References
Abdelrazec, A. & Gumel, A.B. (2017). Mathematical assessment of the
role of temperature and rainfall on mosquito population dynamics.J. Math. Biol. , 74, 1351–1395.
Adelman, Z.N., Anderson, M.A.E., Wiley, M.R., Murreddu, M.G., Samuel,
G.H., Morazzani, E.M., et al. (2013). Cooler Temperatures
Destabilize RNA Interference and Increase Susceptibility of Disease
Vector Mosquitoes to Viral Infection. PLoS Negl. Trop. Dis. , 7,
e2239.
Afrane, Y.A., Lawson, B.W., Githeko, A.K. & Yan, G. (2005). Effects of
Microclimatic Changes Caused by Land Use and Land Cover on Duration of
Gonotrophic Cycles of Anopheles gambiae (Diptera: Culicidae) in
Western Kenya Highlands. J. Med. Entomol. , 42, 974–980.
Aguirre, A.A. (2017). Changing Patterns of Emerging Zoonotic Diseases in
Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and
Globalization. ILAR J. , 58, 315–318.
Akinwande, K.L., Arotiowa, A.R. & Ete, A.J. (2021). Impacts of changes
in temperature and exposure time on the median lethal concentrations
(LC50) of a combination of organophosphate and pyrethroid in the control
of Culex quinquefasciatus , say (Diptera: Culicidae). Sci.
Afr. , 12, e00743.
Albernaz, D. a. S., Tai, M.H.H. & Luz, C. (2009). Enhanced ovicidal
activity of an oil formulation of the fungus Metarhizium
anisopliae on the mosquito Aedes aegypti . Med. Vet.
Entomol. , 23, 141–147.
Aliota, M.T., Peinado, S.A., Velez, I.D. & Osorio, J.E. (2016a). The
wMel strain of Wolbachia Reduces Transmission of Zika virus byAedes aegypti . Sci. Rep. , 6, 28792.
Aliota, M.T., Walker, E.C., Yepes, A.U., Velez, I.D., Christensen, B.M.
& Osorio, J.E. (2016b). The wMel strain of Wolbachia reduces
transmission of Chikungunya virus in Aedes aegypti . PLoS
Negl. Trop. Dis. , 10, e0004677.
Alphey, L., Benedict, M., Bellini, R., Clark, G.G., Dame, D.A., Service,
M.W., et al. (2010). Sterile-Insect Methods for Control of
Mosquito-Borne Diseases: An Analysis. Vector-Borne Zoonotic Dis. ,
10, 295–311.
Althouse, B.M., Hanley, K.A., Diallo, M., Sall, A.A., Ba, Y., Faye, O.,et al. (2015). Impact of Climate and Mosquito Vector Abundance on
Sylvatic Arbovirus Circulation Dynamics in Senegal. Am. J. Trop.
Med. Hyg. , 92, 88–97.
Alto, B.W., Bettinardi, D.J. & Ortiz, S. (2015). Interspecific Larval
Competition Differentially Impacts Adult Survival in Dengue Vectors.J. Med. Entomol. , 52, 163–170.
Alto, B.W. & Juliano, S.A. (2001). Temperature Effects on the Dynamics
of Aedes albopictus (Diptera: Culicidae) Populations in the
Laboratory. J. Med. Entomol. , 38, 548–556.
Anderson, R.C.O. & Andrade, D.V. (2017). Trading heat and hops for
water: Dehydration effects on locomotor performance, thermal limits, and
thermoregulatory behavior of a terrestrial toad. Ecol. Evol. , 7,
9066–9075.
Angilletta, M.J. (2009). Thermal adaptation: a theoretical and
empirical synthesis . OUP Oxford.
Ashepet, M.G., Jacobs, L., Van Oudheusden, M. & Huyse, T. (2021).
Wicked Solution for Wicked Problems: Citizen Science for Vector-Borne
Disease Control in Africa. Trends Parasitol. , 37, 93–96.
Asigau, S. & Parker, P.G. (2018). The influence of ecological factors
on mosquito abundance and occurrence in Galápagos. J. Vector
Ecol. , 43, 125–137.
Ayala, A.M., Vera, N.S., Chiappero, M.B., Almirón, W.R. & Gardenal,
C.N. (2020). Urban Populations of Aedes aegypti (Diptera:
Culicidae) From Central Argentina: Dispersal Patterns Assessed by
Bayesian and Multivariate Methods. J. Med. Entomol. , 57,
1069–1076.
Azar, S.R., Roundy, C.M., Rossi, S.L., Huang, J.H., Leal, G., Yun, R.,et al. (2017). Differential Vector Competency of Aedes
albopictus Populations from the Americas for Zika Virus. Am. J.
Trop. Med. Hyg. , 97, 330–339.
Azil, A.H., Long, S.A., Ritchie, S.A. & Williams, C.R. (2010). The
development of predictive tools for pre-emptive dengue vector control: a
study of Aedes aegypti abundance and meteorological variables in
North Queensland, Australia. Trop. Med. Int. Health , 15,
1190–1197.
Baeza, A., Santos-Vega, M., Dobson, A.P. & Pascual, M. (2017). The rise
and fall of malaria under land-use change in frontier regions.Nat. Ecol. Evol. , 1, 1–7.
Bar-Zeev, M. (1957). The Effect of extreme Temperatures on different
Stages of Aëdes aegypti (L.). Bull. Entomol. Res. , 48,
593–599.
Bayoh, M.N. (2001). Studies on the development and survival ofAnopheles gambiae sensu stricto at various temperatures and
relative humidities. Doctoral. Durham University.
Beck, J., McCain, C.M., Axmacher, J.C., Ashton, L.A., Bärtschi, F.,
Brehm, G., et al. (2017). Elevational species richness gradients
in a hyperdiverse insect taxon: a global meta-study on geometrid moths.Glob. Ecol. Biogeogr. , 26, 412–424.
Beebe, N.W., Cooper, R.D., Mottram, P. & Sweeney, A.W. (2009).
Australia’s Dengue Risk Driven by Human Adaptation to Climate Change.PLoS Negl. Trop. Dis. , 3, e429.
Beitz, E. (2006). Aquaporin Water and Solute Channels from Malaria
Parasites and Other Pathogenic Protozoa. ChemMedChem , 1,
587–592.
Benoit, J.B. (2010). Water Management by Dormant Insects: Comparisons
Between Dehydration Resistance During Summer Aestivation and Winter
Diapause. In: Aestivation: Molecular and Physiological Aspects ,
Progress in Molecular and Subcellular Biology (eds. Arturo Navas, C. &
Carvalho, J.E.). Springer, Berlin, Heidelberg, pp. 209–229.
Benoit, J.B. & Denlinger, D.L. (2010). Meeting the challenges of
on-host and off-host water balance in blood-feeding arthropods. J.
Insect Physiol. , 56, 1366–1376.
Bezerra Da Silva, C.S., Price, B.E. & Walton, V.M. (2019).
Water-Deprived Parasitic Wasps (Pachycrepoideus vindemmiae ) Kill
More Pupae of a Pest (Drosophila suzukii ) as a Water-Intake
Strategy. Sci. Rep. , 9, 3592.
Bhatt, S., Weiss, D.J., Cameron, E., Bisanzio, D., Mappin, B.,
Dalrymple, U., et al. (2015). The effect of malaria control onPlasmodium falciparum in Africa between 2000 and 2015.Nature , 526, 207–211.
Bidlingmayer, W.L. (1974). The Influence of Environmental Factors and
Physiological Stage on Flight Patterns of Mosquitoes Taken in the
Vehicle Aspirator and Truck, Suction, Bait and New Jersey Light Traps.J. Med. Entomol. , 11, 119–146.
Bidlingmayer, W.L. (1985). The measurement of adult mosquito population
changes - some considerations. J. Am. Mosq. Control Assoc. , 1,
328–248.
Bradshaw, D. (2003). Vertebrate Ecophysiology: An Introduction to
its Principles and Applications . Cambridge University Press, Cambridge.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B.
(2004). Toward a Metabolic Theory of Ecology. Ecology , 85,
1771–1789.
Brown, L., Medlock, J. & Murray, V. (2014). Impact of drought on
vector-borne diseases – how does one manage the risk? Public
Health , 128, 29–37.
Buckner, E.A., Blackmore, M.S., Golladay, S.W. & Covich, A.P. (2011).
Weather and landscape factors associated with adult mosquito abundance
in southwestern Georgia, U.S.A. J. Vector Ecol. , 36, 269–278.
Buzan, J.R. & Huber, M. (2020). Moist Heat Stress on a Hotter Earth.Annu. Rev. Earth Planet. Sci. , 48, 623–655.
Calatayud, J., Hortal, J., Medina, N.G., Turin, H., Bernard, R., Casale,
A., et al. (2016). Glaciations, deciduous forests, water
availability and current geographical patterns in the diversity of
European Carabus species. J. Biogeogr. , 43, 2343–2353.
Caldwell, J.M., LaBeaud, A.D., Lambin, E.F., Stewart-Ibarra, A.M.,
Ndenga, B.A., Mutuku, F.M., et al. (2021). Climate predicts
geographic and temporal variation in mosquito-borne disease dynamics on
two continents. Nat. Commun. , 12, 1233.
Canyon, D.V., Hii, J.L.K. & Müller, R. (1999). Adaptation ofAedes aegypti (Diptera: Culicidae) oviposition behavior in
response to humidity and diet. J. Insect Physiol. , 45, 959–964.
Canyon, D.V., Muller, R. & Hii J, L.K. (2013). Aedes aegyptidisregard humidity-related conditions with adequate nutrition.Trop. Biomed. , 30, 1–8.
Carballar-Lejarazú, R. & James, A.A. (2017). Population modification of
Anopheline species to control malaria transmission. Pathog. Glob.
Health , 111, 424–435.
Cardoso, P., Barton, P.S., Birkhofer, K., Chichorro, F., Deacon, C.,
Fartmann, T., et al. (2020). Scientists’ warning to humanity on
insect extinctions. Biol. Conserv. , 242, 108426.
Carrington, L.B., Armijos, M.V., Lambrechts, L., Barker, C.M. & Scott,
T.W. (2013). Effects of Fluctuating Daily Temperatures at Critical
Thermal Extremes on Aedes aegypti Life-History Traits. PLOS
ONE , 8, e58824.
Carvajal, T.M., Ogishi, K., Yaegeshi, S., Hernandez, L.F.T., Viacrusis,
K.M., Ho, H.T., et al. (2020). Fine-scale population genetic
structure of dengue mosquito vector, Aedes aegypti , in
Metropolitan Manila, Philippines. PLoS Negl. Trop. Dis. , 14,
e0008279.
Cator, L.J., Thomas, S., Paaijmans, K.P., Ravishankaran, S., Justin,
J.A., Mathai, M.T., et al. (2013). Characterizing microclimate in
urban malaria transmission settings: a case study from Chennai, India.Malar. J. , 12, 84.
Chandy, S., Ramanathan, K., Manoharan, A., Mathai, D. & Baruah, K.
(2013). Assessing effect of climate on the incidence of dengue in Tamil
Nadu. Indian J. Med. Microbiol. , 31, 283–286.
Chaplin, M. (2006). Do we underestimate the importance of water in cell
biology? Nat. Rev. Mol. Cell Biol. , 7, 861–866.
Chappuis, C.J., Béguin, S., Vlimant, M. & Guerin, P.M. (2013). Water
vapour and heat combine to elicit biting and biting persistence in
tsetse. Parasit. Vectors , 6, 240.
Chaves, L.F. & Kitron, U.D. (2011). Weather variability impacts on
oviposition dynamics of the southern house mosquito at intermediate time
scales. Bull. Entomol. Res. , 101, 633–641.
Chen, S.-C., Liao, C.-M., Chio, C.-P., Chou, H.-H., You, S.-H. & Cheng,
Y.-H. (2010). Lagged temperature effect with mosquito transmission
potential explains dengue variability in southern Taiwan: Insights from
a statistical analysis. Sci. Total Environ. , 408, 4069–4075.
Chowdhury, F.R., Ibrahim, Q.S.U., Bari, M.S., Alam, M.M.J., Dunachie,
S.J., Rodriguez-Morales, A.J., et al. (2018). The association
between temperature, rainfall and humidity with common climate-sensitive
infectious diseases in Bangladesh. PLOS ONE , 13, e0199579.
Chown, S.L. & Davis, A.L.V. (2003). Discontinuous gas exchange and the
significance of respiratory water loss in scarabaeine beetles. J.
Exp. Biol. , 206, 3547–3556.
Chown, S.L. & Gaston, K.J. (2008). Macrophysiology for a changing
world. Proc. R. Soc. B Biol. Sci. , 275, 1469–1478.
Chown, S.L. & Nicolson, S. (2004). Insect Physiological Ecology:
Mechanisms and Patterns . OUP Oxford.
Chown, S.L., Sørensen, J.G. & Terblanche, J.S. (2011). Water loss in
insects: An environmental change perspective. J. Insect Physiol. ,
57, 1070–1084.
Christofferson, R.C. & Mores, C.N. (2016). Potential for Extrinsic
Incubation Temperature to Alter Interplay between Transmission Potential
and Mortality of Dengue-Infected Aedes aegypti . Environ.
Health Insights , 10, EHI.S38345.
Clusella-Trullas, S., Blackburn, T.M. & Chown, S.L. (2011). Climatic
Predictors of Temperature Performance Curve Parameters in Ectotherms
Imply Complex Responses to Climate Change. Am. Nat. , 177,
738–751.
Cohen, J.M., Civitello, D.J., Brace, A.J., Feichtinger, E.M., Ortega,
C.N., Richardson, J.C., et al. (2016). Spatial scale modulates
the strength of ecological processes driving disease distributions.Proc. Natl. Acad. Sci. , 113, E3359–E3364.
Corkrey, R., McMeekin, T.A., Bowman, J.P., Ratkowsky, D.A., Olley, J. &
Ross, T. (2016). The biokinetic spectrum for temperature. PLOS
ONE , 11, e0153343.
Coseo, P. & Larsen, L. (2014). How factors of land use/land cover,
building configuration, and adjacent heat sources and sinks explain
Urban Heat Islands in Chicago. Landsc. Urban Plan. , 125,
117–129.
Costa, E.A.P. de A., Santos, E.M. de M., Correia, J.C. & Albuquerque,
C.M.R. de. (2010). Impact of small variations in temperature and
humidity on the reproductive activity and survival of Aedes
aegypti (Diptera, Culicidae). Rev. Bras. Entomol. , 54, 488–493.
Couper, L.I., Farner, J.E., Caldwell, J.M., Childs, M.L., Harris, M.J.,
Kirk, D.G., et al. (2021). How will mosquitoes adapt to climate
warming? eLife , 10, e69630.
Darbro, J.M., Graham, R.I., Kay, B.H., Ryan, P.A. & Thomas, M.B.
(2011). Evaluation of entomopathogenic fungi as potential biological
control agents of the dengue mosquito, Aedes aegypti (Diptera:
Culicidae). Biocontrol Sci. Technol. , 21, 1027–1047.
Davis, J.K., Vincent, G.P., Hildreth, M.B., Kightlinger, L., Carlson, C.
& Wimberly, M.C. (2018). Improving the prediction of arbovirus
outbreaks: A comparison of climate-driven models for West Nile virus in
an endemic region of the United States. Acta Trop. , 185,
242–250.
Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. (2009).
Influence of Temperature on Immature Development, Survival, Longevity,
Fecundity, and Gonotrophic Cycles of Aedes albopictus , Vector of
Chikungunya and Dengue in the Indian Ocean. J. Med. Entomol. , 46,
33–41.
Dell, A.I., Pawar, S. & Savage, V.M. (2011). Systematic variation in
the temperature dependence of physiological and ecological traits.Proc. Natl. Acad. Sci. , 108, 10591–10596.
Deocaris, C.C., Shrestha, B.G., Kraft, D.C., Yamasaki, K., Kaul, S.C.,
Rattan, S.I.S., et al. (2006). Geroprotection by Glycerol.Ann. N. Y. Acad. Sci. , 1067, 488–492.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor,
C.K., Haak, D.C., et al. (2008). Impacts of climate warming on
terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. ,
105, 6668–6672.
Diallo, D., Diagne, C.T., Buenemann, M., Ba, Y., Dia, I., Faye, O.,et al. (2019). Biodiversity Pattern of Mosquitoes in Southeastern
Senegal, Epidemiological Implication in Arbovirus and Malaria
Transmission. J. Med. Entomol. , 56, 453–463.
Diamant, S., Eliahu, N., Rosenthal, D. & Goloubinoff, P. (2001).
Chemical Chaperones Regulate Molecular Chaperones in Vitro and in Cells
under Combined Salt and Heat Stresses*. J. Biol. Chem. , 276,
39586–39591.
Dillon, M.E., Wang, G. & Huey, R.B. (2010). Global metabolic impacts of
recent climate warming. Nature , 467, 704–706.
Döring, T.F. (2017). Vector-Borne Diseases. In: Plant Diseases and
Their Management in Organic Agriculture , IPM. The American
Phytopathological Society, pp. 107–116.
Dow, R.P. & Gerrish, G.M. (1970). Day-to-Day Change in Relative
Humidity and the Activity of Culex nigripalpus (Diptera:
Culicidae)1. Ann. Entomol. Soc. Am. , 63, 995–999.
Drakou, K., Nikolaou, T., Vasquez, M., Petric, D., Michaelakis, A.,
Kapranas, A., et al. (2020). The Effect of Weather Variables on
Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus.Int. J. Environ. Res. Public. Health , 17, 1403.
Durant, A.C. & Donini, A. (2019). Development of Aedes aegypti(Diptera: Culicidae) mosquito larvae in high ammonia sewage in septic
tanks causes alterations in ammonia excretion, ammonia transporter
expression, and osmoregulation. Sci. Rep. , 9, 19028.
Durant, A.C., Grieco Guardian, E., Kolosov, D. & Donini, A. (2021). The
transcriptome of anal papillae of Aedes aegypti reveals their
importance in xenobiotic detoxification and adds significant knowledge
on ion, water and ammonia transport mechanisms. J. Insect
Physiol. , 132, 104269.
Edney, E.B. (2012). Water Balance in Land Arthropods . Springer
Science & Business Media.
Edney, E.B. & Barrass, R. (1962). The body temperature of the tsetse
fly, Glossina morsitans Westwood (Diptera, Muscidae). J.
Insect Physiol. , 8, 469–481.
Evans, M.V., Hintz, C.W., Jones, L., Shiau, J., Solano, N., Drake, J.M.,et al. (2019). Microclimate and larval habitat density predict
adult Aedes albopictus abundance in urban areas. Am. J.
Trop. Med. Hyg. , 101, 362–370.
Evans, M.V., Newberry, P.M. & Murdock, C.C. (2018a). Carry-over
effects of the larval environment in mosquito-borne disease systems .Popul. Biol. Vector-Borne Dis. Oxford University Press.
Evans, M.V., Shiau, J.C., Solano, N., Brindley, M.A., Drake, J.M. &
Murdock, C.C. (2018b). Carry-over effects of urban larval environments
on the transmission potential of dengue-2 virus. Parasit.
Vectors , 11, 426.
Ferreira, P.G., Tesla, B., Horácio, E.C.A., Nahum, L.A., Brindley, M.A.,
de Oliveira Mendes, T.A., et al. (2020). Temperature dramatically
shapes mosquito gene expression with consequences for mosquito–Zika
virus interactions. Front. Microbiol. , 11.
Fikrig, K., Peck, S., Deckerman, P., Dang, S., Fleur, K.S., Goldsmith,
H., et al. (2020). Sugar feeding patterns of New York Aedes
albopictus mosquitoes are affected by saturation deficit, flowers, and
host seeking. PLoS Negl. Trop. Dis. , 14, e0008244.
Foo, I.J.-H., Hoffmann, A.A. & Ross, P.A. (2019). Cross-Generational
Effects of Heat Stress on Fitness and Wolbachia Density inAedes aegypti Mosquitoes. Trop. Med. Infect. Dis. , 4, 13.
Fouet, C., Kamdem, C., Gamez, S. & White, B.J. (2017). Extensive
genetic diversity among populations of the malaria mosquitoAnopheles moucheti revealed by population genomics. Infect.
Genet. Evol. , 48, 27–33.
Gaaboub, I.A., El-Sawaf, S.K. & El-Latif, M.A. (1971). Effect of
Different Relative Humidities and Temperatures on Egg-Production and
Longevity of Adults of Anopheles (Myzomyia) pharoensis Theob.1.Z. Für Angew. Entomol. , 67, 88–94.
Garros, C., Bouyer, J., Takken, W. & Smallegange, R.C. (2017). Control
of vector-borne diseases in the livestock industry: new opportunities
and challenges. In: Pests and vector-borne diseases in the
livestock industry , Ecology and Control of Vector-borne Diseases.
Wageningen Academic Publishers, pp. 575–580.
George, T.L., Harrigan, R.J., LaManna, J.A., DeSante, D.F., Saracco,
J.F. & Smith, T.B. (2015). Persistent impacts of West Nile virus on
North American bird populations. Proc. Natl. Acad. Sci. , 112,
14290–14294.
Gething, P.W., Smith, D.L., Patil, A.P., Tatem, A.J., Snow, R.W. & Hay,
S.I. (2010). Climate change and the global malaria recession.Nature , 465, 342–345.
Gloria-Soria, A., Armstrong, P.M., Powell, J.R. & Turner, P.E. (2017).
Infection rate of Aedes aegypti mosquitoes with dengue virus
depends on the interaction between temperature and mosquito genotype.Proc. R. Soc. B Biol. Sci. , 284, 20171506.
Glunt, K.D., Paaijmans, K.P., Read, A.F. & Thomas, M.B. (2014).
Environmental temperatures significantly change the impact of
insecticides measured using WHOPES protocols. Malar. J. , 13, 350.
González-Tokman, D., Córdoba-Aguilar, A., Dáttilo, W., Lira-Noriega, A.,
Sánchez-Guillén, R.A. & Villalobos, F. (2020). Insect responses to
heat: physiological mechanisms, evolution and ecological implications in
a warming world. Biol. Rev. , 95, 802–821.
Gray, E.M. & Bradley, T.J. (2005). Physiology of desiccation resistance
in Anopheles gambiae and Anopheles arabienses . Am.
J. Trop. Med. Hyg. , 73, 553–559.
Grimstad, P.R. & DeFoliart, G.R. (1975). Mosquito Nectar Feeding in
Wisconsin in Relation to Twilight and Microclimate. J. Med.
Entomol. , 11, 691–698.
Gu, X., Ross, P.A., Rodriguez-Andres, J., Robinson, K.L., Yang, Q., Lau,
M.-J., et al. (2022). A w Mel Wolbachia variant inAedes aegypti from field-collected Drosophila melanogasterwith increased phenotypic stability under heat stress. Environ.
Microbiol. , 24, 2119–2135.
Gunay, F., Alten, B. & Ozsoy, E.D. (2010). Estimating reaction norms
for predictive population parameters, age specific mortality, and mean
longevity in temperature-dependent cohorts of Culex
quinquefasciatus Say (Diptera: Culicidae). J. Vector Ecol. , 35,
354–362.
Gunderson, A.R. & Stillman, J.H. (2015). Plasticity in thermal
tolerance has limited potential to buffer ectotherms from global
warming. Proc. R. Soc. B Biol. Sci. , 282, 20150401.
Gutiérrez, L.A., Gómez, G.F., González, J.J., Castro, M.I., Luckhart,
S., Conn, J.E., et al. (2010). Microgeographic Genetic Variation
of the Malaria Vector Anopheles darlingi Root (Diptera:
Culicidae) from Córdoba and Antioquia, Colombia. Am. J. Trop. Med.
Hyg. , 83, 38–47.
Hagan, R.W., Didion, E.M., Rosselot, A.E., Holmes, C.J., Siler, S.C.,
Rosendale, A.J., et al. (2018). Dehydration prompts increased
activity and blood feeding by mosquitoes. Sci. Rep. , 8, 6804.
Hamann, E., Blevins, C., Franks, S.J., Jameel, M.I. & Anderson, J.T.
(2021). Climate change alters plant–herbivore interactions. New
Phytol. , 229, 1894–1910.
Hao, L., Huang, X., Qin, M., Liu, Y., Li, W. & Sun, G. (2018).
Ecohydrological Processes Explain Urban Dry Island Effects in a Wet
Region, Southern China. Water Resour. Res. , 54, 6757–6771.
Hayden, M.H., Uejio, C.K., Walker, K., Ramberg, F., Moreno, R., Rosales,
C., et al. (2010). Microclimate and Human Factors in the
Divergent Ecology of Aedes aegypti along the Arizona,
U.S./Sonora, MX Border. EcoHealth , 7, 64–77.
Heaviside, C., Macintyre, H. & Vardoulakis, S. (2017). The Urban Heat
Island: Implications for Health in a Changing Environment. Curr.
Environ. Health Rep. , 4, 296–305.
van Heerwaarden, B. & Sgrò, C.M. (2014). Is adaptation to climate
change really constrained in niche specialists? Proc. R. Soc. B
Biol. Sci. , 281, 20140396.
Hegde, S. & Hughes, G.L. (2017). Population modification ofAnopheles mosquitoes for malaria control: pathways to
implementation. Pathog. Glob. Health , 111, 401–402.
Heinisch, M.R.S., Diaz-Quijano, F.A., Chiaravalloti-Neto, F., Menezes
Pancetti, F.G., Rocha Coelho, R., dos Santos Andrade, P., et al.(2019). Seasonal and spatial distribution of Aedes aegypti andAedes albopictus in a municipal urban park in São Paulo, SP,
Brazil. Acta Trop. , 189, 104–113.
Hoffmann, A.A., Chown, S.L. & Clusella-Trullas, S. (2013). Upper
thermal limits in terrestrial ectotherms: how constrained are they?Funct. Ecol. , 27, 934–949.
Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R.,
Nusskern, D.R., et al. (2002). The Genome Sequence of the Malaria
Mosquito Anopheles gambiae . Science , 298, 129–149.
Howe, D.A., Hathaway, J.M., Ellis, K.N. & Mason, L.R. (2017). Spatial
and temporal variability of air temperature across urban neighborhoods
with varying amounts of tree canopy. Urban For. Urban Green. , 27,
109–116.
Huber, J.H., Childs, M.L., Caldwell, J.M. & Mordecai, E.A. (2018).
Seasonal temperature variation influences climate suitability for
dengue, chikungunya, and Zika transmission. PLoS Negl. Trop.
Dis. , 12, e0006451.
Huey, R.B. & Kingsolver, J.G. (2019). Climate warming, resource
availability, and the metabolic meltdown of ectotherms. Am. Nat. ,
194, E140–E150.
Huxley, P.J., Murray, K.A., Pawar, S. & Cator, L.J. (2021). The effect
of resource limitation on the temperature dependence of mosquito
population fitness. Proc. R. Soc. B Biol. Sci. , 288, 20203217.
Huxley, P.J., Murray, K.A., Pawar, S. & Cator, L.J. (2022). Competition
and resource depletion shape the thermal response of population fitness
in Aedes aegypti . Commun. Biol. , 5, 1–11.
Hylton, A.R. (1969). Studies on Longevity of Adult Eretmapodites
chrysogaster, Aedes togoi and Aedes (Stegomyia) albopictusFemales (Diptera: Culicidae). J. Med. Entomol. , 6, 147–149.
IPCC. (2021). Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change . Cambridge University Press,
Geneva, Switzerland.
Jamieson, M.A., Trowbridge, A.M., Raffa, K.F. & Lindroth, R.L. (2012).
Consequences of Climate Warming and Altered Precipitation Patterns for
Plant-Insect and Multitrophic Interactions. Plant Physiol. , 160,
1719–1727.
Jasper, M., Schmidt, T.L., Ahmad, N.W., Sinkins, S.P. & Hoffmann, A.A.
(2019). A genomic approach to inferring kinship reveals limited
intergenerational dispersal in the yellow fever mosquito. Mol.
Ecol. Resour. , 19, 1254–1264.
Jemal, Y. & Al-Thukair, A.A. (2018). Combining GIS application and
climatic factors for mosquito control in Eastern Province, Saudi Arabia.Saudi J. Biol. Sci. , 25, 1593–1602.
Jindra, M. & Sehnal, F. (1990). Linkage between diet humidity,
metabolic water production and heat dissipation in the larvae ofGalleria mellonella . Insect Biochem. , 20, 389–395.
Johansson, M.A., Dominici, F. & Glass, G.E. (2009). Local and Global
Effects of Climate on Dengue Transmission in Puerto Rico. PLoS
Negl. Trop. Dis. , 3, e382.
Johansson, M.A., Powers, A.M., Pesik, N., Cohen, N.J. & Staples, J.E.
(2014). Nowcasting the Spread of Chikungunya Virus in the Americas.PLOS ONE , 9, e104915.
Johnson, B.J., Manby, R. & Devine, G.J. (2020). What Happens on
Islands, doesn’t Stay on Islands: Patterns of Synchronicity in Mosquito
Nuisance and Host-Seeking Activity between a Mangrove Island and
Adjacent Coastal Development. Urban Ecosyst. , 23, 1321–1333.
Johnson, L.R., Ben-Horin, T., Lafferty, K.D., McNally, A., Mordecai, E.,
Paaijmans, K.P., et al. (2015). Understanding uncertainty in
temperature effects on vector-borne disease: a Bayesian approach.Ecology , 96, 203–213.
Juliano, S.A. & Stoffregen, T.L. (1994). Effects of habitat drying on
size at and time to metamorphosis in the tree hole mosquito Aedes
triseriatus . Oecologia , 97, 369–376.
Kang, D.S., Kim, S., Cotten, M.A. & Sim, C. (2021). Transcript Assembly
and Quantification by RNA-Seq Reveals Significant Differences in Gene
Expression and Genetic Variants in Mosquitoes of the Culex
pipiens (Diptera: Culicidae) Complex. J. Med. Entomol. , 58,
139–145.
Karim, Md.N., Munshi, S.U., Anwar, N. & Alam, Md.S. (2012). Climatic
factors influencing dengue cases in Dhaka city: A model for dengue
prediction. Indian J. Med. Res. , 136, 32–39.
Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: combining
physiological and spatial data to predict species’ ranges. Ecol.
Lett. , 12, 334–350.
Kellermann, V., Overgaard, J., Hoffmann, A.A., Fløjgaard, C., Svenning,
J.-C. & Loeschcke, V. (2012). Upper thermal limits of Drosophilaare linked to species distributions and strongly constrained
phylogenetically. Proc. Natl. Acad. Sci. , 109, 16228–16233.
Kessler, S. & Guerin, P.M. (2008). Responses of Anopheles
gambiae , Anopheles stephensi , Aedes aegypti , andCulex pipiens mosquitoes (Diptera: Culicidae) to cool and humid
refugium conditions. J. Vector Ecol. , 33, 145–149.
Kikankie, C.K., Brooke, B.D., Knols, B.G., Koekemoer, L.L., Farenhorst,
M., Hunt, R.H., et al. (2010). The infectivity of the
entomopathogenic fungus Beauveria bassiana to
insecticide-resistant and susceptible Anopheles arabiensismosquitoes at two different temperatures. Malar. J. , 9, 71.
Kleynhans, E. & Terblanche, J. (2011). Complex Interactions between
Temperature and Relative Humidity on Water Balance of Adult Tsetse
(Glossinidae, Diptera): Implications for Climate Change. Front.
Physiol. , 2, 74.
Klink, R. van, Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A.
& Chase, J.M. (2020). Meta-analysis reveals declines in terrestrial but
increases in freshwater insect abundances. Science , 368,
417–420.
Knowles, R. & Basu, B.C. (1943). Laboratory Studies on the Infectivity
of Anopheles stephensi . J. Malar. Inst. India , 5.
Konapala, G., Mishra, A.K., Wada, Y. & Mann, M.E. (2020). Climate
change will affect global water availability through compounding changes
in seasonal precipitation and evaporation. Nat. Commun. , 11,
3044.
Kühnholz, S. & Seeley, T.D. (1997). The control of water collection in
honey bee colonies. Behav. Ecol. Sociobiol. , 41, 407–422.
Lajevardi, A., Sajadi, F., Donini, A. & Paluzzi, J.-P.V. (2021).
Studying the Activity of Neuropeptides and Other Regulators of the
Excretory System in the Adult Mosquito. JoVE J. Vis. Exp. ,
e61849.
Lambrechts, L., Paaijmans, K.P., Fansiri, T., Carrington, L.B., Kramer,
L.D., Thomas, M.B., et al. (2011). Impact of daily temperature
fluctuations on dengue virus transmission by Aedes aegypti .Proc. Natl. Acad. Sci. , 108, 7460–7465.
Lardeux, F.J., Tejerina, R.H., Quispe, V. & Chavez, T.K. (2008). A
physiological time analysis of the duration of the gonotrophic cycle ofAnopheles pseudopunctipennis and its implications for malaria
transmission in Bolivia. Malar. J. , 7, 141.
Lawrence, M.G. (2005). The Relationship between Relative Humidity and
the Dewpoint Temperature in Moist Air: A Simple Conversion and
Applications. Bull. Am. Meteorol. Soc. , 86, 225–234.
Lega, J., Brown, H.E. & Barrera, R. (2017). Aedes aegypti(Diptera: Culicidae) Abundance Model Improved With Relative Humidity and
Precipitation-Driven Egg Hatching. J. Med. Entomol. , 54,
1375–1384.
Lenhart, P.A., Eubanks, M.D. & Behmer, S.T. (2015). Water stress in
grasslands: dynamic responses of plants and insect herbivores.Oikos , 124, 381–390.
Lewis, D.J. (1933). Observations on Aëdes aegypti , L. (Dipt.
Culic.) under controlled Atmospheric Conditions. Bull. Entomol.
Res. , 24, 363–372.
Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y.,et al. (2014). Urbanization increases Aedes albopictuslarval habitats and accelerates mosquito development and survivorship.PLoS Negl. Trop. Dis. , 8, e3301.
Lippi, C.A., Stewart-Ibarra, A.M., Muñoz, Á.G., Borbor-Cordova, M.J.,
Mejía, R., Rivero, K., et al. (2018). The Social and Spatial
Ecology of Dengue Presence and Burden during an Outbreak in Guayaquil,
Ecuador, 2012. Int. J. Environ. Res. Public. Health , 15, 827.
Liu, K., Tsujimoto, H., Cha, S.-J., Agre, P. & Rasgon, J.L. (2011).
Aquaporin water channel AgAQP1 in the malaria vector mosquitoAnopheles gambiae during blood feeding and humidity adaptation.Proc. Natl. Acad. Sci. , 108, 6062–6066.
Liu, K., Tsujimoto, H., Huang, Y., Rasgon, J.L. & Agre, P. (2016).
Aquaglyceroporin function in the malaria mosquito Anopheles
gambiae . Biol. Cell , 108, 294–305.
Liu, O.R. & Gaines, S.D. (2022). Environmental context dependency in
species interactions. Proc. Natl. Acad. Sci. , 119, e2118539119.
Lokoshchenko, M.A. (2017). Urban Heat Island and Urban Dry Island in
Moscow and Their Centennial Changes. J. Appl. Meteorol.
Climatol. , 56, 2729–2745.
Lomax, J.L. (1968). Proceedings. Fifty-fifth annual meeting. New Jersey
Mosquito Extermination Association. A study of mosquito mortality
relative to temperature and relative humidity in an overwintering site.Proc. Fifty-Fifth Annu. Meet. N. J. Mosq. Exterm. Assoc. Study
Mosq. Mortal. Relat. Temp. Relat. Humidity Overwintering Site .
Lucio, P.S., Degallier, N., Servain, J., Hannart, A., Durand, B., de
Souza, R.N., et al. (2013). A case study of the influence of
local weather on Aedes aegypti (L.) aging and mortality. J.
Vector Ecol. , 38, 20–37.
Lyons, C.L., Coetzee, M., Terblanche, J.S. & Chown, S.L. (2014).
Desiccation tolerance as a function of age, sex, humidity and
temperature in adults of the African malaria vectors Anopheles
arabiensis and Anopheles funestus . J. Exp. Biol. , 217,
3823–3833.
Maffey, L., Garzón, M.J., Confalonieri, V., Chanampa, M.M., Hasson, E.
& Schweigmann, N. (2020). Genome-Wide Screening of Aedes aegypti(Culicidae: Diptera) Populations From Northwestern Argentina: Active and
Passive Dispersal Shape Genetic Structure. J. Med. Entomol. , 57,
1930–1941.
Magombedze, G., Ferguson, N.M. & Ghani, A.C. (2018). A trade-off
between dry season survival longevity and wet season high net
reproduction can explain the persistence of Anopheles mosquitoes.Parasit. Vectors , 11, 576.
Marron, M.T., Markow, T.A., Kain, K.J. & Gibbs, A.G. (2003). Effects of
starvation and desiccation on energy metabolism in desert and mesicDrosophila . J. Insect Physiol. , 49, 261–270.
Matowo, N.S., Abbasi, S., Munhenga, G., Tanner, M., Mapua, S.A., Oullo,
D., et al. (2019). Fine-scale spatial and temporal variations in
insecticide resistance in Culex pipiens complex mosquitoes in
rural south-eastern Tanzania. Parasit. Vectors , 12, 413.
Mayne, B. (1930). A Study of the Influence of Relative Humidity on the
Life and Infectibility of the Mosquito. Indian J. Med. Res. , 17.
Mcgaughey, W.H. & Knight, K.L. (1967). Preoviposition Activity of the
Black Salt-Marsh Mosquito, Aedes taeniorhynchus (Diptera:
Culicidae)1. Ann. Entomol. Soc. Am. , 60, 107–115.
McLaughlin, K., Russell, T.L., Apairamo, A., Bugoro, H., Oscar, J.,
Cooper, R.D., et al. (2019). Smallest Anopheles farautioccur during the peak transmission season in the Solomon Islands.Malar. J. , 18, 1–8.
Miazgowicz, K.L., Shocket, M.S., Ryan, S.J., Villena, O.C., Hall, R.J.,
Owen, J., et al. (2020). Age influences the thermal suitability
of Plasmodium falciparum transmission in the Asian malaria vectorAnopheles stephensi . Proc. R. Soc. B Biol. Sci. , 287,
20201093.
Mitchell, A. & Bergmann, P.J. (2016). Thermal and moisture habitat
preferences do not maximize jumping performance in frogs. Funct.
Ecol. , 30, 733–742.
Mogi, M., Miyagi, I., Abadi, K., & syafruddin. (1996). Inter- and
Intraspecific Variation in Resistance to Desiccation by AdultAedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia.J. Med. Entomol. , 33, 53–57.
Monteiro, L.C.C., Souza, J.R.B. de & Albuquerque, C.M.R. de. (2007).
Eclosion rate, development and survivorship of Aedes albopictus(Skuse) (Diptera: Culicidae) under different water temperatures.Neotrop. Entomol. , 36, 966–971.
Mordecai, E.A., Caldwell, J.M., Grossman, M.K., Lippi, C.A., Johnson,
L.R., Neira, M., et al. (2019). Thermal biology of mosquito-borne
disease. Ecol. Lett. , 22, 1690–1708.
Mordecai, E.A., Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R.,
Lippi, C.A., et al. (2017). Detecting the impact of temperature
on transmission of Zika, dengue, and chikungunya using mechanistic
models. PLoS Negl. Trop. Dis. , 11, e0005568.
Mordecai, E.A., Paaijmans, K.P., Johnson, L.R., Balzer, C., Ben‐Horin,
T., Moor, E. de, et al. (2013). Optimal temperature for malaria
transmission is dramatically lower than previously predicted.Ecol. Lett. , 16, 22–30.
Mordecai, E.A., Ryan, S.J., Caldwell, J.M., Shah, M.M. & LaBeaud, A.D.
(2020). Climate change could shift disease burden from malaria to
arboviruses in Africa. Lancet Planet. Health , 4, e416–e423.
Moreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., Lu, G., Pyke, A.T.,
Hedges, L.M., et al. (2009). A Wolbachia symbiont inAedes aegypti limits infection with dengue, chikungunya, andPlasmodium . Cell , 139, 1268–1278.
Murdock, C.C., Blanford, S., Hughes, G.L., Rasgon, J.L. & Thomas, M.B.
(2014a). Temperature alters Plasmodium blocking byWolbachia . Sci. Rep. , 4, 3932.
Murdock, C.C., Blanford, S., Luckhart, S. & Thomas, M.B. (2014b).
Ambient temperature and dietary supplementation interact to shape
mosquito vector competence for malaria. J. Insect Physiol. , 67,
37–44.
Murdock, C.C., Evans, M.V., McClanahan, T.D., Miazgowicz, K.L. & Tesla,
B. (2017). Fine-scale variation in microclimate across an urban
landscape shapes variation in mosquito population dynamics and the
potential of Aedes albopictus to transmit arboviral disease.PLoS Negl. Trop. Dis. , 11, e0005640.
Murdock, C.C., Moller-Jacobs, L.L. & Thomas, M.B. (2013). Complex
environmental drivers of immunity and resistance in malaria mosquitoes.Proc. R. Soc. B Biol. Sci. , 280, 20132030.
Murdock, C.C., Paaijmans, K.P., Bell, A.S., King, J.G., Hillyer, J.F.,
Read, A.F., et al. (2012). Complex effects of temperature on
mosquito immune function. Proc. R. Soc. B Biol. Sci. , 279,
3357–3366.
Murdock, C.C., Sternberg, E.D. & Thomas, M.B. (2016). Malaria
transmission potential could be reduced with current and future climate
change. Sci. Rep. , 6, 27771.
Ngonghala, C.N., Ryan, S.J., Tesla, B., Demakovsky, L.R., Mordecai,
E.A., Murdock, C.C., et al. (2021). Effects of changes in
temperature on Zika dynamics and control. J. R. Soc. Interface ,
18, 20210165.
Nguyen, K.H., Boersch-Supan, P.H., Hartman, R.B., Mendiola, S.Y.,
Harwood, V.J., Civitello, D.J., et al. (2021). Interventions can
shift the thermal optimum for parasitic disease transmission.Proc. Natl. Acad. Sci. , 118, e2017537118.
Nosrat, C., Altamirano, J., Anyamba, A., Caldwell, J.M., Damoah, R.,
Mutuku, F., et al. (2021). Impact of recent climate extremes on
mosquito-borne disease transmission in Kenya. PLoS Negl. Trop.
Dis. , 15, e0009182.
Okech, B.A., Gouagna, L.C., Knols, B.G.J., Kabiru, E.W., Killeen, G.F.,
Beier, J.C., et al. (2004). Influence of indoor microclimate and
diet on survival of Anopheles gambiae s.s. (Diptera: Culicidae)
in village house conditions in western Kenya. Int. J. Trop. Insect
Sci. , 24, 207–212.
Ostwald, M.M., Smith, M.L. & Seeley, T.D. (2016). The behavioral
regulation of thirst, water collection and water storage in honey bee
colonies. J. Exp. Biol. , 219, 2156–2165.
Paaijmans, K.P., Blanford, S., Chan, B.H.K. & Thomas, M.B. (2012).
Warmer temperatures reduce the vectorial capacity of malaria mosquitoes.Biol. Lett. , 8, 465–468.
Paaijmans, K.P., Heinig, R.L., Seliga, R.A., Blanford, J.I., Blanford,
S., Murdock, C.C., et al. (2013). Temperature variation makes
ectotherms more sensitive to climate change. Glob. Change Biol. ,
19, 2373–2380.
Paaijmans, K.P. & Thomas, M.B. (2011). The influence of mosquito
resting behaviour and associated microclimate for malaria risk.Malar. J. , 10, 183.
Padmanabha, H., Soto, E., Mosquera, M., Lord, C.C. & Lounibos, L.P.
(2010). Ecological Links Between Water Storage Behaviors and Aedes
aegypti Production: Implications for Dengue Vector Control in Variable
Climates. EcoHealth , 7, 78–90.
Palmer, W.H., Varghese, F.S. & Van Rij, R.P. (2018). Natural Variation
in Resistance to Virus Infection in Dipteran Insects. Viruses ,
10, 118.
Parham, P.E. & Hughes, D.A. (2015). Climate influences on the
cost-effectiveness of vector-based interventions against malaria in
elimination scenarios. Philos. Trans. R. Soc. B Biol. Sci. , 370,
20130557.
Pérez-Díaz, J.L., Álvarez-Valenzuela, M.A. & García-Prada, J.C. (2012).
The effect of the partial pressure of water vapor on the surface tension
of the liquid water–air interface. J. Colloid Interface Sci. ,
381, 180–182.
Pilotto, F., Kühn, I., Adrian, R., Alber, R., Alignier, A., Andrews, C.,et al. (2020). Meta-analysis of multidecadal biodiversity trends
in Europe. Nat. Commun. , 11, 3486.
Pincebourde, S., Murdock, C.C., Vickers, M. & Sears, M.W. (2016).
Fine-scale microclimatic variation can shape the responses of organisms
to global change in both natural and urban environments. Integr.
Comp. Biol. , 56, 45–61.
Platt, R.B., Collins, C.L. & Witherspoon, J.P. (1957). Reactions ofAnopheles quadrimaculatus Say to Moisture, Temperature, and
Light. Ecol. Monogr. , 27, 303–324.
Platt, R.B., Love, G.J. & Williams, E.L. (1958). A Positive Correlation
Between Relative Humidity and the Distribution and Abundance ofAedes vexans . Ecology , 39, 167–169.
Pless, E., Hopperstad, K.A., Ledesma, N., Dixon, D., Henke, J.A. &
Powell, J.R. (2020). Sunshine versus gold: The effect of population age
on genetic structure of an invasive mosquito. Ecol. Evol. , 10,
9588–9599.
Pörtner, H.O. & Farrell, A.P. (2008). Physiology and Climate Change.Science , 322, 690–692.
Provost, M.W. (1973). Mosquito flight and night relative humidity in
Florida. Fla. Sci. , 36, 217–225.
Rajpurohit, S., Parkash, R. & Ramniwas, S. (2008). Body melanization
and its adaptive role in thermoregulation and tolerance against
desiccating conditions in drosophilids. Entomol. Res. , 38,
49–60.
Reiskind, M.H. & Lounibos, L.P. (2009). Effects of intraspecific larval
competition on adult longevity in the mosquitoes Aedes aegyptiand Aedes albopictus . Med. Vet. Entomol. , 23, 62–68.
Romps, D.M. (2021). The Rankine–Kirchhoff approximations for moist
thermodynamics. Q. J. R. Meteorol. Soc. , 147, 3493–3497.
Ross, P.A., Axford, J.K., Yang, Q., Staunton, K.M., Ritchie, S.A.,
Richardson, K.M., et al. (2020). Heatwaves cause fluctuations in
wMel Wolbachia densities and frequencies in Aedes aegypti .PLoS Negl. Trop. Dis. , 14, e0007958.
Ross, P.A., Ritchie, S.A., Axford, J.K. & Hoffmann, A.A. (2019). Loss
of cytoplasmic incompatibility in Wolbachia -infected Aedes
aegypti under field conditions. PLoS Negl. Trop. Dis. , 13,
e0007357.
Ross, P.A., Wiwatanaratanabutr, I., Axford, J.K., White, V.L.,
Endersby-Harshman, N.M. & Hoffmann, A.A. (2017). Wolbachiainfections in Aedes aegypti differ markedly in their response to
cyclical heat stress. PLOS Pathog. , 13, e1006006.
Roura-Pascual, N., Hui, C., Ikeda, T., Leday, G., Richardson, D.M.,
Carpintero, S., et al. (2011). Relative roles of climatic
suitability and anthropogenic influence in determining the pattern of
spread in a global invader. Proc. Natl. Acad. Sci. , 108,
220–225.
Rowley, W.A. & Graham, C.L. (1968). The effect of temperature and
relative humidity on the flight performance of female Aedes
aegypti . J. Insect Physiol. , 14, 1251–1257.
Rozen-Rechels, D., Dupoué, A., Lourdais, O., Chamaillé-Jammes, S.,
Meylan, S., Clobert, J., et al. (2019). When water interacts with
temperature: Ecological and evolutionary implications of
thermo-hydroregulation in terrestrial ectotherms. Ecol. Evol. , 9,
10029–10043.
Rudolfs, W. (1923). Observations on the Relations Between
Atmospheric Conditions and the Behavior of Mosquitoes . New Jersey
Agricultural Experiment Stations.
Rudolfs, W. (1925). Relation between Temperature, Humidity and Activity
of House Mosquitoes. J. N. Y. Entomol. Soc. , 33, 163–169.
Ryan, S.J., Carlson, C.J., Tesla, B., Bonds, M.H., Ngonghala, C.N.,
Mordecai, E.A., et al. (2020a). Warming temperatures could expose
more than 1.3 billion new people to Zika virus risk by 2050. Glob.
Change Biol. , 27, 84–93.
Ryan, S.J., Lippi, C.A. & Zermoglio, F. (2020b). Shifting transmission
risk for malaria in Africa with climate change: a framework for planning
and intervention. Malar. J. , 19, 170.
Ryan, S.J., McNally, A., Johnson, L.R., Mordecai, E.A., Ben-Horin, T.,
Paaijmans, K., et al. (2015). Mapping physiological suitability
limits for malaria in Africa under climate change. Vector-Borne
Zoonotic Dis. , 15, 718–725.
Samuel, M.D., Hobbelen, P.H.F., DeCastro, F., Ahumada, J.A., LaPointe,
D.A., Atkinson, C.T., et al. (2011). The dynamics, transmission,
and population impacts of avian malaria in native Hawaiian birds: a
modeling approach. Ecol. Appl. , 21, 2960–2973.
Sang, R., Lutomiah, J., Said, M., Makio, A., Koka, H., Koskei, E.,et al. (2017). Effects of Irrigation and Rainfall on the
Population Dynamics of Rift Valley Fever and Other Arbovirus Mosquito
Vectors in the Epidemic-Prone Tana River County, Kenya. J. Med.
Entomol. , 54, 460–470.
Santos-Vega, M., Bouma, M.J., Kohli, V. & Pascual, M. (2016).
Population density, climate variables and poverty synergistically
structure spatial risk in urban malaria in India. PLoS Negl. Trop.
Dis. , 10, e0005155.
Santos-Vega, M., Martinez, P.P., Vaishnav, K.G., Kohli, V., Desai, V.,
Bouma, M.J., et al. (2022). The neglected role of relative
humidity in the interannual variability of urban malaria in Indian
cities. Nat. Commun. , 13, 533.
Schmidt, C.A., Comeau, G., Monaghan, A.J., Williamson, D.J. & Ernst,
K.C. (2018). Effects of desiccation stress on adult female longevity inAedes aegypti and Ae. albopictus (Diptera: Culicidae):
results of a systematic review and pooled survival analysis.Parasit. Vectors , 11, 267.
Schmidt, W.-P., Suzuki, M., Thiem, V.D., White, R.G., Tsuzuki, A.,
Yoshida, L.-M., et al. (2011). Population Density, Water Supply,
and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial
Analysis. PLOS Med. , 8, e1001082.
Shapiro, L.L.M., Whitehead, S.A. & Thomas, M.B. (2017). Quantifying the
effects of temperature on mosquito and parasite traits that determine
the transmission potential of human malaria. PLOS Biol. , 15,
e2003489.
Shelford, V.E. (1918). A Comparison of the Responses of Animals in
Gradients of Environmental Factors with Particular Reference to the
Method of Reaction of Representatives of the Various Groups from
Protozoa to Mammals. Science , 48, 225–230.
Shocket, M.S., Ryan, S.J. & Mordecai, E.A. (2018a). Temperature
explains broad patterns of Ross River virus transmission. eLife ,
7, e37762.
Shocket, M.S., Vergara, D., Sickbert, A.J., Walsman, J.M., Strauss,
A.T., Hite, J.L., et al. (2018b). Parasite rearing and infection
temperatures jointly influence disease transmission and shape
seasonality of epidemics. Ecology , 99, 1975–1987.
Shocket, M.S., Verwillow, A.B., Numazu, M.G., Slamani, H., Cohen, J.M.,
El Moustaid, F., et al. (2020). Transmission of West Nile and
five other temperate mosquito-borne viruses peaks at temperatures
between 23°C and 26°C. eLife , 9, e58511.
Sinclair, B.J., Marshall, K.E., Sewell, M.A., Levesque, D.L., Willett,
C.S., Slotsbo, S., et al. (2016). Can we predict ectotherm
responses to climate change using thermal performance curves and body
temperatures? Ecol. Lett. , 19, 1372–1385.
Singh, K.E.P. & Micks, D.W. (1957). The Effects of Surface Tension on
Mosquito Development. Mosq. News , 17.
Siraj, A.S., Rodriguez-Barraquer, I., Barker, C.M., Tejedor-Garavito,
N., Harding, D., Lorton, C., et al. (2018). Spatiotemporal
incidence of Zika and associated environmental drivers for the 2015-2016
epidemic in Colombia. Sci. Data , 5, 180073.
Siraj, A.S., Santos-Vega, M., Bouma, M.J., Yadeta, D., Carrascal, D.R.
& Pascual, M. (2014). Altitudinal Changes in Malaria Incidence in
Highlands of Ethiopia and Colombia. Science .
Soti, V., Tran, A., Degenne, P., Chevalier, V., Seen, D.L., Thiongane,
Y., et al. (2012). Combining Hydrology and Mosquito Population
Models to Identify the Drivers of Rift Valley Fever Emergence in
Semi-Arid Regions of West Africa. PLoS Negl. Trop. Dis. , 6,
e1795.
Steiner, F.M., Schlick-Steiner, B.C., VanDerWal, J., Reuther, K.D.,
Christian, E., Stauffer, C., et al. (2008). Combined modelling of
distribution and niche in invasion biology: a case study of two invasiveTetramorium ant species. Divers. Distrib. , 14, 538–545.
Sternberg, E.D. & Thomas, M.B. (2014). Local adaptation to temperature
and the implications for vector-borne diseases. Trends
Parasitol. , 30, 115–122.
Stewart Ibarra, A.M., Ryan, S.J., Beltrán, E., Mejía, R., Silva, M. &
Muñoz, Á. (2013). Dengue Vector Dynamics (Aedes aegypti )
Influenced by Climate and Social Factors in Ecuador: Implications for
Targeted Control. PLOS ONE , 8, e78263.
Stewart, I.D. & Oke, T.R. (2012). Local Climate Zones for Urban
Temperature Studies. Bull. Am. Meteorol. Soc. , 93, 1879–1900.
Stoddard, S.T., Morrison, A.C., Vazquez-Prokopec, G.M., Soldan, V.P.,
Kochel, T.J., Kitron, U., et al. (2009). The role of human
movement in the transmission of vector-borne pathogens. PLoS Negl.
Trop. Dis. , 3, e481.
Stuchin, M., Machalaba, C.C. & Karesh, W.B. (2016). VECTOR-BORNE
DISEASES: ANIMALS AND PATTERNS . Glob. Health Impacts Vector-Borne
Dis. Workshop Summ. National Academies Press (US).
Suwanchaichinda, C. & Paskewitz, S.M. (1998). Effects of Larval
Nutrition, Adult Body Size, and Adult Temperature on the Ability ofAnopheles gambiae (Diptera: Culicidae) to Melanize Sephadex
Beads. J. Med. Entomol. , 35, 157–161.
Takken, W. & Lindsay, S. (2019). Increased threat of urban malaria fromAnopheles stephensi mosquitoes, Africa. Emerg. Infect.
Dis. , 25, 1431–1433.
Tatzel, J., Prusiner, S.B. & Welch, W.J. (1996). Chemical chaperones
interfere with the formation of scrapie prion protein. EMBO J. ,
15, 6363–6373.
Tesla, B., Demakovsky, L.R., Mordecai, E.A., Ryan, S.J., Bonds, M.H.,
Ngonghala, C.N., et al. (2018). Temperature drives Zika virus
transmission: evidence from empirical and mathematical models.Proc. R. Soc. B Biol. Sci. , 285.
Thomas, S., Ravishankaran, S., Justin, J.A., Asokan, A., Mathai, M.T.,
Valecha, N., et al. (2016). Overhead tank is the potential
breeding habitat of Anopheles stephensi in an urban transmission
setting of Chennai, India. Malar. J. , 15, 274.
Thomas, S., Ravishankaran, S., Justin, N.A.J.A., Asokan, A., Kalsingh,
T.M.J., Mathai, M.T., et al. (2018). Microclimate variables of
the ambient environment deliver the actual estimates of the extrinsic
incubation period of Plasmodium vivax and Plasmodium
falciparum : a study from a malaria-endemic urban setting, Chennai in
India. Malar. J. , 17, 201.
Thomas, S., Ravishankaran, S., Justin, N.A.J.A., Asokan, A., Mathai,
M.T., Valecha, N., et al. (2017). Resting and feeding preferences
of Anopheles stephensi in an urban setting, perennial for
malaria. Malar. J. , 16, 111.
Thomson, R.C.M. (1938). The Reactions of Mosquitoes to Temperature and
Humidity. Bull. Entomol. Res. , 29, 125–140.
Tun-Lin, W., Burkot, T.R. & Kay, B.H. (2000). Effects of temperature
and larval diet on development rates and survival of the dengue vectorAedes aegypti in north Queensland, Australia. Med. Vet.
Entomol. , 14, 31–37.
Ulrich, J.N., Beier, J.C., Devine, G.J. & Hugo, L.E. (2016). Heat
Sensitivity of wMel Wolbachia during Aedes aegyptiDevelopment. PLoS Negl. Trop. Dis. , 10, e0004873.
United Nations, D. of E. and S.A., Population Division. (2019).World Urbanization Prospects: The 2018 Revision
(ST/ESA/SER.A/420) . United Nations, New York, NY.
Urbanski, J.M., Benoit, J.B., Michaud, M.R., Denlinger, D.L. &
Armbruster, P. (2010). The molecular physiology of increased egg
desiccation resistance during diapause in the invasive mosquito,Aedes albopictus . Proc. R. Soc. B Biol. Sci. , 277,
2683–2692.
Vega-Rúa, A., Marconcini, M., Madec, Y., Manni, M., Carraretto, D.,
Gomulski, L.M., et al. (2020). Vector competence of Aedes
albopictus populations for chikungunya virus is shaped by their
demographic history. Commun. Biol. , 3, 1–13.
Verhulst, N.O., Brendle, A., Blanckenhorn, W.U. & Mathis, A. (2020).
Thermal preferences of subtropical Aedes aegypti and temperateAe. japonicus mosquitoes. J. Therm. Biol. , 91, 102637.
Villena, O.C., Ryan, S.J., Murdock, C.C. & Johnson, L.R. (2022).
Temperature impacts the transmission of malaria parasites byAnopheles gambiae and Anopheles stephensi mosquitoes.Ecology , n/a, e3685.
Vorhees, A.S., Gray, E.M. & Bradley, T.J. (2013). Thermal Resistance
and Performance Correlate with Climate in Populations of a Widespread
Mosquito. Physiol. Biochem. Zool. , 86, 73–81.
Wang, G.-H., Gamez, S., Raban, R.R., Marshall, J.M., Alphey, L., Li, M.,et al. (2021). Combating mosquito-borne diseases using genetic
control technologies. Nat. Commun. , 12, 4388.
Warner, R.E. (1968). The Role of Introduced Diseases in the Extinction
of the Endemic Hawaiian Avifauna. The Condor , 70, 101–120.
Weaver, S.C., Charlier, C., Vasilakis, N. & Lecuit, M. (2018). Zika,
Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu.
Rev. Med. , 69, 395–408.
Weihrauch, D., Donini, A. & O’Donnell, M.J. (2012). Ammonia transport
by terrestrial and aquatic insects. J. Insect Physiol. , Molecular
Physiology of Epithelial Transport in Insects - a Tribute to William R.
Harvey, 58, 473–487.
W.H.O. (2020). World malaria report 2020: 20 years of global
progress and challenges. World Health Organization, Geneva.
Wilke, A.B.B. & Marrelli, M.T. (2012). Genetic Control of Mosquitoes:
population suppression strategies. Rev. Inst. Med. Trop. São
Paulo , 54, 287–292.
Wilke, A.B.B. & Marrelli, M.T. (2015). Paratransgenesis: a promising
new strategy for mosquito vector control. Parasit. Vectors , 8,
342.
Wimberly, M.C., Davis, J.K., Evans, M.V., Hess, A., Newberry, P.M.,
Solano-Asamoah, N., et al. (2020). Land cover affects
microclimate and temperature suitability for arbovirus transmission in
an urban landscape. PLoS Negl. Trop. Dis. , 14, e0008614.
Witter, L.A., Johnson, C.J., Croft, B., Gunn, A. & Poirier, L.M.
(2012). Gauging climate change effects at local scales: weather-based
indices to monitor insect harassment in caribou. Ecol. Appl. , 22,
1838–1851.
Wright, R.E. & Knight, K.L. (1966). Effect of environmental factors on
biting activity of Aedes vexans (Meigen) and Aedes
trivittatus (Coquillett). Mosq. News , 26.
Wu, G.C. & Wright, J.C. (2015). Exceptional thermal tolerance and water
resistance in the mite Paratarsotomus macropalpis(Erythracaridae) challenge prevailing explanations of physiological
limits. J. Insect Physiol. , 82, 1–7.
Yang, P., Ren, G. & Hou, W. (2017). Temporal–Spatial Patterns of
Relative Humidity and the Urban Dryness Island Effect in Beijing City.J. Appl. Meteorol. Climatol. , 56, 2221–2237.
Ye, Y.H., Carrasco, A.M., Frentiu, F.D., Chenoweth, S.F., Beebe, N.W.,
Hurk, A.F. van den, et al. (2015). Wolbachia Reduces the
Transmission Potential of Dengue-Infected Aedes aegypti .PLoS Negl. Trop. Dis. , 9, e0003894.
Yu, H.-P., Shao, L., Xiao, K., Mu, L.-L. & Li, G.-Q. (2010).
Hygropreference behaviour and humidity detection in the yellow-spined
bamboo locust, Ceracris kiangsu . Physiol. Entomol. , 35,
379–384.
Yuan, F. & Bauer, M.E. (2007). Comparison of impervious surface area
and normalized difference vegetation index as indicators of surface
urban heat island effects in Landsat imagery. Remote Sens.
Environ. , 106, 375–386.
Yurchenko, A.A., Masri, R.A., Khrabrova, N.V., Sibataev, A.K., Fritz,
M.L. & Sharakhova, M.V. (2020). Genomic differentiation and
intercontinental population structure of mosquito vectors Culex
pipiens pipiens and Culex pipiens molestus . Sci. Rep. ,
10, 7504.
Zhang, L.J., Wu, Z.L., Wang, K.F., Liu, Q., Zhuang, H.M. & Wu, G.
(2015). Trade-off between thermal tolerance and insecticide resistance
in Plutella xylostella . Ecol. Evol. , 5, 515–530.
Zouache, K., Fontaine, A., Vega-Rua, A., Mousson, L., Thiberge, J.-M.,
Lourenco-De-Oliveira, R., et al. (2014). Three-way interactions
between mosquito population, viral strain and temperature underlying
chikungunya virus transmission potential. Proc. R. Soc. B Biol.
Sci. , 281, 20141078.