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Summary

The main objective of this study is to address the challenge of simultaneously ensur-
ing robustness and convergence performance in model-free inversion-based iterative
learning control. Initially, this research provides a mathematical analysis of the
sources of errors in the iterative process, followed by proposing a design guideline
to enhance both convergence speed and the final value error. Based on the design
guideline, a gain design method associated with the number of iterations is proposed,
resulting in a novel model-free inversion-based iterative learning control algorithm.
Subsequently, a robustness analysis of the proposed algorithm is conducted. Finally,
a comprehensive simulation and numerical comparison of the proposed algorithm
with existing similar algorithms are presented to demonstrate the superior perfor-
mance of the proposed control algorithm.
KEYWORDS:
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1 INTRODUCTION

Learning is very important for human beings. When there is no regular summary, people tend to summarize the pattern through
historical experience to obtain better results in the next execution. Drawing on this idea in the control domain, Iterative Learning
Control (ILC) has been developed1. The basic idea of ILC is to optimize the control signal for the next iteration by using data
from previous control processes to produce a better control signal. This control method is suitable for repetitive processes,
and performance can be gradually improved as the number of iterations increases. ILC has been shown to be effective in a
variety of industrial systems, including linear motors2, cooperative systems3,4, distributed parameter system5, general nonlinear
systems6,7,8,9, and a variety of communication systems10,11,12.
Over time, various ILC algorithms have emerged. Traditional ILC algorithms, such as PID-like ILC, use the input of the

current iteration and tracking error to determine the input of the next iteration, without using the system’s model information.
As a result, these algorithms require a higher number of iterations to converge13. Therefore, traditional ILC algorithms are only
suitable for specific applications where the number of iterations is not strictly limited.
Suppose the system model is estimated from historical data during the iterative process, and the estimated model information

is introduced during the next control signal calculation. In that case, the convergence rate can be significantly increased. With
the help of this idea, the model-free inversion-based iterative control (MFIIC) algorithm, which approximates the inverse model
of the system through historical data, is proposed14. If the control process is a noise-free environment, the estimated inverse
model is accurate at this point, so the error is able to converge to very small values after a few iterations14. In work [15]15, the
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MFIIC and its related algorithms are compared in detail. The MFIIC algorithm has been applied in several scenarios, such as
piezoelectric devices16, in 3D nanopositioning17, or 2D stick-slip positioners18.
Disturbances are inevitable in practical applications. For instance, the operation of a particular system may entail random

disturbances, and the output signal’s measurement may be contaminated by random noise and inaccurate measurements. In the
case ofMFIIC, the presence of output noise in practical applications often leads to less accurate inversion model identification19.
As a result, theMFIIC algorithm’s performance is seriously degraded, and there are large error fluctuations20. In a recent study,21
explored the relationship between the robustness of the MFIIC algorithm and noise, specifically.
The MFIIC algorithm’s performance is known to decrease sharply in the presence of noise in practical applications19,20. To

address this issue, a model-free inversion-based learning iterative control based on nonlinear function gain (NLIIC) has been
proposed21. The NLIIC algorithm adjusts the constant gain of the MFIIC algorithm to a nonlinear function and uses nonlinear
gain for iteration only when the output is larger than a threshold. This approach allows the gain to vary along the time axis based
on the reference signal versus the output, leading to robust performance. However, the NLIIC algorithm’s convergence speed is
greatly reduced in small or noise-free environments, despite enhancing the system’s robustness through the combination of the
MFIIC algorithm and the nonlinear gain. Furthermore, the NLIIC algorithm has high requirements for the reference trajectory,
as the reference trajectory is required to avoid small values.
Inspired by the work [22]22, it is worth noting that in addition to designing gains on the time axis, setting different gains on

the iteration axis is also a strategy that can significantly improve the algorithm’s control performance.
The role of different gain settings in the iteration is distinct. While larger gains can expedite convergence, they do not ensure

accurate error control. As the iterative process gradually reduces the error, different gain settings may be necessary at various
iteration stages to achieve better control. Continuing to use a large gain when the iterative error converges to a relatively small
value for the MFIIC algorithm would over-adjust the input signal for the next iteration, causing the control signal to deteriorate
(error divergence). At this stage, the optimal way to improve the control signal further towards the ideal control signal is to
reduce the gain. This paper proposes an adaptive gain model-free inversion-based iterative learning control algorithm from this
perspective.
This work makes the following contributions:
C1: The error sources of the MFIIC algorithm are derived to analyze how to design the gain to achieve better convergence

with guaranteed robustness. Then the criteria for the adaptive gain setting of the MFIIC algorithm are proposed.
C2: A specific adaptive gain design is proposed to form a newmodel-free inversion-based iterative learning control algorithm.

This algorithm can achieve smaller final value errors and faster convergence while ensuring robustness. In addition, the
proposed algorithm is not strictly limited to the reference trajectory.

C3: A comprehensive simulation analysis and data comparison of the algorithm under different noise conditions and different
reference trajectory tracking difficulties are carried out to illustrate the advantages of this algorithm compared with similar
algorithms.

2 PROBLEM FORMULATION

2.1 Model-free inversion-based learning control algorithms
For the model-free inversion-based iterative learning control algorithm, the following discrete linear time-invariant control
system needs to be considered:

yi (k) = G (z) ui (k) , (1)
where G (z) is the unknown model while having G (

ej!k
)

≠ 0 through !k = 2�k
N

, ∀k ∈ {0,⋯ , N −1}. The input signal, output
signal, and error signal denoted as u(k), y(k), and e(k), respectively.
Assumption 1. The reference trajectory r(k) is a known time-invariant and bounded signal. The DFT transform of the reference
trajectory is R(k).
Assumption 2. In an environment with output noise, the output signal Yi (k) = G

(

ej!k
)

Ui (k) + Di (k), where Di (k) is the
unknown interference, the tracking error is Ei (k) = R (k) − Yi (k).
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Assumption 3. The following forms of output noise are considered in this work:D (k) ∈ N (

0, A2
) ,A is the standard deviation

of the noise signal. The maximum amplitude of the noise is �, namely max (|D (k) |) ≤ �.
Under the conditions of Assumptions 1to 3, the control law of this MFIIC algorithm is as follows:

if Yi (k) ≠ 0 and R (k) ≠ 0, then
Ui+1 (k) = Ui (k) + �i

Ui (k)
Yi (k)

Ei (k) , (2a)
if Yi and Ri do not satisfy the above conditions, then

Ui+1 (k) = Ui (k) , (2b)
where �i = 1.
Remark 1. The MFIIC algorithm, being an inverse model-based approach, exhibits a faster convergence rate with the error con-
verging to a lower level within a few iterations. However, a major drawback of this algorithm is that its accuracy in identifying
the inverse model deteriorates significantly in the presence of noise. Consequently, the correctness of the inverse model identi-
fication cannot be guaranteed, leading to the possibility of error convergence growing with the number of iterations. Therefore,
in the presence of noise, the reliability of this strategy is reduced.
Under the conditions of Assumptions 1to 3, the control law of NLIIC algorithm is the same as MFIIC algorithm except for

the different design method of gain. The gain of NLIIC is follows:

� (|Y |) =

{

1, |Y | > �
1
2

(

1 − cos
(

�
�
|Y |

))

, |Y | ≤ �
, (3)

where � is a constant value, � > 0.
Remark 2. NLIIC solves the problem of occurrence of non-convergence when noise is present in MFIIC. However, if the noise
is very large, the non-convergence still occurs in NLIIC. In addition, due to the introduction of the nonlinear function, the
convergence speed is also much slower than MFIIC. The specific disadvantages of the NLIIC algorithm will be further analyzed
in Section 4.
The NLIIC algorithm has strict requirements and restrictions on the reference trajectory, which will converge only when the

reference trajectory satisfies the following conditions:21

inf � (|Y |) ≜ � > �−1
�
,

sup � (|Y |) ≜ � ≤ 1,
(4a)

|R| ≥ �� + �� �
�−1

, (4b)
where � > 1, � is the learning gain of NLIIC, R is the reference trajectory.
However, the reference trajectory often does not satisfy the strict requirements, especially for some high precision engineering

applications. This work removes the strict restriction on the reference trajectory.

2.2 The requirements of model-free inversion-based iterative learning control
In fact, both the MFIIC algorithm and the NLIIC algorithm have their own drawbacks. Therefore, in a noisy environment,
a model-free inversion-based iterative learning control algorithm is needed that can simultaneously satisfy the following
requirements:
R1: The algorithm maintains the fast convergence speed of the MFIIC algorithm.
R2: The algorithm ensures a high level of robustness.
R3: The algorithm guarantees a very low convergence error.
R4: The algorithm does not have strict requirements on the environment and reference trajectory.
However, the MFIIC algorithm fails to guarantee (R2) and (R3), while the NLIIC algorithm fails to guarantee (R1), (R3), and

(R4).
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3 ANALYSIS AND DESIGN OF ALGORITHM

3.1 Analysis of gain
In the iterative process, the error can be considered to be caused by the difference between the ideal control signal and the actual
control signal, which can be analyzed by considering the difference ΔUi (k) and the relationship between error and the gain
setting to reduce the error from the perspective of reducing ΔUi (k).
Specifically, we have

ΔUi (k) = Ud (k) − Ui (k) , (5)
considering the noise environment in Assumption 3,

ΔUi+1 (k) =Ud (k) −
(

Ui (k) + �i (k)
Ui−1 (k)
Yi−1 (k)

(

Yd (k) − Yi (k)
)

)

=ΔUi (k) − �i (k) Ĝi (k)
−1 (GiΔUi (k) −Di (k)

)

,
(6)

ΔUi+1 (k) = ΔUi (k)
(

1 − �i (k) Ĝi (k)
−1G

)

+ �i (k) Ĝi (k)
−1Di (k) . (7)

Taking the vector norm to both sides of Equation (7),
||ΔUi+1 (k) ||2 = ΔUi (k)

2
(

1 − �i (k) Ĝi (k)
−1G

)2

+ 2ΔUi (k)
(

1 − �i (k) Ĝi (k)
−1G

)

�i (k) Ĝi (k)
−1Di (k) + �i (k)

2 Ĝi (k)
−1
2
Di(k)2.

(8)

Taking the conditional expectation of (8) with respect to output noise di−1,
E
[

||ΔUi+1||2|di−1
]

= ΔUi (k)
2
(

1 − �i (k) Ĝi (k)
−1G

)2
+ �i (k)

2 Ĝi (k)
−1
2
Di (k)

2 . (9)

To make the analysis easier, noting E1 = ΔUi (k)2
(

1 − �i (k) Ĝi (k)
−1G

)2
, E2 = �i (k)2 Ĝi (k)−1

2
Di (k)

2.
From Equation (9), it can be seen that the factors affecting ΔUi + 1 (k) can be controlled by Ĝi (k)−1 and �i (k). In the early

phase of iteration, the error is mainly caused by E1 because ΔUi (k) is relatively large. Therefore, it is necessary to adjust �i(k)
to make it close to 1 and then E is smaller. At the later stage of the iterative process, when ΔUi (k) is small, the main source of
error is E2. Therefore, it is necessary to adjust �i(k) to a smaller value, which can make the error further reduced and make the
adjustment amplitude of the control signal smaller to ensure the robustness.
Based on the above analysis, the following guidelines can be derived for setting the gain of the model-free inversion-based

iterative learning algorithm, which would allow the algorithm to satisfy both (R1)-(R4):
• The gain should be selected in the range 0 < � ≤ 1 throughout the iteration.
• In the early stages of iteration, the gain should be set as close to 1 as possible, which would lead to faster convergence.
• In the later stages of iteration, the gain should be set to a smaller value to ensure the algorithm’s final value error and

robustness.
For the MFIIC algorithm and NLIIC algorithm, Remark 3 and Remark 4 can be derived from Equation (9.

Remark 3. For the MFIIC algorithm, the variations ofUi(k)will cause a large deviation from the inverse model when the output
signal Yi (k) is very small. This will lead to the occurrence of 1 − �i (k) Ĝi (k)−1G > 1 and ΔUi+1 (k) > ΔUi (k). As a result,
this can make MFIIC’s algorithm diverge in noisy environments.
Remark 4. For the NLIIC algorithm, the nonlinear gain Equation 4a can result in excessively small values for �i(k), which can
slow down error reduction in the initial iteration stage. Furthermore, some gains remain relatively large in the later stage of
iteration, which can cause E2 to be too large and result in inadequate final value error reduction.
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3.2 Inversion-based model-free iterative learning control with adaptive gain
In order to adapt the gain to the changing iterative process, this work proposes a form of gain in the form of derivatives of
the number of iterations according to the guidelines in Section 3.1. This gain form is used in the model-free inversion-based
iterative learning control algorithm to obtain model-free inversion-based iterative learning control with adaptive gain, denoted
as AG-MFIIC.
The gain of the AG-MFIIC algorithm is set as follows:

�i (k) =
1
i
, (10)

where i is the number of iterations, i ≥ 1, ∀k ∈ {0,⋯ , N −1}. The complete steps of the AG-MFIIC algorithm can be obtained
as shown in Algorithm 1.

Algorithm 1Model-free inversion-based iterative learning control algorithm with adaptive gain
1: Select u0 (k) = r;
2: Apply the input ui(k) to the system and record the tracking error ei(k) = r(k) − yi(k).
3: Apply DFT to obtain Ui (k) and Ei (k);
4: Determine Ui+1(k) using Equation (2a) and (2b)with �i (k) given by Equation (10).
5: Do IDFT to obtain ui+1 (k);
6: Set i = i + 1, go to Step 2.

3.3 Robustness analysis
Theorem 1. Consider Algorithm 1 with the Assumption 1 to 3 are satisfied. If the gain � is set to Equation (10), the sequence
of control signals {Ui

} generated by Algorithm 1 will result in limi→∞ Ei ∈ re (0) , where re = i��Yi
Yi−Di

.
Proof. In environments with output noise, the output signal

Yi (k) = GUi (k) +Di (k) , (11)

Ei (k) = R (k) − Yi (k) . (12)
Substituting Equation (11) into Equation (12),

Ei+1 = R − GUi+1 −Di+1 = R − G
(

Ui + �i
Ui
Yi
Ei

)

−Di+1

=
(

1 + �i
GUi
Yi

)

Ei +Di −Di+1

=

(
(

1 − �i
)

Yi + �iDi

Yi

)

Ei +Di −Di+1

=

(
(

1 − �i
) (

R − Ei
)

+ �iDi

Yi

)

Ei +Di −Di+1.

(13)

Assume that
�i = |

(

1 − �i
) (

R − Ei
)

+ �iDi

R − Ei
|, (14)

then
|Ei+1| ≤ �i|Ei| + |Di −Di+1| = �i|Ei| + ��, (15)

If |Ei+1| gradually converges, there is |Ei+1| ≤ �i|Ei| + �� ≤ |Ei|. To make �i|Ei| + �� ≤ |Ei|, i.e,
(

1 − �i
)

|Ei| ≥ ��. (16)
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We can substituting Equation (14) into Equation (16),
(

�i −
�iDi

Yi

)

|Ei| ≥ ��, (17)

|Ei| ≥
i��Yi
Yi −Di

, (18)
Therefore, the boundary value of convergence is |Ei| = i��Yi

Yi−Di
, i.e., when the convergence error |Ei| ≥ i��Yi

Yi−Di
, then it will continue

to converge to |Ei| ≤ i��Yi
Yi−Di

. Therefore, the proof of Theorem 1 is completed.

4 SIMULATION COMPARISON

4.1 Simulation Settings
Simulations is performed using a mathematical model extracted from a linear motor. By fitting a polynomial to the frequency
response of the closed-loop system with a sampling rate of 10 KHz, the following fitted fourth-order model is finally obtained14:

G (z) =
−0.02 (z − 1.664) (z − 0.648) (z + 0.036)

(

z2 − 1.804z + 0.835
) (

z2 − 1.599z + 0.764
) . (19)

In order to provide a comprehensive comparison of the proposed algorithms, simulations are performed under various noise
environments and tracking trajectories of different difficulties. The reference trajectory is set as a chirp signal, and the environ-
ments are set with different reference signal frequencies and noise standard deviations. The step size is set to N=2000 and the
sampling period is set to T=0.001. The chirp reference trajectory at 100Hz is shown in Figure 1.

0 0.5 1 1.5 2
Time [s]

-2

-1.5

-1

-0.5

0

P
os

iti
on

 [m
m

]

Figure 1 Reference trajectory (chrip signal) with the frequency of 100 Hz and the amplitude of 1.

In the simulations, consider the output noise described in Assumption 3, the standard deviation A of random noise is set to
0.02, 0.1, 0.5, 1 respectively. Meanwhile, the frequencies of the reference trajectory are set to 100, 1000, 10000Hz respectively.

4.2 Simulation results and comparisons
The root mean square (RMS) error variations of the simulation results are presented in Figure 2 to Figure 4. The simulation
results indicate that the AG-MFIIC and NLIIC algorithms exhibit strong robustness and do not experience significant error
fluctuations, while the robustness of the MFIIC algorithm decreases as noise increases. Additionally, the simulation results were
analyzed based on two aspects: convergence speed and final value error.
Comparison of convergence speed: In all environments, except in Figure 4(a) (10000Hz, A=0.02), the AG-MFIIC algorithm

shows the best convergence speed. The slower convergence in this environment can be attributed to the gradually decreasing
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Figure 2 Comparison of the RMS error of different algorithms in the noisy environment with the reference trajectory of 100Hz

gain that slows down the convergence of the error. This situation can be improved by further enhancing the gain settings, which
will be addressed in future work.
Comparison of the convergence final value error: The AG-MFIIC algorithm performs the best, followed by the NLIIC

algorithm, while the MFIIC algorithm exhibits the worst performance. This can be attributed to the smaller gain setting of the
AG-MFIIC algorithm, which allows for further tuning of the control signal, bringing it closer to the ideal control signal than the
other algorithms.
In order to more clearly compare and analyze the control performances of different iterative processes, this work uses the mean

root mean square (M-RMS) errors at different stages for the comparison of convergence. The M-RMS error is calculated as

ℰp =

i=n+m
∑

i=n
Erms

m
. (20)

The whole iterative process is divided into 3 stages: i = 1 → i = 20, i = 21 → i = 100, and i = 101 → i = 1000. The M-RMS
error of these stages are recorded as ℰ1, ℰ2, ℰ3, where

ℰ1 =

i=20
∑

i=0
Erms

20
,ℰ2 =

i=100
∑

i=21
Erms

80
,ℰ3 =

i=1000
∑

i=101
Erms

900
.

It should be noted that ℰ3 is more important. The smaller the ℰ3, the better the robustness and convergence final value error of
the corresponding algorithm.
The data from the three iterative stages were extracted and calculated, and Tables 1 to 3 were created based on the

corresponding data from Figures 2 to 4.
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Figure 3 Comparison of the RMS error of different algorithms in the noisy environment with the reference trajectory of 1000Hz

• Table 1 presents the simulation results data for the reference trajectory of 100 Hz. The table reveals that the optimal ratio
of AG-MFIIC for this reference trajectory is 10

12
.

• Table 2 displays the simulation results data for the reference trajectory of 1000 Hz. The table indicates that the optimal
ratio of AG-MFIIC for this reference trajectory is 8

12
.

• Table 3 exhibits the simulation results data for the reference trajectory of 10000 Hz. The table shows that the optimal ratio
of AG-MFIIC for this reference trajectory is 7

12
.

Combining Table 1 to Table 3, the M-RMS error of the three stages in 12 different noise environments were analyzed. The
optimal ratio of AG-MFIIC algorithm for the M-RMS error is 25

36
, the optimal ratio of the MFIIC algorithm is 6

36
, and the optimal

ratio of the NLIIC algorithm is 5
36
. Forℰ3, which is the most important index amongℰ1, ℰ2, ℰ3, the optimal ratio of AG-MFIIC

algorithm is 11
12
. In summary, the AG-MFIIC algorithm is superior to the other two algorithms.

4.3 Comparison and analysis of gain in simulation
In order to provide a more detailed explanation of the different roles played by different gains during the iterative process, this
subsection analyzes the gains during the simulation to aid in illustrating the effectiveness of the proposed algorithms.
As depicted in Figure 3, the gain comparison of three algorithms for a complete control process at the 100th iteration under

a specific environment (A=1, 1000Hz) is presented. At this point, the MFIIC algorithm has a gain of �1 = 1, the AG-MFIIC
algorithm has a gain of �2 = 0.01, and the NLIIC algorithm varies within a range due to its nonlinear nature.
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Figure 4Comparison of the RMS error of different algorithms in the noisy environment with the reference trajectory of 10000Hz

Table 1Comparison of theM-RMS error of different algorithms in the noisy environment with the reference trajectory of 100Hz.

A=0.02 A=0.1 A=0.5 A=1
AG MFIIC NLIIC AG MFIIC NLIIC AG MFIIC NLIIC AG MFIIC NLIIC

ℰ1 0.1279 0.1226 0.1913 0.2019 0.2073 0.2499 0.6702 0.6774 0.6267 1.2331 1.3647 1.1405
ℰ2 0.0207 0.0226 0.0226 0.1014 0.1126 0.1108 0.5061 0.6262 0.5543 1.0688 1.4151 1.1370
ℰ3 0.0203 0.0226 0.0224 0.1006 0.1121 0.1112 0.5027 0.6225 0.5515 1.0741 1.4108 1.1948

†AG is the abbreviation for AG-MFIIC.

Based on the analysis in Section 3.1, it is evident that at the 100th iteration, the error is already small. Therefore, the primary
goal should be to minimize the error caused by noise and prevent error fluctuations due to over-adjusting the control signal.
However, as demonstrated in Figure 3, the gain of the NLIIC algorithm remains mostly around 1, which can lead to less precise
control of the signal. Moreover, for the MFIIC algorithm, the gain is consistently set at 1, which may not be appropriate in
situations where the reference trajectory is small, leading to significant deviations in the inverse model calculation. Therefore,
it is more suitable to set the gain at a small value, as shown in the proposed AG-MFIIC algorithm.
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Table 2 Comparison of the M-RMS error of different algorithms in the noisy environment with the reference trajectory of
1000Hz.

A=0.02 A=0.1 A=0.5 A=1
AG MFIIC NLIIC AG MFIIC NLIIC AG MFIIC NLIIC AG MFIIC NLIIC

ℰ1 0.2306 0.2253 0.2941 0.3930 0.3664 0.6379 0.8354 1.1252 0.8413 1.2969 1.2897 1.2397
ℰ2 0.0207 0.0226 0.0226 0.1361 0.1726 0.5223 0.7998 1.1138 0.8214 1.2218 1.4831 1.2311
ℰ3 0.0203 0.0226 0.0224 0.1273 0.1830 0.4749 0.7984 1.1831 0.8422 1.2307 1.4513 1.2289

†AG is the abbreviation for AG-MFIIC.

Table 3 Comparison of the M-RMS error of different algorithms in the noisy environment with the reference trajectory of
10000Hz.

A=0.02 A=0.1 A=0.5 A=1
AG MFIIC NLIIC AG MFIIC NLIIC AG MFIIC NLIIC AG MFIIC NLIIC

ℰ1 0.3351 0.1506 0.6355 0.2893 0.2561 0.6450 0.7054 0.6695 0.8186 1.2025 1.1992 1.1970
ℰ2 0.0330 0.0216 0.2815 0.1033 0.1059 0.3596 0.5306 0.5438 0.7606 1.1026 1.1534 1.1780
ℰ3 0.0207 0.0216 0.0216 0.1013 0.1057 0.1473 0.5264 0.5453 0.7538 1.0957 1.2674 1.1709

†AG is the abbreviation for AG-MFIIC.
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Figure 5 Gain comparison of different algorithms at the 100th iteration in a specific environment (A=1, 1000Hz).

5 CONCLUSION

An important problem in applying the model-free inversion-based iterative learning control algorithm is that the robustness of
the algorithm and the convergence effect cannot be guaranteed simultaneously. In this work, the error sources of the iterative
process are derived and analyzed, and the design guideline of the gain is proposed, followed by a specific gain-setting method.
Subsequently, the robustness analysis of the proposed algorithm is performed. Finally, the proposed algorithm is compared
with existing similar algorithms in a detailed simulation and data comparison, thus illustrating the effectiveness of the proposed
algorithm.
Designing the gain along the iterative axis is an effective way to improve the control effect more in line with the characteristics

of iterative learning iterations. In future work, we will consider designing better gains along the iteration axis to make each
iteration optimal. Also, it is an attractive direction to combine the gain design of the time axis with the iterative axis to carry
out the work.
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