References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., et al. (2016) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467 [cs] . http://arxiv.org/abs/1603.04467.
Agarap, A.F. (2019) Deep Learning using Rectified Linear Units (ReLU).arXiv:1803.08375 [cs, stat] . http://arxiv.org/abs/1803.08375.
Albawi, S., Mohammed, T.A. & Al-Zawi, S. (2017) Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET) . August 2017 Antalya, IEEE. pp. 1–6. doi:10.1109/ICEngTechnol.2017.8308186.
Allen, W.L., Cuthill, I.C., Scott-Samuel, N.E. & Baddeley, R. (2011) Why the leopard got its spots: relating pattern development to ecology in felids. Proceedings of the Royal Society B: Biological Sciences . 278 (1710), 1373–1380. doi:10.1098/rspb.2010.1734.
Araujo, G., Snow, S., So, C.L., Labaja, J., Murray, R., Colucci, A. & Ponzo, A. (2017) Population structure, residency patterns and movements of whale sharks in Southern Leyte, Philippines: results from dedicated image-ID and citizen science: Whale sharks of Southern Leyte.Aquatic Conservation: Marine and Freshwater Ecosystems . 27 (1), 237–252. doi:10.1002/aqc.2636.
Armstrong, A.O., Armstrong, A.J., Bennett, M.B., Richardson, A.J., Townsend, K.A. & Dudgeon, C.L. (2019) Photographic identification and citizen science combine to reveal long distance movements of individual reef manta rays Mobula alfredi along Australia’s east coast.Marine Biodiversity Records . 12 (1), 14. doi:10.1186/s41200-019-0173-6.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting Linear Mixed-Effects Models Using lme4 . Journal of Statistical Software . 67 (1). doi:10.18637/jss.v067.i01.
Bay, H., Ess, A., Tuytelaars, T. & Van Gool, L. (2008) Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding . 110 (3), 346–359. doi:10.1016/j.cviu.2007.09.014.
Beery, S., Morris, D. & Yang, S. (2019) Efficient Pipeline for Camera Trap Image Review. arXiv:1907.06772 [cs] . http://arxiv.org/abs/1907.06772.
Bolger, D., Morrison, T., Vance, B., Lee, D. & Farid, H. (2012) A computer-assisted system for photographic mark–recapture analysis.Methods in Ecology and Evolution . 3, 813–822. doi:10.1111/j.2041-210X.2012.00212.x.
Bolger, D.T. (2012) Wild.ID . https://faculty-directory.dartmouth.edu//douglas-thomas-bolger.
Burgstaller, S., Gollmann, G. & Landler, L. (2021) The Green Toad example: a comparison of pattern recognition software.North-Western Journal of Zoology . 17 ((1)), 96–99.
Caughlan, L. (2001) Cost considerations for long-term ecological monitoring. Ecological Indicators . 1 (2), 123–134. doi:10.1016/S1470-160X(01)00015-2.
Chehrsimin, T., Eerola, T., Koivuniemi, M., Auttila, M., Levänen, R., Niemi, M., Kunnasranta, M. & Kälviäinen, H. (2018) Automatic individual identification of Saimaa ringed seals. IET Computer Vision . 12 (2), 146–152. doi:10.1049/iet-cvi.2017.0082.
Crall, J.P., Stewart, C.V., Berger-Wolf, T.Y., Rubenstein, D.I. & Sundaresan, S.R. (2013) HotSpotter — Patterned species instance recognition. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV) . January 2013 pp. 230–237. doi:10.1109/WACV.2013.6475023.
Cross, M.D., Mayer, J., Breymaier, T., Chiotti, J.A. & Bekker, K. (2021) Estimating Population Size of a Threatened Turtle Using Community and Citizen Science. Chelonian Conservation and Biology . 20 (1). doi:10.2744/CCB-1384.1.
Davies, T.K., Stevens, G., Meekan, M.G., Struve, J. & Rowcliffe, J.M. (2013) Can citizen science monitor whale-shark aggregations? Investigating bias in mark–recapture modelling using identification photographic sourced from the public. Wildlife Research . 39 (8), 696–704. doi:10.1071/WR12092.
Daniels, L., Rabaiotti, D., Woodroffe, R. (2022): Correlates of Coat Colour in the African wild
dog. University College London
Dunbar, S.G., Anger, E.C., Parham, J.R., Kingen, C., Wright, M.K., Hayes, C.T., Safi, S., Holmberg, J., Salinas, L. & Baumbach, D.S. (2021) HotSpotter: Using a computer-driven image-id application to identify sea turtles. Journal of Experimental Marine Biology and Ecology . 535, 151490. doi:10.1016/j.jembe.2020.151490.
Durant, S., Mitchell, N., Ipavec, A. & Groom, R. (2014) Acinonyx jubatus: IUCN Red List of Threatened Species 2015 . doi:10.2305/IUCN.UK.2015-4.RLTS.T219A50649567.en.
Gatis, D. (2020) Rembg . https://github.com/danielgatis/rembg.
Glorot, X., Bordes, A. & Bengio, Y. (2011) Deep Sparse Rectifier Neural Networks. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics . 15:315-323. https://proceedings.mlr.press/v15/glorot11a.html.
Halloran, K.M., Murdoch, J.D. & Becker, M.S. (2015) Applying computer-aided image-identification to messy datasets: a case study of Thornicroft’s giraffe (Giraffa camelopardalis thornicrofti).African Journal of Ecology . 53 (2), 147–155. doi:https://doi.org/10.1111/aje.12145.
Horswill, C., Humphreys, E.M. & Robinson, R.A. (2018) When is enough … enough? Effective sampling protocols for estimating the survival rates of seabirds with mark-recapture techniques. Bird Study . 65 (3), 290–298. doi:10.1080/00063657.2018.1516191.
Jenkins, E., Silva-Opps, M., Opps, S.B. & Perrin, M.R. (2015) Home Range and Habitat Selection of a Reintroduced African Wild Dog (Lycaon pictus ) Pack in a Small South African Game Reserve.African Journal of Wildlife Research . 45 (2), 233–246. doi:10.3957/056.045.0233.
Karanth, K.U. & Nichols, J.D. (2011) Estimation of Demographic Parameters in a Tiger Population from Long-term Camera Trap Data. In: A.F. O’Connell, J.D. Nichols, & K.U. Karanth (eds.). Camera Traps in Animal Ecology . Tokyo, Springer Japan. pp. 145–161. doi:10.1007/978-4-431-99495-4_9.
Kelly, M.J., Laurenson, M.K., FitzGibbon, C.D., Collins, D.A., Durant, S.M., Frame, G.W., Bertram, B.C. & Caro, T.M. (1998) Demography of the Serengeti cheetah ( Acinonyx jubatus ) population: the first 25 years. Journal of Zoology . 244 (4), 473–488. doi:10.1111/j.1469-7998.1998.tb00053.x.
Khan, K., Ali, S. & Mohammed, R.S. (2017) Colours and Spots: Do they Tell the Story of an Ocelot’s Origin? Living World, Journal of the Trinidad and Tobago Field Naturalists’ Club . 38–42.
Lowe, D.G. (2004) Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision . 60 (2), 91–110. doi:10.1023/B:VISI.0000029664.99615.94.
Maddock, A.H. & Mills, M.G.L. (1994) Population characteristics of African wild dogs Lycaon pictus in the Eastern transvaal lowveld, South Africa, as revealed through photographic records. Biological Conservation . 67 (1), 57–62. doi:10.1016/0006-3207(94)90009-4.
Marnewick, K., Ferreira, S.M., Grange, S., Watermeyer, J., Maputla, N. & Davies-Mostert, H.T. (2014) Evaluating the Status of and African Wild Dogs Lycaon pictus and Cheetahs Acinonyx jubatus through Tourist-based photographic Surveys in the Kruger National Park R.M. Brigham (ed.).PLoS ONE . 9 (1), e86265. doi:10.1371/journal.pone.0086265.
Matthé, M., Sannolo, M., Winiarski, K., Spitzen - van der Sluijs, A., Goedbloed, D., Steinfartz, S. & Stachow, U. (2017) Comparison of image-matching algorithms commonly used for photographic capture-recapture studies. Ecology and Evolution . 7 (15), 5861–5872. doi:10.1002/ece3.3140.
McCann, S. & Lowe, D.G. (2012) Local Naive Bayes Nearest Neighbor for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition . June 2012 Providence, RI, IEEE. pp. 3650–3656. doi:10.1109/CVPR.2012.6248111.
McIntosh, A., Woodroffe, R. & Rabaiotti, D. (2016) Coat colour with temperature in the African wild dog, Lycaon pictus . University College London.
Miguel, A.C., Bayrakçismith, R., Ferre, E., Bales-Heisterkamp, C., Beard, J., Dioso, M., Grob, D., Hartley, R., Nguyen, T. & Weller, N. (2019) Identifying individual snow leopards from camera trap images. In: K. Mao & X. Jiang (eds.). Tenth International Conference on Signal Processing Systems . 17 April 2019 Singapore, Singapore, SPIE. p. 36. doi:10.1117/12.2521856.
Morrison, T.A., Keinath, D., Estes-Zumpf, W., Crall, J.P. & Stewart, C.V. (2016) Individual Identification of the Endangered Wyoming ToadAnaxyrus baxteri and Implications for Monitoring Species Recovery. Journal of Herpetology . 50 (1), 44–49. doi:10.1670/14-155.
Nipko, R.B., Holcombe, B.E. & Kelly, M.J. (2020) Identifying Individual Jaguars and Ocelots via Pattern-Recognition Software: Comparing HotSpotter and Wild-ID. Wildlife Society Bulletin . 44 (2), 424–433. doi:https://doi.org/10.1002/wsb.1086.
O’Malley, T., Long, J., Chollet, F., Haifeng, J. & Invernizzi, L. (2019) Keras Tuner . https://github.com/keras-team/keras-tuner.
Óscar, M., Pep-Luis, M., Sergio, M., José-Manuel, I., Andreu, R., Antonio, R. & Giacomo, T. (2015) APHIS: A new software for image-matching in ecological studies. Ecological Informatics . 7.
O’Shea, K. & Nash, R. (2015) An Introduction to Convolutional Neural Networks. arXiv:1511.08458 [cs] . http://arxiv.org/abs/1511.08458.
Park, H., Lim, A., Choi, T.-Y., Baek, S.-Y., Song, E.-G. & Park, Y.C. (2019) Where to spot: individual identification of leopard cats (Prionailurus bengalensis euptilurus) in South Korea. Journal of Ecology and Environment . 43 (1), 39. doi:10.1186/s41610-019-0138-z.
Pierce, S.J. & Norman, B. (2016) Rhincodon typus: The IUCN Red List of Threatened Species 2016 . doi:10.2305/IUCN.UK.2016-1.RLTS.T19488A2365291.en.
R Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria., R Foundation for Statistical Computing. https://www.R-project.org/.
Randić, S., Connor, R.C., Sherwin, W.B. & Krützen, M. (2012) A novel mammalian social structure in Indo-Pacific bottlenose dolphins (Tursiops sp.): complex male alliances in an open social network.Proceedings of the Royal Society B: Biological Sciences . 279 (1740), 3083–3090. doi:10.1098/rspb.2012.0264.
Reijns (2014) I3S Pattern . https://reijns.com/i3s/i3s-pattern/.
Rotger, A. (2019) Image-identification of horseshoe whip snakes (Hemorrhois hippocrepis, Linnaeus, 1758) by a semi-automatic procedure applied to wildlife management. Herpetological Journal . 29 (4), 304–307. doi:10.33256/hj29.4.304307.
Sannolo, M., Gatti, F., Mangiacotti, M., Scali, S. & Sacchi, R. (2016) Image-identification in amphibian studies: a test of I3S Pattern.Acta Herpetologica . 63-68 Pages. doi:10.13128/ACTA_HERPETOL-17198.
Seber, G.A.F. (1965) A Note on the Multiple-Recapture Census.Biometrika . 52 (1/2), 249–259. doi:10.2307/2333827.
Suriyamongkol, T. & Mali, I. (2018) Feasibility of Using Computer-Assisted Software for Recognizing Individual Rio Grande Cooter ( Pseudemys gorzugi ). Copeia . 106 (4), 646–651. doi:10.1643/CH-18-101.
Tieleman, T. & Hinton, E. (2012) Lecture 6.5 - rmsprop, COURSERA: Neural networks for machine learning .
Urbanek, S. (2021) Package ‘jpeg’ . http://www.rforge.net/jpeg/.
Wearn, O.R. & Glover-Kapfer, P. (2019) Snap happy: camera traps are an effective sampling tool when compared with alternative methods.Royal Society Open Science . 6 (3), 181748. doi:10.1098/rsos.181748.
White, G. C., & Burnham, K. P. (2009). Program MARK: survival estimation from populations
of marked animals. 3657. doi: 10.1080/00063659909477239
Woodroffe, R., Rabaiotti, D., Ngatia, D.K., Smallwood, T.R.C., Strebel, S. & O’Neill, H.M.K. (2019) Dispersal behaviour of African wild dogs in Kenya. African Journal of Ecology . 58 (1), 46–57. doi:10.1111/aje.12689.
Woodroffe, R. & Sillero-Zubiri, C. (2020) Lycaon pictus: The IUCN Red List of Threatened Species 2020 (amended version of the 2012 assessment). Available from: doi:10.2305/IUCN.UK.2020-1.RLTS.T12436A166502262.en [Accessed: 16 November 2020].
Table 1. A selection of studies that tested the identification accuracy achieved by different image-matching software packages.