REFERENCES
Andrew, N. R., & Hughes, L. (2004). Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: Predicting the potential impacts of climate change. Ecological Entomology ,29 , 527– 542. https://doi.org/10.1111/j.0307-6946.2004.00639.x
Báldi, A. (2003). Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic and applied Ecology , 4 , 589– 593. https://doi.org/10.1078/1439-1791-00193
Bayliss, S. L. J., Papeş, M., Schweitzer, J. A., & Bailey, J. K. (2022). Aggregate population-level models informed by genetics predict more suitable habitat than traditional species-level model across the range of a widespread riparian tree. PLOS ONE , 17 , e0274892. https://doi.org/10.1371/journal.pone.0274892
Borda-de-Água, L., Barrientos, R., Beja, P., & Pereira, H. M. (2017).Railway ecology . Springer Nature. Cham, Switzerland. 320 pp.
Ceballos, G., & Ehrlich, P. R. (2006). Global mammal distributions, biodiversity hotspots, and conservation. Proceedings of the National Academy of Sciences , 103 , 19374–19379. https://doi.org/10.1073/pnas.0609334103
Chen, Z., & Haynes, K. E. (2017). Impact of high-speed rail on regional economic disparity in China. Journal of Transport Geography ,65 , 80–91. https://doi.org/10.1016/j.jtrangeo.2017.08.003
Chouangthavy, B., Bouttavong, K., Louangphan, J., Phewphanh, P., Sibounnavong, P., Souksavat, S., & Babendreier, D. (2020). Beetle biodiversity in forest habitats in Laos depends on the level of human exploitation. Journal of Insect Conservation , 24 , 833–840. https://doi.org/10.1007/s10841-020-00255-x
Correa‐Carmona, Y., Rougerie, R., Arnal, P., Ballesteros‐Mejia, L., Beck, J., Dolédec, S., & Decaëns, T. (2022). Functional and taxonomic responses of tropical moth communities to deforestation. Insect conservation and diversity , 15 , 236– 247. https://doi.org/10.1111/icad.12549
Danyo, S., Dasgupta, S., & Wheeler, D. (2018). Potential Forest Loss and Biodiversity Risks from Road Improvement in Lao PDR. World Bank Policy Research Working Paper, (8569).
Dolson, S. J., Loewen, E., Jones, K., Jacobs, S. R., Solis, A., Hallwachs, W., Brunke, A. J., Janzen, D. H., & Smith, M. A. (2021). Diversity and phylogenetic community structure across elevation during climate change in a family of hyperdiverse neotropical beetles (Staphylinidae). Ecography , 44 , 740– 752. https://doi.org/10.1111/ecog.05427
Eggleton, P. (2020) The state of the World’s insects. Annual Review of Environment and Resources , 45 , 7–20. https://doi.org/10.1146/annurev-environ-012420- 050035
Essenwanger, O. M. (2001). Classification of climates , in World Survey of Climatology 1C. Elsevier Science, Amsterdam. 102 pp.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology , 37 , 4302– 4315. 10.1002/joc.5086
García-Robledo, C., Kuprewicz, E. K., Baer, C. S., Clifton, E., Hernández, G. G., & Wagner, D. L. (2020). The Erwin equation of biodiversity: From little steps to quantum leaps in the discovery of tropical insect diversity. Biotropica , 52 , 590–597. https://doi.org/10.1111/btp.12811
Gardner, T. A., Hernández, M. I., Barlow, J., & Peres, C. A. (2008). Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles.Journal of applied ecology , 45 , 883– 893. https://doi.org/10.1111/j.1365-2664.2008.01454.x
Gebert, F., Steffan-Dewenter, I., Moretto, P., & Peters, M. K. (2020). Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro.Journal of Biogeography , 47 , 371– 381. https://doi.org/10.1111/jbi.13710
Ghannem, S., Touaylia, S., & Boumaiza, M. (2018). Beetles (Insecta: Coleoptera) as bioindicators of the assessment of environmental pollution. Human and Ecological Risk Assessment: An International Journal , 24 , 456– 464. https://doi.org/10.1080/10807039.2017.1385387
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J. A., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature , 478 , Article 7369. https://doi.org/10.1038/nature10425
Gonzalez, S. C., Soto-Centeno, J. A., & Reed, D. L. (2011). Population distribution models: Species distributions are better modeled using biologically relevant data partitions. BMC Ecology , 11 , 20. https://doi.org/10.1186/1472-6785-11-20
González, E., Salvo, A., & Valladares, G. (2015). Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects. Insect Science , 22 , 129-138. https://doi.org/10.1111/1744-7917.12107
Guo, J., Feng, H., McNie, P., Wang, W., Peng, C., Feng, L., & Yu, Y. (2022). The Effect of the Conversion from Natural Broadleaved Forests into Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) Plantations on Soil Microbial Communities and Nitrogen Functional Genes.Forests , 13 , 158. https://doi.org/10.3390/f13020158
Halffter, G. & Arellano, L. (2002) Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica ,34 , 144–154. https://doi.org/10.1111/j.1744-7429.2002.tb00250.x
Hansen, A. J., DeFries, R. S., & Turner, W. (2012). Land use change and biodiversity. In Land change science (pp. 277-299). Springer, Dordrecht.
Harris, J. E., Rodenhouse, N. L., & Holmes, R. T. (2019). Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biological Conservation , 240 , 108219. https://doi.org/10.1016/j.biocon.2019.108219
Hellmann, J. J., & Sanders, N. J. (2007). Chapter 2: The Extent and Future of Global Insect Diversity. In Biodiversity Under Threat(pp. 33–55). RSC Publishing, Cambridge, UK. https://doi.org/10.1039/9781847557650-00033
Hortal, J., Diniz-Filho, J. A. F., Bini, L. M., Rodríguez, M. Á., Baselga, A., Nogués-Bravo, D., Rangel, T. F., Hawkins, B. A., & Lobo, J. M. (2011). Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters , 14 , 741– 748. https://doi.org/10.1111/j.1461-0248.2011.01634.x
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution7 , 1451–1456. https://doi.org/10.1111/2041-210X.12613
Jin, M., Zwick, A., Ślipiński, A., de Keyzer, R., & Pang, H. (2020). Museomics reveals extensive cryptic diversity of Australian prionine longhorn beetles with implications for their classification and conservation. Systematic Entomology , 45 , 745–770. https://doi.org/10.1111/syen.12424
Jung, J. K., & Lee, J. H. (2016). Forest–farm edge effects on communities of ground beetles (Coleoptera: Carabidae) under different landscape structures. Ecological research , 31 , 799–810. https://doi.org/10.1007/s11284-016-1388-1
Kusakabe, K., & Chanthoumphone, C. (2021). Transition From Subsistence Agriculture to Rubber Plantations in Northern Laos: Analysis of Household Livelihood Strategies by Ethnicity and Gender. SAGE Open , 11 , 1– 13. https://doi.org/10.1177/21582440211011463
Kumar, P., Gale, S. W., Bouamanivong, S., & Fischer, G. A. (2016). Identifying orchid hotspots for biodiversity conservation in Laos: the limestone karst vegetation of Vang Vieng District, Vientiane Province.Journal of Threatened Taxa , 8 , 9397–9417. http://dx.doi.org/10.11609/jott.2826.8.12.9397-9417
Ministry of Natural Resources and the Environment (MoNRE), 2016. National Biodiversity Strategy and Action Plan for Lao PDR 2016-2025. Vientiane Lao PDR.
MAF, & STEA. (2003). Biodiversity Country Report. Vientiane, Lao PDR: Ministry of Agriculture and Forestry (MAF).
Moodley, S., PROCHEŞ, Ş., PERERA, S. J., LUBBE, E., RAMDHANI, S., & LESCHEN, R. A. (2022). Analysis of the diversity and distributional patterns of coleopteran families on a global scale. Zootaxa5138 , 575–583. https://doi.org/10.11646/zootaxa.5138.5.5
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities.Nature , 403 , 853–858. https://doi.org/10.1038/35002501
New, T. R., Sands, D. P., & Taylor, G. S. (2021). Roles of roadside vegetation in insect conservation in Australia. Austral Entomology , 60 , 128–137. https://doi.org/10.1111/aen.12511
Ng, L. S., Campos-Arceiz, A., Sloan, S., Hughes, A. C., Tiang, D. C. F., Li, B. V., & Lechner, A. M. (2020). The scale of biodiversity impacts of the Belt and Road Initiative in Southeast Asia. Biological Conservation , 248 , 108691. https://doi.org/10.1016/j.biocon.2020.108691
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2022). vegan: Community Ecology Package . https://CRAN.R-project.org/package=vegan
Parikh, G., Rawtani, D., & Khatri, N. (2021). Insects as an indicator for environmental pollution. Environmental Claims Journal ,33 , 161–181. https://doi.org/10.1080/10406026.2020.1780698
Phillips, H. R., Newbold, T., & Purvis, A. (2017). Land-use effects on local biodiversity in tropical forests vary between continents. Biodiversity and Conservation, 26 , 2251–2270. https://doi.org/10.1007/s10531-017-1356-2
Rattanawannee, A., Duangpukdee, O., & Poolprasert, P. (2013). Insect diversity during different stages of Asiatic Elephant dung deterioration in Eastern Thailand. Agriculture and Natural Resources47 , 387–397. Retrieved from https://li01.tci-thaijo.org/index.php/anres/article/view/243066
R Core Team (2022) R: A Language and Environment for Statistical Computing. Version 4.2.1. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Sabatelli, S., Ruspantini, P., Cardoli, P., & Audisio, P. (2021). Underestimated diversity: Cryptic species and phylogenetic relationships in the subgenus Cobalius (Coleoptera: Hydraenidae) from marine rockpools. Molecular Phylogenetics and Evolution , 163 , 107243. https://doi.org/10.1016/j.ympev.2021.107243
Sánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation ,232 , 8–27. https://doi.org/10.1016/j.biocon.2019.01.020
Sekerka, L., & Geiser, M. (2016). Sagrinae of Laos (Coleoptera: Chrysomelidae). Entomologica Basiliensia et Collectionis Frey ,35 , 443– 453.
Slade, E. M., Mann, D. J., & Lewis, O. T. (2011). Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biological Conservation , 144 , 166– 174. https://doi.org/10.1016/j.biocon.2010.08.011
Spector, S. (2006). Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): an invertebrate focal taxon for biodiversity research and conservation. The coleopterists bulletin , 60 , 71– 83. https://doi.org/10.1649/0010-065X(2006)60[71:SDBCSS]2.0.CO;2
Smith, H., Lu, J., To, P. X., Mienmany, S., & Soukphaxay, K. (2020). Rubber Plantation Value Chains in Laos: Opportunities and Constraints in Policy, Legality and Wood Processing, report produced for ACIAR project FST/2016/151 - Advancing enhanced wood manufacturing industries in Laos and Australia and Forest Trends.
The World Bank (2017). Lao People’s Democratic Republic: First Programmatic Green Growth Development Policy Operation; The World Bank: Washington, DC, USA.
Thinh, T. H., Tru, H. V., Du, T. T., & Thai, P. H. (2004). The Insect diversity at some national parks and nature reserves of Vietnam. Academia Journal of Biology24 , 1–12. https://doi.org/10.15625/0866-7160/v24n4.6905
Torres, A., Jaeger, J. A., & Alonso, J. C. (2016). Assessing large-scale wildlife responses to human infrastructure development.Proceedings of the National Academy of Sciences of the United States of America , 113 , 8472– 8477. https://doi.org/10.1073/pnas.1522488113
Uribe, S. V., Garcia, N., & Estades, C. F. (2021). Effect of Land Use History on Biodiversity of Pine Plantations. Frontiers in Ecology and Evolution , 9 , 430. https://doi.org/10.3389/fevo.2021.609627
Vanbergen, A. J., Woodcock, B. A., Watt, A. D., & Niemelä, J. (2005). Effect of land‐use heterogeneity on carabid communities at the landscape scale. Ecography , 28 , 3– 16. https://doi.org/10.1111/j.0906-7590.2005.03991.x
Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics With S (4th edition) . Springer-Verlag, New York USA, 498 pp.
Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual review of entomology , 65 , 457– 480. https://doi.org/10.1146/annurev-ento-011019- 025151
Warren‐Thomas, E., Dolman, P. M., & Edwards, D. P. (2015). Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity.Conservation Letters , 8 , 230-241. https://doi.org/10.1111/conl.12170
Zhao, S., Tong, Y., Teng, B., Chen, X., Yang, X., Li, J., & Bai, M. (2022). A species diversity dataset of beetles by three passive acquisition methods in Tei Tong Tsai (Hong Kong). Scientific Data9 , 1– 7. https://doi.org/10.1038/s41597-022-01310-9
Zödl, B., & Wittmann, K. J. (2003). Effects of sampling, preparation and defecation on metal concentrations in selected invertebrates at urban sites. Chemosphere , 52 , 1095–1103. https://doi.org/10.1016/S0045-6535(03)00442-9.