REFERENCES
Andrew, N. R., & Hughes, L. (2004). Species diversity and structure of
phytophagous beetle assemblages along a latitudinal gradient: Predicting
the potential impacts of climate change. Ecological Entomology ,29 , 527– 542.
https://doi.org/10.1111/j.0307-6946.2004.00639.x
Báldi, A. (2003). Using higher taxa as surrogates of species richness: a
study based on 3700 Coleoptera, Diptera, and Acari species in
Central-Hungarian reserves. Basic and applied Ecology , 4 ,
589– 593. https://doi.org/10.1078/1439-1791-00193
Bayliss, S. L. J., Papeş, M., Schweitzer, J. A., & Bailey, J. K.
(2022). Aggregate population-level models informed by genetics predict
more suitable habitat than traditional species-level model across the
range of a widespread riparian tree. PLOS ONE , 17 ,
e0274892. https://doi.org/10.1371/journal.pone.0274892
Borda-de-Água, L., Barrientos, R., Beja, P., & Pereira, H. M. (2017).Railway ecology . Springer Nature. Cham, Switzerland. 320 pp.
Ceballos, G., & Ehrlich, P. R. (2006). Global mammal distributions,
biodiversity hotspots, and conservation. Proceedings of the
National Academy of Sciences , 103 , 19374–19379.
https://doi.org/10.1073/pnas.0609334103
Chen, Z., & Haynes, K. E. (2017). Impact of high-speed rail on regional
economic disparity in China. Journal of Transport Geography ,65 , 80–91. https://doi.org/10.1016/j.jtrangeo.2017.08.003
Chouangthavy, B., Bouttavong, K., Louangphan, J., Phewphanh, P.,
Sibounnavong, P., Souksavat, S., & Babendreier, D. (2020). Beetle
biodiversity in forest habitats in Laos depends on the level of human
exploitation. Journal of Insect Conservation , 24 ,
833–840. https://doi.org/10.1007/s10841-020-00255-x
Correa‐Carmona, Y., Rougerie, R., Arnal, P., Ballesteros‐Mejia, L.,
Beck, J., Dolédec, S., & Decaëns, T. (2022). Functional and taxonomic
responses of tropical moth communities to deforestation. Insect
conservation and diversity , 15 , 236– 247.
https://doi.org/10.1111/icad.12549
Danyo, S., Dasgupta, S., & Wheeler, D. (2018). Potential Forest Loss
and Biodiversity Risks from Road Improvement in Lao PDR. World Bank
Policy Research Working Paper, (8569).
Dolson, S. J., Loewen, E., Jones, K., Jacobs, S. R., Solis, A.,
Hallwachs, W., Brunke, A. J., Janzen, D. H., & Smith, M. A. (2021).
Diversity and phylogenetic community structure across elevation during
climate change in a family of hyperdiverse neotropical beetles
(Staphylinidae). Ecography , 44 , 740– 752.
https://doi.org/10.1111/ecog.05427
Eggleton, P. (2020) The state of the World’s insects. Annual
Review of Environment and Resources , 45 , 7–20.
https://doi.org/10.1146/annurev-environ-012420-
050035
Essenwanger, O. M. (2001). Classification of climates , in World
Survey of Climatology 1C. Elsevier Science, Amsterdam. 102 pp.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology , 37 , 4302– 4315. 10.1002/joc.5086
García-Robledo, C., Kuprewicz, E. K., Baer, C. S., Clifton, E.,
Hernández, G. G., & Wagner, D. L. (2020). The Erwin equation of
biodiversity: From little steps to quantum leaps in the discovery of
tropical insect diversity. Biotropica , 52 , 590–597.
https://doi.org/10.1111/btp.12811
Gardner, T. A., Hernández, M. I., Barlow, J., & Peres, C. A. (2008).
Understanding the biodiversity consequences of habitat change: the value
of secondary and plantation forests for neotropical dung beetles.Journal of applied ecology , 45 , 883– 893.
https://doi.org/10.1111/j.1365-2664.2008.01454.x
Gebert, F., Steffan-Dewenter, I., Moretto, P., & Peters, M. K. (2020).
Climate rather than dung resources predict dung beetle abundance and
diversity along elevational and land use gradients on Mt. Kilimanjaro.Journal of Biogeography , 47 , 371– 381.
https://doi.org/10.1111/jbi.13710
Ghannem, S., Touaylia, S., & Boumaiza, M. (2018). Beetles (Insecta:
Coleoptera) as bioindicators of the assessment of environmental
pollution. Human and Ecological Risk Assessment: An
International Journal , 24 , 456– 464.
https://doi.org/10.1080/10807039.2017.1385387
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A.,
Barlow, J., Peres, C. A., Bradshaw, C. J. A., Laurance, W. F., Lovejoy,
T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for
sustaining tropical biodiversity. Nature , 478 , Article
7369. https://doi.org/10.1038/nature10425
Gonzalez, S. C., Soto-Centeno, J. A., & Reed, D. L. (2011). Population
distribution models: Species distributions are better modeled using
biologically relevant data partitions. BMC Ecology , 11 ,
20. https://doi.org/10.1186/1472-6785-11-20
González, E., Salvo, A., & Valladares, G. (2015). Arthropods on plants
in a fragmented Neotropical dry forest: a functional analysis of area
loss and edge effects. Insect Science , 22 , 129-138.
https://doi.org/10.1111/1744-7917.12107
Guo, J., Feng, H., McNie, P., Wang, W., Peng, C., Feng, L., & Yu, Y.
(2022). The Effect of the Conversion from Natural Broadleaved Forests
into Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) Plantations on
Soil Microbial Communities and Nitrogen Functional Genes.Forests , 13 , 158. https://doi.org/10.3390/f13020158
Halffter, G. & Arellano, L. (2002) Response of dung beetle diversity to
human-induced changes in a tropical landscape. Biotropica ,34 , 144–154.
https://doi.org/10.1111/j.1744-7429.2002.tb00250.x
Hansen, A. J., DeFries, R. S., & Turner, W. (2012). Land use change and
biodiversity. In Land change science (pp. 277-299). Springer,
Dordrecht.
Harris, J. E., Rodenhouse, N. L., & Holmes, R. T. (2019). Decline in
beetle abundance and diversity in an intact temperate forest linked to
climate warming. Biological Conservation , 240 , 108219.
https://doi.org/10.1016/j.biocon.2019.108219
Hellmann, J. J., & Sanders, N. J. (2007). Chapter 2: The Extent and
Future of Global Insect Diversity. In Biodiversity Under Threat(pp. 33–55). RSC Publishing, Cambridge, UK.
https://doi.org/10.1039/9781847557650-00033
Hortal, J., Diniz-Filho, J. A. F., Bini, L. M., Rodríguez, M. Á.,
Baselga, A., Nogués-Bravo, D., Rangel, T. F., Hawkins, B. A., & Lobo,
J. M. (2011). Ice age climate, evolutionary constraints and diversity
patterns of European dung beetles. Ecology Letters , 14 ,
741– 748. https://doi.org/10.1111/j.1461-0248.2011.01634.x
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for
rarefaction and extrapolation of species diversity (Hill
numbers). Methods in Ecology and Evolution , 7 , 1451–1456.
https://doi.org/10.1111/2041-210X.12613
Jin, M., Zwick, A., Ślipiński, A., de Keyzer, R., & Pang, H. (2020).
Museomics reveals extensive cryptic diversity of Australian prionine
longhorn beetles with implications for their classification and
conservation. Systematic Entomology , 45 , 745–770.
https://doi.org/10.1111/syen.12424
Jung, J. K., & Lee, J. H. (2016). Forest–farm edge effects on
communities of ground beetles (Coleoptera: Carabidae) under different
landscape structures. Ecological research , 31 , 799–810.
https://doi.org/10.1007/s11284-016-1388-1
Kusakabe, K., & Chanthoumphone, C. (2021). Transition From Subsistence
Agriculture to Rubber Plantations in Northern Laos: Analysis of
Household Livelihood Strategies by Ethnicity and Gender. SAGE
Open , 11 , 1– 13.
https://doi.org/10.1177/21582440211011463
Kumar, P., Gale, S. W., Bouamanivong, S., & Fischer, G. A. (2016).
Identifying orchid hotspots for biodiversity conservation in Laos: the
limestone karst vegetation of Vang Vieng District, Vientiane Province.Journal of Threatened Taxa , 8 , 9397–9417.
http://dx.doi.org/10.11609/jott.2826.8.12.9397-9417
Ministry of Natural Resources and the Environment (MoNRE), 2016.
National Biodiversity Strategy and Action Plan for Lao PDR 2016-2025.
Vientiane Lao PDR.
MAF, & STEA. (2003). Biodiversity Country Report. Vientiane, Lao PDR:
Ministry of Agriculture and Forestry (MAF).
Moodley, S., PROCHEŞ, Ş., PERERA, S. J., LUBBE, E., RAMDHANI, S., &
LESCHEN, R. A. (2022). Analysis of the diversity and distributional
patterns of coleopteran families on a global
scale. Zootaxa , 5138 , 575–583.
https://doi.org/10.11646/zootaxa.5138.5.5
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., &
Kent, J. (2000). Biodiversity hotspots for conservation priorities.Nature , 403 , 853–858.
https://doi.org/10.1038/35002501
New, T. R., Sands, D. P., & Taylor, G. S. (2021). Roles of roadside
vegetation in insect conservation in Australia. Austral
Entomology , 60 , 128–137.
https://doi.org/10.1111/aen.12511
Ng, L. S., Campos-Arceiz, A., Sloan, S., Hughes, A. C., Tiang, D. C. F.,
Li, B. V., & Lechner, A. M. (2020). The scale of biodiversity impacts
of the Belt and Road Initiative in Southeast Asia. Biological
Conservation , 248 , 108691.
https://doi.org/10.1016/j.biocon.2020.108691
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R.,
O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., &
Wagner, H. (2022). vegan: Community Ecology Package .
https://CRAN.R-project.org/package=vegan
Parikh, G., Rawtani, D., & Khatri, N. (2021). Insects as an indicator
for environmental pollution. Environmental Claims Journal ,33 , 161–181. https://doi.org/10.1080/10406026.2020.1780698
Phillips, H. R., Newbold, T., & Purvis, A. (2017). Land-use effects on
local biodiversity in tropical forests vary between continents.
Biodiversity and Conservation, 26 , 2251–2270.
https://doi.org/10.1007/s10531-017-1356-2
Rattanawannee, A., Duangpukdee, O., & Poolprasert, P. (2013). Insect
diversity during different stages of Asiatic Elephant dung deterioration
in Eastern Thailand. Agriculture and Natural
Resources , 47 , 387–397. Retrieved from
https://li01.tci-thaijo.org/index.php/anres/article/view/243066
R Core Team (2022) R: A Language and Environment for Statistical
Computing. Version 4.2.1. Vienna, Austria: R Foundation for Statistical
Computing. https://www.R-project.org/
Sabatelli, S., Ruspantini, P., Cardoli, P., & Audisio, P. (2021).
Underestimated diversity: Cryptic species and phylogenetic relationships
in the subgenus Cobalius (Coleoptera: Hydraenidae) from marine
rockpools. Molecular Phylogenetics and Evolution , 163 ,
107243. https://doi.org/10.1016/j.ympev.2021.107243
Sánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the
entomofauna: A review of its drivers. Biological Conservation ,232 , 8–27. https://doi.org/10.1016/j.biocon.2019.01.020
Sekerka, L., & Geiser, M. (2016). Sagrinae of Laos (Coleoptera:
Chrysomelidae). Entomologica Basiliensia et Collectionis Frey ,35 , 443– 453.
Slade, E. M., Mann, D. J., & Lewis, O. T. (2011). Biodiversity and
ecosystem function of tropical forest dung beetles under contrasting
logging regimes. Biological Conservation , 144 , 166– 174.
https://doi.org/10.1016/j.biocon.2010.08.011
Spector, S. (2006). Scarabaeine dung beetles (Coleoptera: Scarabaeidae:
Scarabaeinae): an invertebrate focal taxon for biodiversity research and
conservation. The coleopterists bulletin , 60 , 71– 83.
https://doi.org/10.1649/0010-065X(2006)60[71:SDBCSS]2.0.CO;2
Smith, H., Lu, J., To, P. X., Mienmany, S., & Soukphaxay, K. (2020).
Rubber Plantation Value Chains in Laos: Opportunities and Constraints in
Policy, Legality and Wood Processing, report produced for ACIAR project
FST/2016/151 - Advancing enhanced wood manufacturing industries in Laos
and Australia and Forest Trends.
The World Bank (2017). Lao People’s Democratic Republic: First
Programmatic Green Growth Development Policy Operation; The World Bank:
Washington, DC, USA.
Thinh, T. H., Tru, H. V., Du, T. T., & Thai, P. H. (2004). The Insect
diversity at some national parks and nature reserves of
Vietnam. Academia Journal of Biology , 24 , 1–12.
https://doi.org/10.15625/0866-7160/v24n4.6905
Torres, A., Jaeger, J. A., & Alonso, J. C. (2016). Assessing
large-scale wildlife responses to human infrastructure development.Proceedings of the National Academy of Sciences of the United
States of America , 113 , 8472– 8477.
https://doi.org/10.1073/pnas.1522488113
Uribe, S. V., Garcia, N., & Estades, C. F. (2021). Effect of Land Use
History on Biodiversity of Pine Plantations. Frontiers in Ecology
and Evolution , 9 , 430.
https://doi.org/10.3389/fevo.2021.609627
Vanbergen, A. J., Woodcock, B. A., Watt, A. D., & Niemelä, J. (2005).
Effect of land‐use heterogeneity on carabid communities at the landscape
scale. Ecography , 28 , 3– 16.
https://doi.org/10.1111/j.0906-7590.2005.03991.x
Venables, W. N., & Ripley, B. D. (2002). Modern Applied
Statistics With S (4th edition) . Springer-Verlag, New York USA,
498 pp.
Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual
review of entomology , 65 , 457– 480.
https://doi.org/10.1146/annurev-ento-011019- 025151
Warren‐Thomas, E., Dolman, P. M., & Edwards, D. P. (2015). Increasing
demand for natural rubber necessitates a robust sustainability
initiative to mitigate impacts on tropical biodiversity.Conservation Letters , 8 , 230-241.
https://doi.org/10.1111/conl.12170
Zhao, S., Tong, Y., Teng, B., Chen, X., Yang, X., Li, J., & Bai, M.
(2022). A species diversity dataset of beetles by three passive
acquisition methods in Tei Tong Tsai (Hong Kong). Scientific
Data , 9 , 1– 7. https://doi.org/10.1038/s41597-022-01310-9
Zödl, B., & Wittmann, K. J. (2003). Effects of sampling, preparation
and defecation on metal concentrations in selected invertebrates at
urban sites. Chemosphere , 52 , 1095–1103.
https://doi.org/10.1016/S0045-6535(03)00442-9.