REFERENCES:
(1) Charles A. Janeway, J.; Medzhitov, R. Innate Immune Recognition.Annual Review of Immunology 2002 , 20 (1),
197-216. DOI: 10.1146/annurev.immunol.20.083001.084359.
(2) Kawai, T.; Akira, S. The role of pattern-recognition receptors in
innate immunity: update on Toll-like receptors. Nat Immunol2010 , 11 (5), 373-384. DOI: 10.1038/ni.1863 From NLM.
(3) Ulevitch, R. J.; Tobias, P. S. Receptor-dependent mechanisms of cell
stimulation by bacterial endotoxin. Annu Rev Immunol1995 , 13 , 437-457. DOI:
10.1146/annurev.iy.13.040195.002253 From NLM.
(4) Matsumoto, M.; Oshiumi, H.; Seya, T. Antiviral responses induced by
the TLR3 pathway. Rev Med Virol 2011 , 21 (2),
67-77. DOI: 10.1002/rmv.680 From NLM.
(5) Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways.Frontiers in Immunology 2014 , 5 , Review. DOI:
10.3389/fimmu.2014.00461.
(6) Bonaguro, L.; Schulte-Schrepping, J.; Ulas, T.; Aschenbrenner, A.
C.; Beyer, M.; Schultze, J. L. A guide to systems-level immunomics.Nat Immunol 2022 , 23 (10), 1412-1423. DOI:
10.1038/s41590-022-01309-9 From NLM.
(7) Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: the teenage
years. Nature Reviews Genetics 2019 , 20 (11),
631-656. DOI: 10.1038/s41576-019-0150-2.
(8) Khan, M. M.; Ernst, O.; Manes, N. P.; Oyler, B. L.; Fraser, I. D.
C.; Goodlett, D. R.; Nita-Lazar, A. Multi-Omics Strategies Uncover
Host-Pathogen Interactions. ACS Infect Dis 2019 ,5 (4), 493-505. DOI: 10.1021/acsinfecdis.9b00080 From NLM
Medline.
(9) Tong, A. J.; Liu, X.; Thomas, B. J.; Lissner, M. M.; Baker, M. R.;
Senagolage, M. D.; Allred, A. L.; Barish, G. D.; Smale, S. T. A
Stringent Systems Approach Uncovers Gene-Specific Mechanisms Regulating
Inflammation. Cell 2016 , 165 (1), 165-179. DOI:
10.1016/j.cell.2016.01.020 From NLM Medline.
(10) Ritchie, M. E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C. W.; Shi, W.;
Smyth, G. K. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res2015 , 43 (7), e47. DOI: 10.1093/nar/gkv007 From NLM
Medline.
(11) Love, M. I.; Huber, W.; Anders, S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol2014 , 15 (12), 550. DOI: 10.1186/s13059-014-0550-8 From
NLM Medline.
(12) Manes, N. P.; Nita-Lazar, A. Application of targeted mass
spectrometry in bottom-up proteomics for systems biology research.J Proteomics 2018 , 189 , 75-90. DOI:
10.1016/j.jprot.2018.02.008 From NLM Medline.
(13) Picotti, P.; Aebersold, R. Selected reaction monitoring-based
proteomics: workflows, potential, pitfalls and future directions.Nat Methods 2012 , 9 (6), 555-566. DOI:
10.1038/nmeth.2015 From NLM Medline.
(14) van Bentum, M.; Selbach, M. An Introduction to Advanced Targeted
Acquisition Methods. Mol Cell Proteomics 2021 ,20 , 100165. DOI: 10.1016/j.mcpro.2021.100165 From NLM Medline.
(15) Ong, S.-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.;
Steen, H.; Pandey, A.; Mann, M. Stable Isotope Labeling by Amino Acids
in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression
Proteomics*. Molecular & Cellular Proteomics 2002 ,1 (5), 376-386. DOI:
https://doi.org/10.1074/mcp.M200025-MCP200.
(16) Hoedt, E.; Zhang, G.; Neubert, T. A. Stable Isotope Labeling by
Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics.Adv Exp Med Biol 2019 , 1140 , 531-539. DOI:
10.1007/978-3-030-15950-4_31 From NLM.
(17) Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.;
Schmidt, G.; Neumann, T.; Hamon, C. Tandem Mass Tags: A Novel
Quantification Strategy for Comparative Analysis of Complex Protein
Mixtures by MS/MS. Analytical Chemistry 2003 , 75(8), 1895-1904. DOI: 10.1021/ac0262560.
(18) Zecha, J.; Satpathy, S.; Kanashova, T.; Avanessian, S. C.; Kane, M.
H.; Clauser, K. R.; Mertins, P.; Carr, S. A.; Kuster, B. TMT Labeling
for the Masses: A Robust and Cost-efficient, In-solution Labeling
Approach*[S]. Molecular & Cellular Proteomics 2019 ,18 (7), 1468-1478. DOI:
https://doi.org/10.1074/mcp.TIR119.001385.
(19) Anand, S.; Samuel, M.; Ang, C.-S.; Keerthikumar, S.; Mathivanan, S.
Label-Based and Label-Free Strategies for Protein Quantitation. InProteome Bioinformatics , Keerthikumar, S., Mathivanan, S. Eds.;
Springer New York, 2017; pp 31-43.
(20) Silva, A. M. N.; Vitorino, R.; Domingues, M. R. M.; Spickett, C.
M.; Domingues, P. Post-translational modifications and mass spectrometry
detection. Free Radic Biol Med 2013 , 65 , 925-941.
DOI: 10.1016/j.freeradbiomed.2013.08.184 From NLM Medline.
(21) Thingholm, T. E.; Larsen, M. R. Phosphopeptide Enrichment by
Immobilized Metal Affinity Chromatography. Methods Mol Biol2016 , 1355 , 123-133. DOI: 10.1007/978-1-4939-3049-4_8
From NLM.
(22) Leitner, A. Phosphopeptide enrichment using metal oxide affinity
chromatography. TrAC Trends in Analytical Chemistry2010 , 29 (2), 177-185. DOI:
https://doi.org/10.1016/j.trac.2009.08.007.
(23) Anania, V. G.; Pham, V. C.; Huang, X.; Masselot, A.; Lill, J. R.;
Kirkpatrick, D. S. Peptide Level Immunoaffinity Enrichment Enhances
Ubiquitination Site Identification on Individual Proteins.Molecular & Cellular Proteomics 2014 , 13 (1),
145-156. DOI: https://doi.org/10.1074/mcp.M113.031062.
(24) Mysling, S.; Palmisano, G.; Højrup, P.; Thaysen-Andersen, M.
Utilizing Ion-Pairing Hydrophilic Interaction Chromatography Solid Phase
Extraction for Efficient Glycopeptide Enrichment in Glycoproteomics.Analytical Chemistry 2010 , 82 (13), 5598-5609.
DOI: 10.1021/ac100530w.
(25) Rathore, D.; Nita-Lazar, A. Phosphoproteome Analysis in Immune Cell
Signaling. Curr Protoc Immunol 2020 , 130 (1),
e105. DOI: 10.1002/cpim.105 From NLM.
(26) Halder, A.; Verma, A.; Biswas, D.; Srivastava, S. Recent advances
in mass-spectrometry based proteomics software, tools and databases.Drug Discov Today Technol 2021 , 39 , 69-79. DOI:
10.1016/j.ddtec.2021.06.007 From NLM Medline.
(27) Wendisch, D.; Dietrich, O.; Mari, T.; von Stillfried, S.; Ibarra,
I. L.; Mittermaier, M.; Mache, C.; Chua, R. L.; Knoll, R.; Timm, S.; et
al. SARS-CoV-2 infection triggers profibrotic macrophage responses and
lung fibrosis. Cell 2021 , 184 (26), 6243-6261
e6227. DOI: 10.1016/j.cell.2021.11.033 From NLM Medline.
(28) Schaffer, L. V.; Millikin, R. J.; Miller, R. M.; Anderson, L. C.;
Fellers, R. T.; Ge, Y.; Kelleher, N. L.; LeDuc, R. D.; Liu, X.; Payne,
S. H.; et al. Identification and Quantification of Proteoforms by Mass
Spectrometry. Proteomics 2019 , 19 (10), e1800361.
DOI: 10.1002/pmic.201800361 From NLM Medline.
(29) Resemann, A.; Wunderlich, D.; Rothbauer, U.; Warscheid, B.;
Leonhardt, H.; Fuchser, J.; Kuhlmann, K.; Suckau, D. Top-Down de Novo
Protein Sequencing of a 13.6 kDa Camelid Single Heavy Chain Antibody by
Matrix-Assisted Laser Desorption
Ionization-Time-of-Flight/Time-of-Flight Mass Spectrometry.Analytical Chemistry 2010 , 82 (8), 3283-3292.
DOI: 10.1021/ac1000515.
(30) Cupp-Sutton, K. A.; Wu, S. High-throughput quantitative top-down
proteomics. Mol Omics 2020 , 16 (2), 91-99. DOI:
10.1039/c9mo00154a From NLM.
(31) Neagu, A. N.; Jayathirtha, M.; Baxter, E.; Donnelly, M.; Petre, B.
A.; Darie, C. C. Applications of Tandem Mass Spectrometry (MS/MS) in
Protein Analysis for Biomedical Research. Molecules2022 , 27 (8). DOI: 10.3390/molecules27082411 From NLM
Medline.
(32) Voss, K.; Hong, H. S.; Bader, J. E.; Sugiura, A.; Lyssiotis, C. A.;
Rathmell, J. C. A guide to interrogating immunometabolism. Nat Rev
Immunol 2021 , 21 (10), 637-652. DOI:
10.1038/s41577-021-00529-8 From NLM Medline.
(33) Mills, E. L.; Kelly, B.; Logan, A.; Costa, A. S. H.; Varma, M.;
Bryant, C. E.; Tourlomousis, P.; Dabritz, J. H. M.; Gottlieb, E.;
Latorre, I.; et al. Succinate Dehydrogenase Supports Metabolic
Repurposing of Mitochondria to Drive Inflammatory Macrophages.Cell 2016 , 167 (2), 457-470 e413. DOI:
10.1016/j.cell.2016.08.064 From NLM Medline.
(34) Patti, G. J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: the
apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012 ,13 (4), 263-269. DOI: 10.1038/nrm3314 From NLM Medline.
(35) Rosato, A.; Tenori, L.; Cascante, M.; De Atauri Carulla, P. R.;
Martins Dos Santos, V. A. P.; Saccenti, E. From correlation to
causation: analysis of metabolomics data using systems biology
approaches. Metabolomics 2018 , 14 (4), 37. DOI:
10.1007/s11306-018-1335-y From NLM PubMed-not-MEDLINE.
(36) Wang, Y.; Wondisford, F. E.; Song, C.; Zhang, T.; Su, X. Metabolic
Flux Analysis-Linking Isotope Labeling and Metabolic Fluxes.Metabolites 2020 , 10 (11). DOI:
10.3390/metabo10110447 From NLM PubMed-not-MEDLINE.
(37) Jang, C.; Chen, L.; Rabinowitz, J. D. Metabolomics and Isotope
Tracing. Cell 2018 , 173 (4), 822-837. DOI:
10.1016/j.cell.2018.03.055 From NLM Medline.
(38) Suvannapruk, W.; Edney, M. K.; Kim, D. H.; Scurr, D. J.;
Ghaemmaghami, A. M.; Alexander, M. R. Single-Cell Metabolic Profiling of
Macrophages Using 3D OrbiSIMS: Correlations with Phenotype. Anal
Chem 2022 , 94 (26), 9389-9398. DOI:
10.1021/acs.analchem.2c01375 From NLM.
(39) Mosser, D. M.; Edwards, J. P. Exploring the full spectrum of
macrophage activation. Nature Reviews Immunology 2008 ,8 (12), 958-969. DOI: 10.1038/nri2448.
(40) Slavov, N. Driving Single Cell Proteomics Forward with Innovation.Journal of Proteome Research 2021 , 20 (11),
4915-4918. DOI: 10.1021/acs.jproteome.1c00639.
(41) Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona,
B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A
single–cell type transcriptomics map of human tissues.Science Advances 2021 , 7 (31), eabh2169. DOI:
doi:10.1126/sciadv.abh2169.
(42) Mulvey, C. M.; Breckels, L. M.; Crook, O. M.; Sanders, D. J.;
Ribeiro, A. L. R.; Geladaki, A.; Christoforou, A.; Britovšek, N. K.;
Hurrell, T.; Deery, M. J.; et al. Spatiotemporal proteomic profiling of
the pro-inflammatory response to lipopolysaccharide in the THP-1 human
leukaemia cell line. Nat Commun 2021 , 12 (1),
5773. DOI: 10.1038/s41467-021-26000-9 From NLM.
(43) Chappell, L.; Russell, A. J. C.; Voet, T. Single-Cell (Multi)omics
Technologies. Annu Rev Genomics Hum Genet 2018 ,19 , 15-41. DOI: 10.1146/annurev-genom-091416-035324 From NLM
Medline.
(44) Lee, J.; Hyeon, D. Y.; Hwang, D. Single-cell multiomics:
technologies and data analysis methods. Exp Mol Med2020 , 52 (9), 1428-1442. DOI: 10.1038/s12276-020-0420-2
From NLM Medline.
(45) Chambers, D. C.; Carew, A. M.; Lukowski, S. W.; Powell, J. E.
Transcriptomics and single-cell RNA-sequencing. Respirology2019 , 24 (1), 29-36. DOI: 10.1111/resp.13412 From NLM
Medline.
(46) Kong, L.; Moorlag, S.; Lefkovith, A.; Li, B.; Matzaraki, V.; van
Emst, L.; Kang, H. A.; Latorre, I.; Jaeger, M.; Joosten, L. A. B.; et
al. Single-cell transcriptomic profiles reveal changes associated with
BCG-induced trained immunity and protective effects in circulating
monocytes. Cell Rep 2021 , 37 (7), 110028. DOI:
10.1016/j.celrep.2021.110028 From NLM Medline.
(47) Netea, M. G.; Dominguez-Andres, J.; Barreiro, L. B.; Chavakis, T.;
Divangahi, M.; Fuchs, E.; Joosten, L. A. B.; van der Meer, J. W. M.;
Mhlanga, M. M.; Mulder, W. J. M.; et al. Defining trained immunity and
its role in health and disease. Nat Rev Immunol 2020 ,20 (6), 375-388. DOI: 10.1038/s41577-020-0285-6 From NLM Medline.
(48) Vistain, L. F.; Tay, S. Single-Cell Proteomics. Trends
Biochem Sci 2021 , 46 (8), 661-672. DOI:
10.1016/j.tibs.2021.01.013 From NLM Medline.
(49) Hughes, A. J.; Spelke, D. P.; Xu, Z.; Kang, C. C.; Schaffer, D. V.;
Herr, A. E. Single-cell western blotting. Nat Methods2014 , 11 (7), 749-755. DOI: 10.1038/nmeth.2992 From NLM
Medline.
(50) Shirai, K.; Mawatari, K.; Ohta, R.; Shimizu, H.; Kitamori, T. A
single-molecule ELISA device utilizing nanofluidics. Analyst2018 , 143 (4), 943-948. DOI: 10.1039/c7an01144j From NLM
Medline.
(51) Ma, C.; Fan, R.; Ahmad, H.; Shi, Q.; Comin-Anduix, B.; Chodon, T.;
Koya, R. C.; Liu, C.-C.; Kwong, G. A.; Radu, C. G.; et al. A clinical
microchip for evaluation of single immune cells reveals high functional
heterogeneity in phenotypically similar T cells. Nature Medicine2011 , 17 (6), 738-743. DOI: 10.1038/nm.2375.
(52) Kelly, R. T. Single-cell Proteomics: Progress and Prospects.Mol Cell Proteomics 2020 , 19 (11), 1739-1748.
DOI: 10.1074/mcp.R120.002234 From NLM.
(53) Zhu, Y.; Piehowski, P. D.; Kelly, R. T.; Qian, W. J. Nanoproteomics
comes of age. Expert Rev Proteomics 2018 , 15(11), 865-871. DOI: 10.1080/14789450.2018.1537787 From NLM.
(54) Zhu, Y.; Piehowski, P. D.; Zhao, R.; Chen, J.; Shen, Y.; Moore, R.
J.; Shukla, A. K.; Petyuk, V. A.; Campbell-Thompson, M.; Mathews, C. E.;
et al. Nanodroplet processing platform for deep and quantitative
proteome profiling of 10-100 mammalian cells. Nat Commun2018 , 9 (1), 882. DOI: 10.1038/s41467-018-03367-w From
NLM.
(55) Zhu, Y.; Clair, G.; Chrisler, W. B.; Shen, Y.; Zhao, R.; Shukla, A.
K.; Moore, R. J.; Misra, R. S.; Pryhuber, G. S.; Smith, R. D.; et al.
Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic
Nanodroplet Sample Preparation and Ultrasensitive NanoLC-MS. Angew
Chem Int Ed Engl 2018 , 57 (38), 12370-12374. DOI:
10.1002/anie.201802843 From NLM.
(56) Specht, H.; Emmott, E.; Petelski, A. A.; Huffman, R. G.; Perlman,
D. H.; Serra, M.; Kharchenko, P.; Koller, A.; Slavov, N. Single-cell
proteomic and transcriptomic analysis of macrophage heterogeneity using
SCoPE2. Genome Biol 2021 , 22 (1), 50. DOI:
10.1186/s13059-021-02267-5 From NLM.
(57) Baharlou, H.; Canete, N. P.; Cunningham, A. L.; Harman, A. N.;
Patrick, E. Mass Cytometry Imaging for the Study of Human
Diseases-Applications and Data Analysis Strategies. Front Immunol2019 , 10 , 2657. DOI: 10.3389/fimmu.2019.02657 From NLM.
(58) Guo, S.; Zhang, C.; Le, A. The limitless applications of
single-cell metabolomics. Curr Opin Biotechnol 2021 ,71 , 115-122. DOI: 10.1016/j.copbio.2021.07.015 From NLM.
(59) Liu, R.; Yang, Z. Single cell metabolomics using mass spectrometry:
Techniques and data analysis. Anal Chim Acta 2021 ,1143 , 124-134. DOI: 10.1016/j.aca.2020.11.020 From NLM.
(60) Tannahill, G. M.; Curtis, A. M.; Adamik, J.; Palsson-McDermott, E.
M.; McGettrick, A. F.; Goel, G.; Frezza, C.; Bernard, N. J.; Kelly, B.;
Foley, N. H.; et al. Succinate is an inflammatory signal that induces
IL-1β through HIF-1α. Nature 2013 , 496 (7444),
238-242. DOI: 10.1038/nature11986 From NLM.
(61) Pegoraro, G.; Misteli, T. High-Throughput Imaging for the Discovery
of Cellular Mechanisms of Disease. Trends Genet 2017 ,33 (9), 604-615. DOI: 10.1016/j.tig.2017.06.005 From NLM.
(62) Lin, S.; Schorpp, K.; Rothenaigner, I.; Hadian, K. Image-based
high-content screening in drug discovery. Drug Discov Today2020 , 25 (8), 1348-1361. DOI:
10.1016/j.drudis.2020.06.001 From NLM.
(63) Ferreira, L. G.; Dos Santos, R. N.; Oliva, G.; Andricopulo, A. D.
Molecular docking and structure-based drug design strategies.Molecules 2015 , 20 (7), 13384-13421. DOI:
10.3390/molecules200713384 From NLM.
(64) Batool, M.; Ahmad, B.; Choi, S. A Structure-Based Drug Discovery
Paradigm. Int J Mol Sci 2019 , 20 (11). DOI:
10.3390/ijms20112783 From NLM.
(65) Scheeder, C.; Heigwer, F.; Boutros, M. Machine learning and
image-based profiling in drug discovery. Curr Opin Syst Biol2018 , 10 , 43-52. DOI: 10.1016/j.coisb.2018.05.004 From
NLM.
(66) Bray, M.-A.; Singh, S.; Han, H.; Davis, C. T.; Borgeson, B.;
Hartland, C.; Kost-Alimova, M.; Gustafsdottir, S. M.; Gibson, C. C.;
Carpenter, A. E. Cell Painting, a high-content image-based assay for
morphological profiling using multiplexed fluorescent dyes. Nature
Protocols 2016 , 11 (9), 1757-1774. DOI:
10.1038/nprot.2016.105.
(67) Roukos, V.; Misteli, T. Deep Imaging: the next frontier in
microscopy. Histochem Cell Biol 2014 , 142 (2),
125-131. DOI: 10.1007/s00418-014-1239-5 From NLM.
(68) Roukos, V.; Misteli, T. The biogenesis of chromosome
translocations. Nature Cell Biology 2014 , 16 (4),
293-300. DOI: 10.1038/ncb2941.
(69) Aqdas, M.; Sung, M. H. NF-κB dynamics in the language of immune
cells. Trends Immunol 2023 , 44 (1), 32-43. DOI:
10.1016/j.it.2022.11.005 From NLM.
(70) Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB
system. Wiley Interdiscip Rev Syst Biol Med 2016 ,8 (3), 227-241. DOI: 10.1002/wsbm.1331 From NLM.
(71) Courtois, G.; Gilmore, T. D. Mutations in the NF-kappaB signaling
pathway: implications for human disease. Oncogene 2006 ,25 (51), 6831-6843. DOI: 10.1038/sj.onc.1209939 From NLM.
(72) Bartfeld, S.; Hess, S.; Bauer, B.; Machuy, N.; Ogilvie, L. A.;
Schuchhardt, J.; Meyer, T. F. High-throughput and single-cell imaging of
NF-κB oscillations using monoclonal cell lines. BMC Cell Biology2010 , 11 (1), 21. DOI: 10.1186/1471-2121-11-21.
(73) Nelson, G.; Paraoan, L.; Spiller, D. G.; Wilde, G. J.; Browne, M.
A.; Djali, P. K.; Unitt, J. F.; Sullivan, E.; Floettmann, E.; White, M.
R. Multi-parameter analysis of the kinetics of NF-kappaB signalling and
transcription in single living cells. J Cell Sci 2002 ,115 (Pt 6), 1137-1148. DOI: 10.1242/jcs.115.6.1137 From NLM.
(74) Covert, M. W.; Leung, T. H.; Gaston, J. E.; Baltimore, D. Achieving
stability of lipopolysaccharide-induced NF-kappaB activation.Science 2005 , 309 (5742), 1854-1857. DOI:
10.1126/science.1112304 From NLM.
(75) Oulas, A.; Minadakis, G.; Zachariou, M.; Sokratous, K.; Bourdakou,
M. M.; Spyrou, G. M. Systems Bioinformatics: increasing precision of
computational diagnostics and therapeutics through network-based
approaches. Briefings in Bioinformatics 2017 , 20(3), 806-824. DOI: 10.1093/bib/bbx151 (acccessed 1/3/2023).
(76) Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.;
Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software
environment for integrated models of biomolecular interaction networks.Genome Res 2003 , 13 (11), 2498-2504. DOI:
10.1101/gr.1239303 From NLM.
(77) Sidiropoulos, K.; Viteri, G.; Sevilla, C.; Jupe, S.; Webber, M.;
Orlic-Milacic, M.; Jassal, B.; May, B.; Shamovsky, V.; Duenas, C.; et
al. Reactome enhanced pathway visualization. Bioinformatics2017 , 33 (21), 3461-3467. DOI:
10.1093/bioinformatics/btx441 From NLM.
(78) Chowdhury, S.; Sarkar, R. R. Comparison of human cell signaling
pathway databases–evolution, drawbacks and challenges. Database
(Oxford) 2015 , 2015 . DOI: 10.1093/database/bau126 From
NLM.
(79) Viswanathan, G. A.; Seto, J.; Patil, S.; Nudelman, G.; Sealfon, S.
C. Getting started in biological pathway construction and analysis.PLoS Comput Biol 2008 , 4 (2), e16. DOI:
10.1371/journal.pcbi.0040016 From NLM.
(80) Angermann, B. R.; Klauschen, F.; Garcia, A. D.; Prustel, T.; Zhang,
F.; Germain, R. N.; Meier-Schellersheim, M. Computational modeling of
cellular signaling processes embedded into dynamic spatial contexts.Nat Methods 2012 , 9 (3), 283-289. DOI:
10.1038/nmeth.1861 From NLM.
(81) Manes, N. P.; Angermann, B. R.; Koppenol-Raab, M.; An, E.;
Sjoelund, V. H.; Sun, J.; Ishii, M.; Germain, R. N.;
Meier-Schellersheim, M.; Nita-Lazar, A. Targeted Proteomics-Driven
Computational Modeling of Macrophage S1P Chemosensing. Mol Cell
Proteomics 2015 , 14 (10), 2661-2681. DOI:
10.1074/mcp.M115.048918 From NLM.
(82) Cheng, H. C.; Angermann, B. R.; Zhang, F.; Meier-Schellersheim, M.
NetworkViewer: visualizing biochemical reaction networks with embedded
rendering of molecular interaction rules. BMC Syst Biol2014 , 8 , 70. DOI: 10.1186/1752-0509-8-70 From NLM.
(83) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A.; et al. Highly accurate protein structure prediction with AlphaFold.Nature 2021 , 596 (7873), 583-589. DOI:
10.1038/s41586-021-03819-2 From NLM.
(84) Skolnick, J.; Gao, M.; Zhou, H.; Singh, S. AlphaFold 2: Why It
Works and Its Implications for Understanding the Relationships of
Protein Sequence, Structure, and Function. J Chem Inf Model2021 , 61 (10), 4827-4831. DOI: 10.1021/acs.jcim.1c01114
From NLM.
(85) David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M. J. E. The
AlphaFold Database of Protein Structures: A Biologist’s Guide. J
Mol Biol 2022 , 434 (2), 167336. DOI:
10.1016/j.jmb.2021.167336 From NLM.
(86) Varadi, M.; Velankar, S. The impact of AlphaFold Protein Structure
Database on the fields of life sciences. Proteomics2022 , e2200128. DOI: 10.1002/pmic.202200128 From NLM.
(87) Bryant, P.; Pozzati, G.; Elofsson, A. Improved prediction of
protein-protein interactions using AlphaFold2. Nat Commun2022 , 13 (1), 1265. DOI: 10.1038/s41467-022-28865-w From
NLM.
(88) Wiertsema, S. P.; van Bergenhenegouwen, J.; Garssen, J.; Knippels,
L. M. J. The Interplay between the Gut Microbiome and the Immune System
in the Context of Infectious Diseases throughout Life and the Role of
Nutrition in Optimizing Treatment Strategies. Nutrients2021 , 13 (3). DOI: 10.3390/nu13030886 From NLM.
(89) Manes, N. P.; Shulzhenko, N.; Nuccio, A. G.; Azeem, S.; Morgun, A.;
Nita-Lazar, A. Multi-omics Comparative Analysis Reveals Multiple Layers
of Host Signaling Pathway Regulation by the Gut Microbiota.mSystems 2017 , 2 (5). DOI:
10.1128/mSystems.00107-17 From NLM.
(90) Morgun, A.; Dzutsev, A.; Dong, X.; Greer, R. L.; Sexton, D. J.;
Ravel, J.; Schuster, M.; Hsiao, W.; Matzinger, P.; Shulzhenko, N.
Uncovering effects of antibiotics on the host and microbiota using
transkingdom gene networks. Gut 2015 , 64 (11),
1732-1743. DOI: 10.1136/gutjnl-2014-308820 From NLM.
(91) Thorne, L. G.; Bouhaddou, M.; Reuschl, A. K.; Zuliani-Alvarez, L.;
Polacco, B.; Pelin, A.; Batra, J.; Whelan, M. V. X.; Hosmillo, M.;
Fossati, A.; et al. Evolution of enhanced innate immune evasion by
SARS-CoV-2. Nature 2022 , 602 (7897), 487-495.
DOI: 10.1038/s41586-021-04352-y From NLM.
(92) Sin, W. X.; Li, P.; Yeong, J. P.; Chin, K. C. Activation and
regulation of interferon-β in immune responses. Immunol Res2012 , 53 (1-3), 25-40. DOI: 10.1007/s12026-012-8293-7
From NLM.
(93) Zhou, Z.; Ren, L.; Zhang, L.; Zhong, J.; Xiao, Y.; Jia, Z.; Guo,
L.; Yang, J.; Wang, C.; Jiang, S.; et al. Heightened Innate Immune
Responses in the Respiratory Tract of COVID-19 Patients. Cell Host
Microbe 2020 , 27 (6), 883-890.e882. DOI:
10.1016/j.chom.2020.04.017 From NLM.
(94) Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.;
Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-lymphocyte ratio
predicts critical illness patients with 2019 coronavirus disease in the
early stage. J Transl Med 2020 , 18 (1), 206. DOI:
10.1186/s12967-020-02374-0 From NLM.