References

M. Lotfi, M. R. Hamblin, and N. Rezaei, “Covid-19: Transmission, prevention, and potential therapeutic opportunities,” Clinica chimica acta, vol. 508, pp. 254–266, 2020.
J. Chen, R. Wang, M. Wang, and G.-W. Wei, “Mutations strengthened
sars-cov-2 infectivity,” Journal of molecular biology, vol. 432, no. 19, pp. 5212– 5226, 2020.
  1. K. Tao, P. L. Tzou, J. Nouhin, R. K. Gupta, T. de Oliveira, S. L. Kosakovsky Pond, D. Fera, and R. W. Shafer, “The biological and clinical significance of emerging sars-cov-2 variants,” Nature Reviews Genetics, vol. 22, no. 12, pp. 757–773, 2021.
  2. S. Elbe and G. Buckland-Merrett, “Data, disease and diplomacy: Gisaid’s innovative contribution to global health,” Global challenges, vol. 1, no. 1, pp. 33–46, 2017.
  3. Y. Cao, J. Wang, F. Jian, T. Xiao, W. Song, A. Yisimayi, W. Huang, Q. Li, P. Wang, R. An, et al., “Omicron escapes the majority of existing sars-cov-2 neutralizing antibodies,” Nature, vol. 602, no. 7898, pp. 657–663, 2022.
  4. T. K. Scheel, J. M. Luna, M. Liniger, E. Nishiuchi, K. Rozen-Gagnon, A. Shlomai, G. Auray, M. Gerber, J. Fak, I. Keller, et al., “A broad rna virus survey reveals both mirna dependence and functional sequestration,” Cell host & microbe, vol. 19, no. 3, pp. 409–423, 2016.
  5. S. Yekta, I.-h. Shih, and D. P. Bartel, “Microrna-directed cleavage of hoxb8 mrna,” Science, vol. 304, no. 5670, pp. 594–596, 2004.
  6. H. Ingle, S. Kumar, A. A. Raut, A. Mishra, D. D. Kulkarni, T. Kameyama, A. Takaoka, S. Akira, and H. Kumar, “The microrna mir-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication,” Science signaling, vol. 8, no. 406, pp. ra126–ra126, 2015.
  7. J. Huang, F. Wang, E. Argyris, K. Chen, Z. Liang, H. Tian, W. Huang, K. Squires, G. Verlinghieri, and H. Zhang, “Cellular micrornas contribute to hiv-1 latency in resting primary cd4+ t lymphocytes,”Nature medicine, vol. 13, no. 10, pp. 1241–1247, 2007.
  8. S. A. Nersisyan, S. Myu, O. Ai, and V. Vi, “Role of ace2/tmprss2 genes regulation by intestinal microrna isoforms in the covid-19 pathogenesis,” Bulletin of Russian State Medical University, no. 2, pp. 16–18, 2020.
  9. W. J. Lukiw, “microrna heterogeneity, innate-immune defense and the efficacy of sars-cov-2 infection—a commentary,” Non-coding RNA, vol. 7, no. 2, p. 37, 2021.
  10. M. A.-A.-K. Khan, M. R. U. Sany, M. S. Islam, and A. B. M. M. K. Islam, “Epigenetic regulator mirna pattern differences among sars-cov, sars-cov-2, and sars-cov-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic covid-19,” Frontiers in genetics, vol. 11, p. 765, 2020.
  11. M. D. S. Demirci and A. Adan, “Computational analysis of micrornamediated interactions in sars-cov-2 infection,” PeerJ, vol. 8, p. e9369, 2020.
  12. K. J. Capistrano, J. Richner, J. Schwartz, S. K. Mukherjee, D. Shukla, and A. R. Naqvi, “Host micrornas exhibit differential propensity to interact with sars-cov-2 and variants of concern,” Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1869, no. 2, p. 166612, 2023.
  13. J.-Q. Zhou, G.-X. Liu, X.-L. Huang, and H.-T. Gan, “The importance of fecal nucleic acid detection in patients with coronavirus disease (covid-19): A systematic review and meta-analysis,” Journal of Medical Virology, vol. 94, no. 6, pp. 2317–2330, 2022.
  14. A. Zollner, R. Koch, A. Jukic, A. Pfister, M. Meyer, A. Ro¨ssler, J. Kimpel, T. E. Adolph, and H. Tilg, “Postacute covid-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases,” Gastroenterology, vol. 163, no. 2, pp. 495–506, 2022.
  15. S. Nersisyan, A. Zhiyanov, M. Shkurnikov, and A. Tonevitsky, “T-cov: a comprehensive portal of hla-peptide interactions affected by sars-cov-2 mutations,” Nucleic acids research, vol. 50, no. D1, pp. D883–D887, 2022.
  16. S. Khare, C. Gurry, L. Freitas, M. B. Schultz, G. Bach, A. Diallo, N. Akite, J. Ho, R. T. Lee, W. Yeo, et al., “Gisaid’s role in pandemic response,” China CDC Weekly, vol. 3, no. 49, p. 1049, 2021.
  17. A. O’Toole, E. Scher, A. Underwood, B. Jackson, V. Hill, J. T. McCrone,´ R. Colquhoun, C. Ruis, K. Abu-Dahab, B. Taylor, et al., “Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool,” Virus evolution, vol. 7, no. 2, p. veab064, 2021.
  18. A. Grimson, K. K.-H. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim, and D. P. Bartel, “Microrna targeting specificity in mammals: determinants beyond seed pairing,” Molecular cell, vol. 27, no. 1, pp. 91–105, 2007.
  19. D. Baek, J. Vill´en, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel, “The impact of micrornas on protein output,” Nature, vol. 455, no. 7209, pp. 64–71, 2008.
  20. V. Agarwal, G. W. Bell, J.-W. Nam, and D. P. Bartel, “Predicting effective microrna target sites in mammalian mrnas,” elife, vol. 4, p. e05005, 2015.
  21. W. Liu and X. Wang, “Prediction of functional microrna targets by integrative modeling of microrna binding and target expression data,”Genome
biology, vol. 20, pp. 1–10, 2019.
  1. K. C. Miranda, T. Huynh, Y. Tay, Y.-S. Ang, W.-L. Tam, A. M. Thomson, B. Lim, and I. Rigoutsos, “A pattern-based method for the identification of microrna binding sites and their corresponding heteroduplexes,” Cell, vol. 126, no. 6, pp. 1203–1217, 2006.
  2. S. Nersisyan, A. Gorbonos, A. Makhonin, A. Zhiyanov, M. Shkurnikov, and A. Tonevitsky, “isomirtar: a comprehensive portal of pan-cancer 5’-isomir targeting,” PeerJ, vol. 10, p. e14205, 2022.
  3. S. Nersisyan, A. Zhiyanov, N. Engibaryan, D. Maltseva, and A. Tonevitsky,
“A novel approach for a joint analysis of isomir and mrna expression data reveals features of isomir targeting in breast cancer,”Frontiers in Genetics, vol. 13, 2022.
  1. K. Katoh, K. Misawa, K.-i. Kuma, and T. Miyata, “Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform,” Nucleic acids research, vol. 30, no. 14, pp. 3059–3066, 2002.
  2. H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochastically larger than the other,” The annals of mathematical statistics, pp. 50–60, 1947.
  3. J. H. Zar, “Significance testing of the spearman rank correlation coefficient,” Journal of the American Statistical Association, vol. 67, no. 339, pp. 578–580, 1972.
  4. C. Spearman, “The proof and measurement of association between two things,” The American Journal of Psychology, vol. 100, no. 3/4, pp. 441–471, 1987.
  5. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,et al., “Scipy 1.0: fundamental algorithms for scientific computing in python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.
  6. C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,et al., “Array programming with numpy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020.
  7. O. Tange et al., “Gnu parallel-the command-line power tool,”The USENIX Magazine, vol. 36, no. 1, pp. 42–47, 2011.
  8. W. McKinney et al., “Data structures for statistical computing in python,” in Proceedings of the 9th Python in Science Conference, vol. 445, pp. 51–56, Austin, TX, 2010.
  9. J. D. Hunter, “Matplotlib: A 2d graphics environment,”Computing in science & engineering, vol. 9, no. 03, pp. 90–95, 2007.
  10. M. L. Waskom, “seaborn: statistical data visualization,”Journal of Open Source Software, vol. 6, no. 60, p. 3021, 2021.
  11. B. D. Brown and L. Naldini, “Exploiting and antagonizing microrna regulation for therapeutic and experimental applications,”Nature Reviews Genetics, vol. 10, no. 8, pp. 578–585, 2009.
  12. R. Suzuki, D. Yamasoba, I. Kimura, L. Wang, M. Kishimoto, J. Ito, Y. Morioka, N. Nao, H. Nasser, K. Uriu, et al., “Attenuated fusogenicity and pathogenicity of sars-cov-2 omicron variant,”Nature, vol. 603, no. 7902, pp. 700–705, 2022.
  13. U. Bissels, S. Wild, S. Tomiuk, A. Holste, M. Hafner, T. Tuschl, and A. Bosio, “Absolute quantification of micrornas by using a universal reference,” Rna, vol. 15, no. 12, pp. 2375–2384, 2009.
  14. J. Van Cleemput, W. van Snippenberg, L. Lambrechts, A. Dendooven, V. D’Onofrio, L. Couck, W. Trypsteen, J. Vanrusselt, S. Theuns, N. Vereecke, et al., “Organ-specific genome diversity of replication-competent sars-cov-2,” Nature communications, vol. 12, no. 1, p. 6612, 2021.
  15. M. H. Cha, M. Regueiro, and D. S. Sandhu, “Gastrointestinal and hepatic manifestations of covid-19: A comprehensive review,”World journal of
gastroenterology , vol. 26, no. 19, p. 2323, 2020.
  1. Y. Akiyama, N. Kinoshita, K. Sadamasu, M. Nagashima, I. Yoshida, Y. Kusaba, T. Suzuki, M. Nagashima, M. Ishikane, J. Takasaki, et al., “A pilot study on viral load in stool samples of patients with covid-19 suffering from diarrhea,” Japanese Journal of Infectious Diseases, vol. 75, no. 1, pp. 36–40, 2022.
  2. D. A. Schwartz, S. B. Mulkey, and D. J. Roberts, “Sars-cov-2 placentitis, stillbirth, and maternal covid-19 vaccination: clinical–pathologic correlations,” American journal of obstetrics and gynecology, 2022.
  3. F. Facchetti, M. Bugatti, E. Drera, C. Tripodo, E. Sartori, V. Cancila, M. Papaccio, R. Castellani, S. Casola, M. B. Boniotti,et al., “Sars-cov2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of placenta,”EBioMedicine, vol. 59, p. 102951, 2020.
  4. C. Wei, K.-J. Shan, W. Wang, S. Zhang, Q. Huan, and W. Qian, “Evidence for a mouse origin of the sars-cov-2 omicron variant,”Journal of genetics
and genomics, vol. 48, no. 12, pp. 1111–1121, 2021.
  1. D. P. Martin, S. Lytras, A. G. Lucaci, W. Maier, B. Gru¨ning, S. D. Shank, S. Weaver, O. A. MacLean, R. J. Orton, P. Lemey, et al., “Selection analysis identifies clusters of unusual mutational changes in omicron lineage ba. 1 that likely impact spike function,”Molecular biology and evolution, vol. 39, no. 4, p. msac061, 2022.
  2. Y. Sun, W. Lin, W. Dong, and J. Xu, “Origin and evolutionary analysis of the sars-cov-2 omicron variant,” Journal of biosafety and biosecurity, vol. 4, no. 1, pp. 33–37, 2022.
  3. S. Mallapaty, “Where did omicron come from? three key theories.,”Nature, pp. 26–28, 2022.
  4. B. Choi, M. C. Choudhary, J. Regan, J. A. Sparks, R. F. Padera, X. Qiu, I. H. Solomon, H.-H. Kuo, J. Boucau, K. Bowman, et al., “Persistence and evolution of sars-cov-2 in an immunocompromised host,” New England Journal of Medicine, vol. 383, no. 23, pp. 2291–2293, 2020.
  5. F. A. F. d. Silva, B. B. d. Brito, M. L. C. Santos, H. S. Marques, R. T. d. Silva Ju´nior, L. S. d. Carvalho, E. S. Vieira, M. V. Oliveira, and F. F. d. Melo,
“Covid-19 gastrointestinal manifestations: a systematic review,”Revista da Sociedade Brasileira de Medicina Tropical, vol. 53, 2020.
  1. H. Crook, S. Raza, J. Nowell, M. Young, and P. Edison, “Long covid—mechanisms, risk factors, and management,” bmj, vol. 374, 2021.
  2. D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O’Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, et al., “A sars-cov-2 protein interaction map reveals targets for drug repurposing,” Nature, vol. 583, no. 7816, pp. 459–468, 2020.
  3. K. Vermeire, T. W. Bell, V. Van Puyenbroeck, A. Giraut, S. Noppen, S. Liekens, D. Schols, E. Hartmann, K.-U. Kalies, and M. Marsh, “Signal peptide-binding drug as a selective inhibitor of co-translational protein translocation,” PLoS biology, vol. 12, no. 12, p. e1002011, 2014.
  4. J. Zou, C. Kurhade, S. Patel, N. Kitchin, K. Tompkins, M. Cutler, D. Cooper, Q. Yang, H. Cai, A. Muik, et al., “Neutralization of ba. 4–ba. 5, ba. 4.6, ba.
2.75. 2, bq. 1.1, and xbb. 1 with bivalent vaccine,” New England Journal of Medicine, 2023.