References:
Angst, G., Mueller, K. E., Nierop, K. G. J., & Simpson, M. J. (2021). Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry ,156 , 108189. https://doi.org/10.1016/j.soilbio.2021.108189
Averill, C., & Waring, B. (2018). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology , 24 (4), 1417–1427. https://doi.org/10.1111/gcb.13980
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The Role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms. Annual Review of Plant Biology ,57 (1), 233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Beale, C. V., & Long, S. P. (1997). Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass and Bioenergy ,12 (6), 419–428. https://doi.org/10.1016/S0961-9534(97)00016-0
Benbi, D. K., Boparai, A. K., & Brar, K. (2014). Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter. Soil Biology and Biochemistry ,70 , 183–192. https://doi.org/10.1016/j.soilbio.2013.12.032
Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma , 124 (1), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
Brzostek, E. R., & Finzi, A. C. (2011). Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology , 92 (4), 892–902.
Brzostek, E. R., Fisher, J. B., & Phillips, R. P. (2014). Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation.Journal of Geophysical Research: Biogeosciences , 119 (8), 1684–1697. https://doi.org/10.1002/2014JG002660
Cadoux, S., Riche, A. B., Yates, N. E., & Machet, J.-M. (2012). Nutrient requirements of Miscanthus x giganteus: Conclusions from a review of published studies. Biomass and Bioenergy , 38 , 14–22. https://doi.org/10.1016/j.biombioe.2011.01.015
Chen, W., Koide, R. T., Adams, T. S., DeForest, J. L., Cheng, L., & Eissenstat, D. M. (2016). Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.Proceedings of the National Academy of Sciences , 113 (31), 8741–8746. https://doi.org/10.1073/pnas.1601006113
Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S., McNickle, G. G., Brzostek, E., & Jastrow, J. D. (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist ,201 (1), 31–44. https://doi.org/10.1111/nph.12440
Comas, L. H., Callahan, H. S., & Midford, P. E. (2014). Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies. Ecology and Evolution , 4 (15), 2979–2990. https://doi.org/10.1002/ece3.1147
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E. (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience ,12 (12), Article 12. https://doi.org/10.1038/s41561-019-0484-6
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?Global Change Biology , 19 (4), 988–995. https://doi.org/10.1111/gcb.12113
Craig, M. E., Geyer, K. M., Beidler, K. V., Brzostek, E. R., Frey, S. D., Stuart Grandy, A., Liang, C., & Phillips, R. P. (2022). Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nature Communications , 13 (1), Article 1. https://doi.org/10.1038/s41467-022-28715-9
Cui, J., Zhu, R., Wang, X., Xu, X., Ai, C., He, P., Liang, G., Zhou, W., & Zhu, P. (2022). Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition.Journal of Environmental Management , 303 , 114155. https://doi.org/10.1016/j.jenvman.2021.114155
Davis, S. C., Parton, W. J., Dohleman, F. G., Smith, C. M., Grosso, S. D., Kent, A. D., & DeLucia, E. H. (2010). Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low Greenhouse Gas Emissions in a Miscanthus × giganteus Agro-Ecosystem.Ecosystems , 13 (1), 144–156. https://doi.org/10.1007/s10021-009-9306-9
Derrien, D., & Amelung, W. (2011). Computing the mean residence time of soil carbon fractions using stable isotopes: Impacts of the model framework. European Journal of Soil Science , 62 (2), 237–252. https://doi.org/10.1111/j.1365-2389.2010.01333.x
Dohleman, F. G., & Long, S. P. (2009). More Productive Than Maize in the Midwest: How Does Miscanthus Do It? Plant Physiology ,150 (4), 2104–2115. https://doi.org/10.1104/pp.109.139162
Doyle, A., Weintraub, M. N., & Schimel, J. P. (2004). Persulfate Digestion and Simultaneous Colorimetric Analysis of Carbon and Nitrogen in Soil Extracts. Soil Science Society of America Journal ,68 (2), 669–676. https://doi.org/10.2136/sssaj2004.6690
Eastman, B. A., Adams, M. B., Brzostek, E. R., Burnham, M. B., Carrara, J. E., Kelly, C., McNeil, B. E., Walter, C. A., & Peterjohn, W. T. (2021). Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions. New Phytologist , 230 (4), 1435–1448. https://doi.org/10.1111/nph.17256
Fernandez, C. W., & Kennedy, P. G. (2016). Revisiting the “Gadgil effect”: Do interguild fungal interactions control carbon cycling in forest soils? New Phytologist , 209 (4), 1382–1394. https://doi.org/10.1111/nph.13648
Finzi, A. C., Van Breemen, N., & Canham, C. D. (1998). Canopy Tree–Soil Interactions Within Temperate Forests: Species Effects on Soil Carbon and Nitrogen. Ecological Applications , 8 (2), 440–446. https://doi.org/10.1890/1051-0761(1998)008[0440:CTSIWT]2.0.CO;2
Fossum, C., Estera-Molina, K. Y., Yuan, M., Herman, D. J., Chu-Jacoby, I., Nico, P. S., Morrison, K. D., Pett-Ridge, J., & Firestone, M. K. (2022). Belowground allocation and dynamics of recently fixed plant carbon in a California annual grassland. Soil Biology and Biochemistry , 165 , 108519. https://doi.org/10.1016/j.soilbio.2021.108519
Frey, S. D., Ollinger, S., Nadelhoffer, K. ea, Bowden, R., Brzostek, E., Burton, A., Caldwell, B. A., Crow, S., Goodale, C. L., & Grandy, A. S. (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry , 121 (2), 305–316.
Giovannetti, M., & Mosse, B. (1980). An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. The New Phytologist , 84 (3), 489–500.
Grayston, S. J., Vaughan, D., & Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology , 5 (1), 29–56. https://doi.org/10.1016/S0929-1393(96)00126-6
Hanssen, S. V., Daioglou, V., Steinmann, Z. J. N., Doelman, J. C., Van Vuuren, D. P., & Huijbregts, M. a. J. (2020). The climate change mitigation potential of bioenergy with carbon capture and storage.Nature Climate Change , 10 (11), Article 11. https://doi.org/10.1038/s41558-020-0885-y
Harris, Z. M., Spake, R., & Taylor, G. (2015). Land use change to bioenergy: A meta-analysis of soil carbon and GHG emissions.Biomass and Bioenergy , 82 , 27–39. https://doi.org/10.1016/j.biombioe.2015.05.008
Heaton, E. A., Dohleman, F. G., & Long, S. P. (2008). Meeting US biofuel goals with less land: The potential of Miscanthus. Global Change Biology , 14 (9), 2000–2014. https://doi.org/10.1111/j.1365-2486.2008.01662.x
Heckman, K., Hicks Pries, C. E., Lawrence, C. R., Rasmussen, C., Crow, S. E., Hoyt, A. M., von Fromm, S. F., Shi, Z., Stoner, S., McGrath, C., Beem-Miller, J., Berhe, A. A., Blankinship, J. C., Keiluweit, M., Marín-Spiotta, E., Monroe, J. G., Plante, A. F., Schimel, J., Sierra, C. A., … Wagai, R. (2022). Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence.Global Change Biology , 28 (3), 1178–1196. https://doi.org/10.1111/gcb.16023
Jilling, A., Keiluweit, M., Gutknecht, J. L., & Grandy, A. S. (2021). Priming mechanisms providing plants and microbes access to mineral-associated organic matter. Soil Biology and Biochemistry ,158 , 108265.
Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications , 7 (1), Article 1. https://doi.org/10.1038/ncomms13630
Kane, J. L., Robinson, M. C., Schartiger, R. G., Freedman, Z. B., McDonald, L. M., Skousen, J. G., & Morrissey, E. M. (2022). Nutrient management and bioaugmentation interactively shape plant–microbe interactions in Miscanthus × giganteus. GCB Bioenergy ,14 (11), 1235–1249. https://doi.org/10.1111/gcbb.13000
Kantola, I. B., Masters, M. D., Blanc-Betes, E., Gomez-Casanovas, N., & DeLucia, E. H. (2022). Long-term yields in annual and perennial bioenergy crops in the Midwestern United States. GCB Bioenergy ,14 (6), 694–706. https://doi.org/10.1111/gcbb.12940
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., & Kleber, M. (2015). Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change , 5 (6), 588–595. https://doi.org/10.1038/nclimate2580
Keiluweit, M., Wanzek, T., Kleber, M., Nico, P., & Fendorf, S. (2017). Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nature Communications , 8 (1), 1–10.
Kleber, M., Bourg, I. C., Coward, E. K., Hansel, C. M., Myneni, S. C. B., & Nunan, N. (2021). Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment ,2 (6), Article 6. https://doi.org/10.1038/s43017-021-00162-y
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., & Leinweber, P. (2008). Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science , 171 (1), 61–82. https://doi.org/10.1002/jpln.200700048
Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology ,26 (1), 261–273. https://doi.org/10.1111/gcb.14859
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature , 528 (7580), Article 7580. https://doi.org/10.1038/nature16069
Li, H., Bölscher, T., Winnick, M., Tfaily, M. M., Cardon, Z. G., & Keiluweit, M. (2021). Simple Plant and Microbial Exudates Destabilize Mineral-Associated Organic Matter via Multiple Pathways.Environmental Science & Technology , 55 (5), 3389–3398. https://doi.org/10.1021/acs.est.0c04592
Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology , 2 (8), Article 8. https://doi.org/10.1038/nmicrobiol.2017.105
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma ,292 , 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
Ndung’u, M., Ngatia, L. W., Onwonga, R. N., Mucheru-Muna, M. W., Fu, R., Moriasi, D. N., & Ngetich, K. F. (2021). The influence of organic and inorganic nutrient inputs on soil organic carbon functional groups content and maize yields. Heliyon , 7 (8), e07881. https://doi.org/10.1016/j.heliyon.2021.e07881
Pan, Y., Cassman, N., de Hollander, M., Mendes, L. W., Korevaar, H., Geerts, R. H. E. M., van Veen, J. A., & Kuramae, E. E. (2014). Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil.FEMS Microbiology Ecology , 90 (1), 195–205. https://doi.org/10.1111/1574-6941.12384
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature , 532 (7597), Article 7597. https://doi.org/10.1038/nature17174
Phillips, R. P., Meier, I. C., Bernhardt, E. S., Grandy, A. S., Wickings, K., & Finzi, A. C. (2012). Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters , 15 (9), 1042–1049. https://doi.org/10.1111/j.1461-0248.2012.01827.x
Ridgeway, J. R., Morrissey, E. M., & Brzostek, E. R. (2022). Plant litter traits control microbial decomposition and drive soil carbon stabilization. Soil Biology and Biochemistry , 175 , 108857. https://doi.org/10.1016/j.soilbio.2022.108857
Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure.New Phytologist , 171 (1), 41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
Schimel, J. P., & Weintraub, M. N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology and Biochemistry , 35 (4), 549–563. https://doi.org/10.1016/S0038-0717(03)00015-4
Schlesinger, W. H., & Amundson, R. (2019). Managing for soil carbon sequestration: Let’s get realistic. Global Change Biology ,25 (2), 386–389. https://doi.org/10.1111/gcb.14478
Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. Soil Science Society of America Journal , 64 (2), 681–689. https://doi.org/10.2136/sssaj2000.642681x
Smith, C. M., David, M. B., Mitchell, C. A., Masters, M. D., Anderson-Teixeira, K. J., Bernacchi, C. J., & DeLucia, E. H. (2013). Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to Perennial Biofuel Crops. Journal of Environmental Quality ,42 (1), 219–228. https://doi.org/10.2134/jeq2012.0210
Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki, O., & Pett-Ridge, J. (2022). Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology , 1–16. https://doi.org/10.1038/s41579-022-00695-z
Soong, J. L., Fuchslueger, L., Maranon-Jimenez, S., Torn, M. S., Janssens, I. A., Penuelas, J., & Richter, A. (2020). Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology ,26 (4), 1953–1961. https://doi.org/10.1111/gcb.14962
Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L., Hong, S. Y., Rawlins, B. G., & Field, D. J. (2015). Global soil organic carbon assessment. Global Food Security , 6 , 9–16. https://doi.org/10.1016/j.gfs.2015.07.001
Sulman, B. N., Moore, J. A., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., & Wieder, W. R. (2018). Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry , 141 (2), 109–123.
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry , 19 (6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Williams, E. K., Fogel, M. L., Berhe, A. A., & Plante, A. F. (2018). Distinct bioenergetic signatures in particulate versus mineral-associated soil organic matter. Geoderma , 330 , 107–116. https://doi.org/10.1016/j.geoderma.2018.05.024
Witt, C., Gaunt, J. L., Galicia, C. C., Ottow, J. C. G., & Neue, H.-U. (2000). A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils.Biology and Fertility of Soils , 30 (5), 510–519. https://doi.org/10.1007/s003740050030
Zhu, B., Gutknecht, J. L. M., Herman, D. J., Keck, D. C., Firestone, M. K., & Cheng, W. (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology and Biochemistry ,76 , 183–192. https://doi.org/10.1016/j.soilbio.2014.04.033