. (2017). Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro.Scientific Reports , 7 , 44077. https://doi.org/10.1038/srep44077
31. Ishijima, A., Yamaguchi, S., Azuma, T., Kobayashi, E., Shibasaki, Y., Nagamune, T., Sakuma, I. (2019). Selective intracellular delivery of perfluorocarbon nanodroplets for cytotoxicity threshold reduction on ultrasound-induced vaporization. Cancer Reports , 2 , e1165. https://doi.org/10.1002/cnr2.1165
32. Ishijima, A., Tanaka, J., Azuma, T., Minamihata, K., Yamaguchi, S., Kobayashi, E., Nagamune, T., Sakuma, I. (2016). The lifetime evaluation of vapourised phase-change nano-droplets. Ultrasonics , 69 , 97–105. https://doi.org/10.1016/j.ultras.2016.04.002
33. Qian, L., Fu, J., Yuan, P., Du, S., Huang, W., Li, L., Yao, S. Q. (2018). Intracellular delivery of native proteins facilitated by cell-penetrating poly(disulfide)s. Angewandte Chemie International Edition , 130 , 1548–1552. https://doi.org/10.1002/ange.201711651
34. Urano, Y., Kamiya, M., Kanda, K., Ueno, T., Hirose, K., Nagano, T. (2005). Evolution of fluorescein as a platform for finely tunable fluorescence probes. Journal of the American Chemical Society ,127 , 4888-4894. https://doi.org/10.1021/ja043919h
35. Stirpe, F., Gasperi-Campani, A., Barbieri, L., Falasca, A., Abbondanza, A., Stevens, W. A. (1983). Ribosome-inactivating proteins from the seeds of Saponaria officinalis L., of Agrostemma githago L., and of Asparagus officinalis L., and from the latex of Hura crepitans L.Biochemical Journal , 216 , 617–625. https://doi.org/10.1042/bj2160617
36. Yamaguchi, S., Yamamoto, K., Yamamoto, R., Takamori, S., Ishiwatari, A., Minamihata, K., Nagamune, T., Okamoto, A. (2022). Intracellular protein photoactivation using sterically bulky caging.ChemBioChem , 23 , e202200476. https://doi.org/10.1002/cbic.202200476
37. Ishiwatari, A., Yamaguchi, S., Takamori, S., Yamahira, S., Minamihata, K., Nagamune, T. (2016). Photolytic protein aggregates: versatile materials for controlled release of active proteins.Advanced Healthcare Materials , 5 , 1002-1007. https://doi.org/10.1002/adhm.201500957
38. Yamaguchi, S., Takamori, S., Yamamoto, K., Ishiwatari, A., Minamihata, K., Yamada, E., Okamoto, A., Nagamune, T. (2021). Sterically bulky caging of transferrin for photoactivatable intracellular delivery.Bioconjugate Chemistry , 32 , 1535-1540. https://doi.org/10.1021/acs.bioconjchem.1c00159
39. Yamaguchi, S., Ohashi, N., Minamihata, K., Nagamune, T. (2021). Photodegradable avidin-biotinylated polymer conjugate hydrogels for cell manipulation. Biomaterials Science , 9 , 6416–6424. https://doi.org/10.1039/d1bm00585e