REFERENCES
1. Gu, Z., Biswas, A., Zhao, M., Tang, Y. (2011). Tailoring nanocarriers
for intracellular protein delivery. Chemical Society Review ,40 , 3638-3655. https://doi.org/10.1039/c0cs00227e
2. Goswami, R., Jeon, T., Nagaraj, H., Zhai, S., Rotello, V. M. (2020).
Accessing intracellular targets through nanocarrier-mediated cytosolic
protein delivery. Trends Pharmacol Science , 41 , 743–754.
https://doi.org/10.1016/j.tips.2020.08.005
3. Lv, J., Fan, Q., Wang, H., Cheng, Y. (2019). Polymers for cytosolic
protein delivery. Biomaterials , 218 , 119358.
https://doi.org/10.1016/j.biomaterials.2019.119358.
4. Liu, C., Wan, T., Wang, H., Zhang, S., Ping, Y., Cheng, Y. (2019). A
boronic acid–rich dendrimer with robust and unprecedented efficiency
for cytosolic protein delivery and CRISPR-Cas9 gene editing.Science Advances , 5 , eaaw8922. https://doi.org/
10.1126/sciadv.aaw8922
5. Futaki, S., Nakase, I. (2017). Cell-surface interactions on
arginine-rich cell-penetrating peptides allow for multiplex modes of
internalization. Accounts of Chemical Research , 50 ,
2449−2456. https://doi.org/10.1021/acs.accounts.7b00221
6. Lee, Y., Ishii, T., Cabral, H., Kim, H. J., Seo, J.-H., Nishiyama,
N., Oshima, H., Osada, K., Kataoka, K. (2009). Charge-conversional
polyionic complex micelles-efficient nanocarriers for protein delivery
into cytoplasm. Angewandte Chemie International Edition , 48,
5309-5312. https://doi.org/10.1002/anie.200900064
7. Du, S., Liew, S. S., Li, L., Yao, S. Q. (2018). Bypassing
endocytosis: direct cytosolic delivery of proteins. Journal of the
American Chemical Society , 140, 15986−15996.
https://doi.org/10.1021/jacs.8b06584
8. Mogaki, R., Hashim, P. K., Okuro, K., Aida, T. (2017).
Guanidinium-based “molecular glues” for modulation of biomolecular
functions. Chemical Society Review , 46 , 6480−6491.
https://doi.org/10.1039/c7cs00647k
9. Kube, S., Hersch, N., Naumovska, E., Gensch, T., Hendriks, J.,
Franzen, A., Landvogt, L., Siebrasse, J. P., Kubitscheck, U., Hoffmann,
B., Merkel, R., Csiszar, A. (2017). Fusogenic liposomes as nanocarriers
for the delivery of intracellular proteins. Langmuir , 33 ,
1051−1059. https://doi.org/10.1021/acs.langmuir.6b04304
10. Yang, J., Tu, J., Lamers, G. E. M., Olsthoorn, R. C. L., Kros, A.
(2017). Membrane fusion mediated intracellular delivery of lipid bilayer
coated mesoporous silica nanoparticles. Advanced Healthcare
Materials , 6 , 1700759. https://doi.org/10.1002/adhm.201700759
11. Scaletti, F., Hardie, J., Lee, Y.-W., Luther, D. C., Ray, M.,
Rotello, V. M. (2018). Protein delivery into cells using inorganic
nanoparticle-protein supramolecular assemblies. Chemical Society
Review , 47 , 3421–3432. https://doi.org/10.1039/c8cs00008e
12. Futami, J., Kitazoe, M., Maeda, T., Nukui, E., Sakaguchi, M.,
Kosaka, J., Miyazaki, M., Kosaka, M., Tada, H., Seno, M., Sasaki, J.,
Huh, N.-H., Namba M., Yamada, H. (2005) Intracellular delivery of
proteins into mammalian living cells by polyethylenimine-cationization.Journal of Bioscience Bioengineering , 99 , 95–103.
https://doi.org/10.1263/jbb.99.95
13. Liu, B., Ejaz, W., Gong, S., Kurbanov, M., Canakci, M., Anson, F.,
Thayumanavan, S. (2020). Engineered interactions with mesoporous silica
facilitate intracellular delivery of proteins and gene editing.Nano Letters , 20 , 4014–4021.
https://doi.org/10.1021/acs.nanolett.0c01387
14. Nakase, I., Kobayashi, S., Futaki, S. (2010). Endosome-disruptive
peptides for improving cytosolic delivery of bioactive macromolecules.Peptide Science , 94 , 763–770.
https://doi.org/10.1002/bip.21487
15. Yao, P., Zhang, Y., Meng, H., Sun, H., Zhong, Z. (2019). Smart
polymersomes dually functionalized with cRGD and fusogenic GALA peptides
enable specific and high-efficiency cytosolic delivery of apoptotic
proteins. Biomacromolecules , 20 , 184−191.
https://doi.org/10.1021/acs.biomac.8b01243
16. Liu, C., Shen, W., Li, B., Li, T., Chang, H., Cheng, Y. (2019).
Natural polyphenols augment cytosolic protein delivery by a functional
polymer. Chemistry of Materials, 31 , 1956−1965.
https://doi.org/10.1021/acs.chemmater.8b04672
17. Das, P., Jana, N. R. (2016). Length-controlled synthesis of calcium
phosphate nanorod and nanowire and application in intracellular protein
delivery. ACS Applied Materials Interfaces , 8 , 8710−8720.
https://doi.org/10.1021/acsami.6b01667
18. Berg, K., Selbo, P. K., Prasmickaite, L., Tjelle, T. E., Sandvig,
K., Moan, J., Gaudernack, G., Fodstad, Ø., Kjølsrud, S., Anholt, H.,
Rodal, G. H., Rodal, S. K., Høgset, A. (1999). Photochemical
internalization: a novel technology for delivery of macromolecules into
cytosol. Cancer Research , 59 , 1180–1183.
19. Matsushita, M., Noguchi, H., Lu, Y.-F., Tomizawa, K., Michiue, H.,
Li, S.-T., Hirose, K., Bonner-Weir, S., Matsui, H. (2004).
Photo-acceleration of protein release from endosome in the protein
transduction system. FEBS Letters , 572 , 221–226.
https://doi.org/10.1016/j.febslet.2004.07.033
20. Minamihata, K., Maeda, Y., Yamaguchi, S., Ishihara, W., Ishiwatari,
A., Takamori, S., Yamahira, S., Nagamune, T. (2015). Photosensitizer and
polycationic peptide-labeled streptavidin as a nano-carrier for
light-controlled protein transduction. Journal of Bioscience
Bioengineering , 120 , 630–636.
https://doi.org/10.1016/j.jbiosc.2015.04.001
21. Soe, T. H., Watanabe K., Ohtsuki, T. (2021). Photoinduced endosomal
escape mechanism: a view from photochemical internalization mediated by
CPP-photosensitizer conjugates. Molecules , 26 , 36.
https://doi.org/10.3390/molecules26010036
22. Li, Y., Zhou, Y., Wang, T., Long, K., Zhang, Y., Wang, W. (2021).
Photoenhanced cytosolic protein delivery based on a photocleavable
group-modified dendrimer. Nanoscale , 13 , 17784–17792.
https://doi.org/10.1039/d1nr04430c
23. Eichler, J., Knof, J., Lenz, H. (1977). Measurements on the depth of
penetration of light (0.35–1.0 microgram) in tissue. Radiation
and Environmental Biophysics , 14 , 239–242.
https://doi.org/10.1007/BF01323942
24. Tang, H., Zheng, Y., Chen, Y. (2017). Materials chemistry of
nanoultrasonic biomedicine. Advanced Materials , 29 ,
1604105. https://doi.org/10.1002/adma.201604105
25. Uesugi, Y., Kawata, H., Jo, J., Saito, Y., Tabata, Y. (2010). An
ultrasound-responsive nano delivery system of tissue-type plasminogen
activator for thrombolytic therapy. Journal of Controlled
Release , 147 , 269–277.
https://doi.org/10.1016/j.jconrel.2010.07.127
26. Huebsch, N., Kearney, C. J., Zhao, X., Kim, J., Cezar, C. A., Suo,
Z., Mooney, D. J. Ultrasound-triggered disruption and self-healing of
reversibly cross-linked hydrogels for drug delivery and enhanced
chemotherapy. Proceedings of the National Academy of Sciences of
the United States of America , 111 , 9762–9767.
https://doi.org/10.1073/pnas.1405469111
27. Yamaguchi, S., Higashi, K., Azuma, T., Okamoto, A. (2019).
Supramolecular polymeric hydrogels for ultrasound-guided protein
release. Biotechnology Journal , 14 , 1800530.
https://doi.org/10.1002/biot.201800530
28. Lattin, J. R., Javadi, M., McRae, M., Pitt, W. G. (2015). Cytosolic
delivery via escape from the endosome using emulsion droplets and
ultrasound. Journal of Drug Targeting , 23 , 469–479.
https://doi.org/10.3109/1061186X.2015.1009074
29. Lee, Y.-H., Iijima, M., Kado, Y., Mizohata, E., Inoue, T., Sugiyama,
A., Doi, H., Shibasaki, Y., Kodama, T. (2013). Construction and
characterization of functional anti-epiregulin humanized monoclonal
antibodies. Biochemical Biophysical Research Communications ,441 , 1011–1017. https://doi.org/10.1016/j.bbrc.2013.11.014
30. Ishijima, A., Minamihata, K., Yamaguchi, S., Yamahira, S., Ichikawa,
R., Kobayashi, E., Iijima, M., Shibasaki, Y., Azuma, T., Nagamune, T.,
Sakuma, I. (2017). Selective intracellular vaporisation of
antibody-conjugated phase-change nano-droplets in vitro.Scientific Reports , 7 , 44077.
https://doi.org/10.1038/srep44077
31. Ishijima, A., Yamaguchi, S., Azuma, T., Kobayashi, E., Shibasaki,
Y., Nagamune, T., Sakuma, I. (2019). Selective intracellular delivery of
perfluorocarbon nanodroplets for cytotoxicity threshold reduction on
ultrasound-induced vaporization. Cancer Reports , 2 , e1165.
https://doi.org/10.1002/cnr2.1165
32. Ishijima, A., Tanaka, J., Azuma, T., Minamihata, K., Yamaguchi, S.,
Kobayashi, E., Nagamune, T., Sakuma, I. (2016). The lifetime evaluation
of vapourised phase-change nano-droplets. Ultrasonics , 69 ,
97–105. https://doi.org/10.1016/j.ultras.2016.04.002
33. Qian, L., Fu, J., Yuan, P., Du, S., Huang, W., Li, L., Yao, S. Q.
(2018). Intracellular delivery of native proteins facilitated by
cell-penetrating poly(disulfide)s. Angewandte Chemie International
Edition , 130 , 1548–1552. https://doi.org/10.1002/ange.201711651
34. Urano, Y., Kamiya, M., Kanda, K., Ueno, T., Hirose, K., Nagano, T.
(2005). Evolution of fluorescein as a platform for finely tunable
fluorescence probes. Journal of the American Chemical Society ,127 , 4888-4894. https://doi.org/10.1021/ja043919h
35. Stirpe, F., Gasperi-Campani, A., Barbieri, L., Falasca, A.,
Abbondanza, A., Stevens, W. A. (1983). Ribosome-inactivating proteins
from the seeds of Saponaria officinalis L., of Agrostemma githago L.,
and of Asparagus officinalis L., and from the latex of Hura crepitans L.Biochemical Journal , 216 , 617–625.
https://doi.org/10.1042/bj2160617
36. Yamaguchi, S., Yamamoto, K., Yamamoto, R., Takamori, S., Ishiwatari,
A., Minamihata, K., Nagamune, T., Okamoto, A. (2022). Intracellular
protein photoactivation using sterically bulky caging.ChemBioChem , 23 , e202200476.
https://doi.org/10.1002/cbic.202200476
37. Ishiwatari, A., Yamaguchi, S., Takamori, S., Yamahira, S.,
Minamihata, K., Nagamune, T. (2016). Photolytic protein aggregates:
versatile materials for controlled release of active proteins.Advanced Healthcare Materials , 5 , 1002-1007.
https://doi.org/10.1002/adhm.201500957
38. Yamaguchi, S., Takamori, S., Yamamoto, K., Ishiwatari, A.,
Minamihata, K., Yamada, E., Okamoto, A., Nagamune, T. (2021). Sterically
bulky caging of transferrin for photoactivatable intracellular delivery.Bioconjugate Chemistry , 32 , 1535-1540.
https://doi.org/10.1021/acs.bioconjchem.1c00159
39. Yamaguchi, S., Ohashi, N., Minamihata, K., Nagamune, T. (2021).
Photodegradable avidin-biotinylated polymer conjugate hydrogels for cell
manipulation. Biomaterials Science , 9 , 6416–6424.
https://doi.org/10.1039/d1bm00585e