References:
Angst, G., Mueller, K. E., Nierop, K. G. J., & Simpson, M. J. (2021).
Plant- or microbial-derived? A review on the molecular composition of
stabilized soil organic matter. Soil Biology and Biochemistry ,156 , 108189. https://doi.org/10.1016/j.soilbio.2021.108189
Averill, C., & Waring, B. (2018). Nitrogen limitation of decomposition
and decay: How can it occur? Global Change Biology , 24 (4),
1417–1427. https://doi.org/10.1111/gcb.13980
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M.
(2006). The Role of Root Exudates in Rhizosphere Interactions with
Plants and Other Organisms. Annual Review of Plant Biology ,57 (1), 233–266.
https://doi.org/10.1146/annurev.arplant.57.032905.105159
Beale, C. V., & Long, S. P. (1997). Seasonal dynamics of nutrient
accumulation and partitioning in the perennial C4-grasses Miscanthus ×
giganteus and Spartina cynosuroides. Biomass and Bioenergy ,12 (6), 419–428. https://doi.org/10.1016/S0961-9534(97)00016-0
Benbi, D. K., Boparai, A. K., & Brar, K. (2014). Decomposition of
particulate organic matter is more sensitive to temperature than the
mineral associated organic matter. Soil Biology and Biochemistry ,70 , 183–192. https://doi.org/10.1016/j.soilbio.2013.12.032
Bronick, C. J., & Lal, R. (2005). Soil structure and management: A
review. Geoderma , 124 (1), 3–22.
https://doi.org/10.1016/j.geoderma.2004.03.005
Brzostek, E. R., & Finzi, A. C. (2011). Substrate supply, fine roots,
and temperature control proteolytic enzyme activity in temperate forest
soils. Ecology , 92 (4), 892–902.
Brzostek, E. R., Fisher, J. B., & Phillips, R. P. (2014). Modeling the
carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and
multipath resistance uptake improve predictions of retranslocation.Journal of Geophysical Research: Biogeosciences , 119 (8),
1684–1697. https://doi.org/10.1002/2014JG002660
Cadoux, S., Riche, A. B., Yates, N. E., & Machet, J.-M. (2012).
Nutrient requirements of Miscanthus x giganteus: Conclusions from a
review of published studies. Biomass and Bioenergy , 38 ,
14–22. https://doi.org/10.1016/j.biombioe.2011.01.015
Chen, W., Koide, R. T., Adams, T. S., DeForest, J. L., Cheng, L., &
Eissenstat, D. M. (2016). Root morphology and mycorrhizal symbioses
together shape nutrient foraging strategies of temperate trees.Proceedings of the National Academy of Sciences , 113 (31),
8741–8746. https://doi.org/10.1073/pnas.1601006113
Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S.,
McNickle, G. G., Brzostek, E., & Jastrow, J. D. (2014). Synthesis and
modeling perspectives of rhizosphere priming. New Phytologist ,201 (1), 31–44. https://doi.org/10.1111/nph.12440
Comas, L. H., Callahan, H. S., & Midford, P. E. (2014). Patterns in
root traits of woody species hosting arbuscular and ectomycorrhizas:
Implications for the evolution of belowground strategies. Ecology
and Evolution , 4 (15), 2979–2990.
https://doi.org/10.1002/ece3.1147
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E.
(2019). Soil carbon storage informed by particulate and
mineral-associated organic matter. Nature Geoscience ,12 (12), Article 12. https://doi.org/10.1038/s41561-019-0484-6
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E.
(2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework
integrates plant litter decomposition with soil organic matter
stabilization: Do labile plant inputs form stable soil organic matter?Global Change Biology , 19 (4), 988–995.
https://doi.org/10.1111/gcb.12113
Craig, M. E., Geyer, K. M., Beidler, K. V., Brzostek, E. R., Frey, S.
D., Stuart Grandy, A., Liang, C., & Phillips, R. P. (2022).
Fast-decaying plant litter enhances soil carbon in temperate forests but
not through microbial physiological traits. Nature
Communications , 13 (1), Article 1.
https://doi.org/10.1038/s41467-022-28715-9
Cui, J., Zhu, R., Wang, X., Xu, X., Ai, C., He, P., Liang, G., Zhou, W.,
& Zhu, P. (2022). Effect of high soil C/N ratio and nitrogen limitation
caused by the long-term combined organic-inorganic fertilization on the
soil microbial community structure and its dominated SOC decomposition.Journal of Environmental Management , 303 , 114155.
https://doi.org/10.1016/j.jenvman.2021.114155
Davis, S. C., Parton, W. J., Dohleman, F. G., Smith, C. M., Grosso, S.
D., Kent, A. D., & DeLucia, E. H. (2010). Comparative Biogeochemical
Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low Greenhouse
Gas Emissions in a Miscanthus × giganteus Agro-Ecosystem.Ecosystems , 13 (1), 144–156.
https://doi.org/10.1007/s10021-009-9306-9
Derrien, D., & Amelung, W. (2011). Computing the mean residence time of
soil carbon fractions using stable isotopes: Impacts of the model
framework. European Journal of Soil Science , 62 (2),
237–252. https://doi.org/10.1111/j.1365-2389.2010.01333.x
Dohleman, F. G., & Long, S. P. (2009). More Productive Than Maize in
the Midwest: How Does Miscanthus Do It? Plant Physiology ,150 (4), 2104–2115. https://doi.org/10.1104/pp.109.139162
Doyle, A., Weintraub, M. N., & Schimel, J. P. (2004). Persulfate
Digestion and Simultaneous Colorimetric Analysis of Carbon and Nitrogen
in Soil Extracts. Soil Science Society of America Journal ,68 (2), 669–676. https://doi.org/10.2136/sssaj2004.6690
Eastman, B. A., Adams, M. B., Brzostek, E. R., Burnham, M. B., Carrara,
J. E., Kelly, C., McNeil, B. E., Walter, C. A., & Peterjohn, W. T.
(2021). Altered plant carbon partitioning enhanced forest ecosystem
carbon storage after 25 years of nitrogen additions. New
Phytologist , 230 (4), 1435–1448.
https://doi.org/10.1111/nph.17256
Fernandez, C. W., & Kennedy, P. G. (2016). Revisiting the “Gadgil
effect”: Do interguild fungal interactions control carbon cycling in
forest soils? New Phytologist , 209 (4), 1382–1394.
https://doi.org/10.1111/nph.13648
Finzi, A. C., Van Breemen, N., & Canham, C. D. (1998). Canopy
Tree–Soil Interactions Within Temperate Forests: Species Effects on
Soil Carbon and Nitrogen. Ecological Applications , 8 (2),
440–446.
https://doi.org/10.1890/1051-0761(1998)008[0440:CTSIWT]2.0.CO;2
Fossum, C., Estera-Molina, K. Y., Yuan, M., Herman, D. J., Chu-Jacoby,
I., Nico, P. S., Morrison, K. D., Pett-Ridge, J., & Firestone, M. K.
(2022). Belowground allocation and dynamics of recently fixed plant
carbon in a California annual grassland. Soil Biology and
Biochemistry , 165 , 108519.
https://doi.org/10.1016/j.soilbio.2021.108519
Frey, S. D., Ollinger, S., Nadelhoffer, K. ea, Bowden, R., Brzostek, E.,
Burton, A., Caldwell, B. A., Crow, S., Goodale, C. L., & Grandy, A. S.
(2014). Chronic nitrogen additions suppress decomposition and sequester
soil carbon in temperate forests. Biogeochemistry , 121 (2),
305–316.
Giovannetti, M., & Mosse, B. (1980). An Evaluation of Techniques for
Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. The
New Phytologist , 84 (3), 489–500.
Grayston, S. J., Vaughan, D., & Jones, D. (1997). Rhizosphere carbon
flow in trees, in comparison with annual plants: The importance of root
exudation and its impact on microbial activity and nutrient
availability. Applied Soil Ecology , 5 (1), 29–56.
https://doi.org/10.1016/S0929-1393(96)00126-6
Hanssen, S. V., Daioglou, V., Steinmann, Z. J. N., Doelman, J. C., Van
Vuuren, D. P., & Huijbregts, M. a. J. (2020). The climate change
mitigation potential of bioenergy with carbon capture and storage.Nature Climate Change , 10 (11), Article 11.
https://doi.org/10.1038/s41558-020-0885-y
Harris, Z. M., Spake, R., & Taylor, G. (2015). Land use change to
bioenergy: A meta-analysis of soil carbon and GHG emissions.Biomass and Bioenergy , 82 , 27–39.
https://doi.org/10.1016/j.biombioe.2015.05.008
Heaton, E. A., Dohleman, F. G., & Long, S. P. (2008). Meeting US
biofuel goals with less land: The potential of Miscanthus. Global
Change Biology , 14 (9), 2000–2014.
https://doi.org/10.1111/j.1365-2486.2008.01662.x
Heckman, K., Hicks Pries, C. E., Lawrence, C. R., Rasmussen, C., Crow,
S. E., Hoyt, A. M., von Fromm, S. F., Shi, Z., Stoner, S., McGrath, C.,
Beem-Miller, J., Berhe, A. A., Blankinship, J. C., Keiluweit, M.,
Marín-Spiotta, E., Monroe, J. G., Plante, A. F., Schimel, J., Sierra, C.
A., … Wagai, R. (2022). Beyond bulk: Density fractions explain
heterogeneity in global soil carbon abundance and persistence.Global Change Biology , 28 (3), 1178–1196.
https://doi.org/10.1111/gcb.16023
Jilling, A., Keiluweit, M., Gutknecht, J. L., & Grandy, A. S. (2021).
Priming mechanisms providing plants and microbes access to
mineral-associated organic matter. Soil Biology and Biochemistry ,158 , 108265.
Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence
for microbial-derived soil organic matter formation and its
ecophysiological controls. Nature Communications , 7 (1),
Article 1. https://doi.org/10.1038/ncomms13630
Kane, J. L., Robinson, M. C., Schartiger, R. G., Freedman, Z. B.,
McDonald, L. M., Skousen, J. G., & Morrissey, E. M. (2022). Nutrient
management and bioaugmentation interactively shape plant–microbe
interactions in Miscanthus × giganteus. GCB Bioenergy ,14 (11), 1235–1249. https://doi.org/10.1111/gcbb.13000
Kantola, I. B., Masters, M. D., Blanc-Betes, E., Gomez-Casanovas, N., &
DeLucia, E. H. (2022). Long-term yields in annual and perennial
bioenergy crops in the Midwestern United States. GCB Bioenergy ,14 (6), 694–706. https://doi.org/10.1111/gcbb.12940
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P.
K., & Kleber, M. (2015). Mineral protection of soil carbon counteracted
by root exudates. Nature Climate Change , 5 (6), 588–595.
https://doi.org/10.1038/nclimate2580
Keiluweit, M., Wanzek, T., Kleber, M., Nico, P., & Fendorf, S. (2017).
Anaerobic microsites have an unaccounted role in soil carbon
stabilization. Nature Communications , 8 (1), 1–10.
Kleber, M., Bourg, I. C., Coward, E. K., Hansel, C. M., Myneni, S. C.
B., & Nunan, N. (2021). Dynamic interactions at the mineral–organic
matter interface. Nature Reviews Earth & Environment ,2 (6), Article 6. https://doi.org/10.1038/s43017-021-00162-y
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz,
K., Scheu, S., Eusterhues, K., & Leinweber, P. (2008). Organo-mineral
associations in temperate soils: Integrating biology, mineralogy, and
organic matter chemistry. Journal of Plant Nutrition and Soil
Science , 171 (1), 61–82. https://doi.org/10.1002/jpln.200700048
Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing
soil organic matter into particulate and mineral-associated forms to
address global change in the 21st century. Global Change Biology ,26 (1), 261–273. https://doi.org/10.1111/gcb.14859
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil
organic matter. Nature , 528 (7580), Article 7580.
https://doi.org/10.1038/nature16069
Li, H., Bölscher, T., Winnick, M., Tfaily, M. M., Cardon, Z. G., &
Keiluweit, M. (2021). Simple Plant and Microbial Exudates Destabilize
Mineral-Associated Organic Matter via Multiple Pathways.Environmental Science & Technology , 55 (5), 3389–3398.
https://doi.org/10.1021/acs.est.0c04592
Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of
anabolism in microbial control over soil carbon storage. Nature
Microbiology , 2 (8), Article 8.
https://doi.org/10.1038/nmicrobiol.2017.105
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays,
D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S.,
Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B.,
Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., …
Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma ,292 , 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
Ndung’u, M., Ngatia, L. W., Onwonga, R. N., Mucheru-Muna, M. W., Fu, R.,
Moriasi, D. N., & Ngetich, K. F. (2021). The influence of organic and
inorganic nutrient inputs on soil organic carbon functional groups
content and maize yields. Heliyon , 7 (8), e07881.
https://doi.org/10.1016/j.heliyon.2021.e07881
Pan, Y., Cassman, N., de Hollander, M., Mendes, L. W., Korevaar, H.,
Geerts, R. H. E. M., van Veen, J. A., & Kuramae, E. E. (2014). Impact
of long-term N, P, K, and NPK fertilization on the composition and
potential functions of the bacterial community in grassland soil.FEMS Microbiology Ecology , 90 (1), 195–205.
https://doi.org/10.1111/1574-6941.12384
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., &
Smith, P. (2016). Climate-smart soils. Nature , 532 (7597),
Article 7597. https://doi.org/10.1038/nature17174
Phillips, R. P., Meier, I. C., Bernhardt, E. S., Grandy, A. S.,
Wickings, K., & Finzi, A. C. (2012). Roots and fungi accelerate carbon
and nitrogen cycling in forests exposed to elevated CO2. Ecology
Letters , 15 (9), 1042–1049.
https://doi.org/10.1111/j.1461-0248.2012.01827.x
Ridgeway, J. R., Morrissey, E. M., & Brzostek, E. R. (2022). Plant
litter traits control microbial decomposition and drive soil carbon
stabilization. Soil Biology and Biochemistry , 175 , 108857.
https://doi.org/10.1016/j.soilbio.2022.108857
Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure.New Phytologist , 171 (1), 41–53.
https://doi.org/10.1111/j.1469-8137.2006.01750.x
Schimel, J. P., & Weintraub, M. N. (2003). The implications of
exoenzyme activity on microbial carbon and nitrogen limitation in soil:
A theoretical model. Soil Biology and Biochemistry , 35 (4),
549–563. https://doi.org/10.1016/S0038-0717(03)00015-4
Schlesinger, W. H., & Amundson, R. (2019). Managing for soil carbon
sequestration: Let’s get realistic. Global Change Biology ,25 (2), 386–389. https://doi.org/10.1111/gcb.14478
Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil
Structure and Organic Matter I. Distribution of Aggregate-Size Classes
and Aggregate-Associated Carbon. Soil Science Society of America
Journal , 64 (2), 681–689.
https://doi.org/10.2136/sssaj2000.642681x
Smith, C. M., David, M. B., Mitchell, C. A., Masters, M. D.,
Anderson-Teixeira, K. J., Bernacchi, C. J., & DeLucia, E. H. (2013).
Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to
Perennial Biofuel Crops. Journal of Environmental Quality ,42 (1), 219–228. https://doi.org/10.2134/jeq2012.0210
Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz,
S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R.,
Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki,
O., & Pett-Ridge, J. (2022). Life and death in the soil microbiome: How
ecological processes influence biogeochemistry. Nature Reviews
Microbiology , 1–16. https://doi.org/10.1038/s41579-022-00695-z
Soong, J. L., Fuchslueger, L., Maranon-Jimenez, S., Torn, M. S.,
Janssens, I. A., Penuelas, J., & Richter, A. (2020). Microbial carbon
limitation: The need for integrating microorganisms into our
understanding of ecosystem carbon cycling. Global Change Biology ,26 (4), 1953–1961. https://doi.org/10.1111/gcb.14962
Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez,
D., Montanarella, L., Hong, S. Y., Rawlins, B. G., & Field, D. J.
(2015). Global soil organic carbon assessment. Global Food
Security , 6 , 9–16. https://doi.org/10.1016/j.gfs.2015.07.001
Sulman, B. N., Moore, J. A., Abramoff, R., Averill, C., Kivlin, S.,
Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., & Wieder, W. R.
(2018). Multiple models and experiments underscore large uncertainty in
soil carbon dynamics. Biogeochemistry , 141 (2), 109–123.
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction
method for measuring soil microbial biomass C. Soil Biology and
Biochemistry , 19 (6), 703–707.
https://doi.org/10.1016/0038-0717(87)90052-6
Williams, E. K., Fogel, M. L., Berhe, A. A., & Plante, A. F. (2018).
Distinct bioenergetic signatures in particulate versus
mineral-associated soil organic matter. Geoderma , 330 ,
107–116. https://doi.org/10.1016/j.geoderma.2018.05.024
Witt, C., Gaunt, J. L., Galicia, C. C., Ottow, J. C. G., & Neue, H.-U.
(2000). A rapid chloroform-fumigation extraction method for measuring
soil microbial biomass carbon and nitrogen in flooded rice soils.Biology and Fertility of Soils , 30 (5), 510–519.
https://doi.org/10.1007/s003740050030
Zhu, B., Gutknecht, J. L. M., Herman, D. J., Keck, D. C., Firestone, M.
K., & Cheng, W. (2014). Rhizosphere priming effects on soil carbon and
nitrogen mineralization. Soil Biology and Biochemistry ,76 , 183–192. https://doi.org/10.1016/j.soilbio.2014.04.033