References
Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F. E., Figueroa, M. E., Melnick, A., & Mason, C. E. (2012). methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biology,13(10), R87. https://doi.org/10.1186/gb-2012-13-10-r87 Aliaga, B., Bulla, I., Mouahid, G., Duval, D., & Grunau, C. (2019). Universality of the DNA methylation codes in Eucaryotes.Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-37407-8 Anastasiadi, D., Díaz, N., & Piferrer, F. (2017). Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Scientific Reports, 7(1), 12401. https://doi.org/10.1038/s41598-017-10861-6 Anastasiadi, D., Esteve-Codina, A., & Piferrer, F. (2018). Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics and Chromatin,11(1). https://doi.org/10.1186/s13072-018-0205-1 Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10), R106. https://doi.org/10.1186/gb-2010-11-10-r106 Andrews, S. (2010). FastQC-A Quality Control application for FastQ files. Artemov, A. v., Mugue, N. S., Rastorguev, S. M., Zhenilo, S., Mazur, A. M., Tsygankova, S. v., Boulygina, E. S., Kaplun, D., Nedoluzhko, A. v., Medvedeva, Y. A., & Prokhortchouk, E. B. (2017). Genome-wide DNA methylation profiling reveals epigenetic adaptation of stickleback to marine and freshwater conditions. Molecular Biology and Evolution, 34(9), 2203–2213. https://doi.org/10.1093/molbev/msx156 Bagherie-Lachidan, M., Wright, S. I., & Kelly, S. P. (2009). Claudin-8 and -27 tight junction proteins in puffer fish Tetraodon nigroviridis acclimated to freshwater and seawater. Journal of Comparative Physiology B, 179(4), 419–431.https://doi.org/10.1007/s00360-008-0326-0Bertocci, L. A., Rovatti, J. R., Wu, A., Morey, A., Bose, D. D., & Kinney, S. R. M. (2022). Calcium handling genes are regulated by promoter DNA methylation in colorectal cancer cells. European Journal of Pharmacology, 915, 174698. https://doi.org/10.1016/j.ejphar.2021.174698 Brie, B., Ornstein, A., Ramirez, M.C., Lacau-Mengido, I., Becu-Villalobos, D. (2020). Epigenetic modifications in the GH-dependent Prlr, Hnf6, Cyp7b1, Adh1 and Cyp2a4 genes. J. Molecular Endocrinology, 64(3), 165-179.https://doi.org/10.1530/JME-19-0205Bian, X., & Gao, Y. (2021). DNA methylation and gene expression alterations in zebrafish embryos exposed to cadmium. Environmental Science and Pollution Research, 28(23), 30101–30110. https://doi.org/10.1007/s11356-021-12691-6 Bird, A. (2002). DNA methylation patterns and epigenetic memory. InGenes and Development (Vol. 16, Issue 1, pp. 6–21). https://doi.org/10.1101/gad.947102 Blondeau-Bidet, E., Hiroi, J., & Lorin-Nebel, C. (2019). Ion uptake pathways in European sea bass Dicentrarchus labrax. Gene,692, 126–137. https://doi.org/10.1016/j.gene.2019.01.006 Bodinier, C., Lorin-Nebel, C., Charmantier, G., Boulo, V. (2009). Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of juvenile Dicentrarchus labrax exposed to seawater and freshwater. Comparative Biochemistry and Physiology A, 153(3), 345-351. https://doi.org/10.1016/j.cbpa.2009.03.011. Bossus, M., Charmantier, G., Blondeau-Bidet, E., Valletta, B., Boulo, V., & Lorin-Nebel, C. (2013). The ClC-3 chloride channel and osmoregulation in the European Sea Bass, Dicentrarchus labrax.Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 183(5), 641–662. https://doi.org/10.1007/s00360-012-0737-9 Brenet, F., Moh, M., Funk, P., Feierstein, E., Viale, A. J., Socci, N. D., & Scandura, J. M. (2011). DNA Methylation of the First Exon Is Tightly Linked to Transcriptional Silencing. PLoS ONE,6(1), e14524. https://doi.org/10.1371/journal.pone.0014524 Breves, J. P., Inokuchi, M., Yamaguchi, Y., Seale, A. P., Hunt, B. L., Watanabe, S., Lerner, D. T., Kaneko, T., & Grau, E. G. (2016). Hormonal regulation of aquaporin 3: opposing actions of prolactin and cortisol in tilapia gill. Journal of Endocrinology, 230(3), 325–337. https://doi.org/10.1530/JOE-16-0162 Chang, C.-H., Liu, C.-J., Lu, W.-J., Wu, L.-Y., Lai, K.-J., Lin, Y.-T., & Lee, T.-H. (2022). Hypothermal Effects on Energy Supply for Ionocytes in Gills of Freshwater- and Seawater-Acclimated Milkfish, Chanos chanos. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.880103 Chang, J. C.-H., Wu, S.-M., Tseng, Y.-C., Lee, Y.-C., Baba, O., & Hwang, P.-P. (2007). Regulation of glycogen metabolism in gills and liver of the euryhaline tilapia (Oreochromis mossambicus) during acclimation to seawater. Journal of Experimental Biology,210(19), 3494–3504. https://doi.org/10.1242/jeb.007146 Chasiotis, H., Kolosov, D., Bui, P., & Kelly, S. P. (2012). Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: A review. In Respiratory Physiology and Neurobiology (Vol. 184, Issue 3, pp. 269–281). https://doi.org/10.1016/j.resp.2012.05.020 Cutler, C. P., & Cramb, G. (2002). Branchial expression of an aquaporin 3 (AQP-3) homologue is downregulated in the European eel Anguilla anguilla following seawater acclimation. Journal of Experimental Biology, 205(17), 2643–2651. https://doi.org/10.1242/jeb.205.17.2643 Czubak-Prowizor, K., Babinska, A., & Swiatkowska, M. (2022). The F11 Receptor (F11R)/Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A) in cancer progression. Molecular and Cellular Biochemistry,477(1), 79–98. https://doi.org/10.1007/s11010-021-04259-2 De Larco, J. E., Wuertz, B. R. K., Yee, D., Rickert, B. L., & Furcht, L. T. (2003). Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells.Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13988–13993. https://doi.org/10.1073/pnas.2335921100 Delon, I., & Brown, N. H. (2007). Integrins and the actin cytoskeleton.Current Opinion in Cell Biology, 19(1), 43–50. https://doi.org/10.1016/j.ceb.2006.12.013 Dobin, A., & Gingeras, T. R. (2016). Optimizing RNA-seq mapping with STAR. In Methods in Molecular Biology (Vol. 1415, pp. 245–262). Humana Press Inc. https://doi.org/10.1007/978-1-4939-3572-7_13 Dufour, V., Cantou, M., & Lecomte, F. (2009). Identification of sea bass (Dicentrarchus labrax) nursery areas in the north-western Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 89(7), 1367–1374. https://doi.org/10.1017/S0025315409000368 Engelund, M. B., Yu, A. S. L., Li, J., Madsen, S. S., Færgeman, N. J., & Tipsmark, C. K. (2012). Functional characterization and localization of a gill-specific claudin isoform in Atlantic salmon. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(2), R300–R311. https://doi.org/10.1152/ajpregu.00286.2011 Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 Fan, Z., & Makielski, J. C. (1997). Anionic Phospholipids Activate ATP-sensitive Potassium Channels. Journal of Biological Chemistry, 272(9), 5388–5395. https://doi.org/10.1074/jbc.272.9.5388 Feng, S., Cokus, S. J., Zhang, X., Chen, P. Y., Bostick, M., Goll, M. G., Hetzel, J., Jain, J., Strauss, S. H., Halpern, M. E., Ukomadu, C., Sadler, K. C., Pradhan, S., Pellegrini, M., & Jacobsen, S. E. (2010). Conservation and divergence of methylation patterning in plants and animals. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8689–8694. https://doi.org/10.1073/pnas.1002720107 Flores, K. B., Wolschin, F., & Amdam, G. v. (2013). The role of methylation of DNA in environmental adaptation. Integrative and Comparative Biology, 53(2), 359–372. https://doi.org/10.1093/icb/ict019 Fougere, B., Barnes, K.R., Francis, M.E., Claus, L.N., Cozzi, R.R.F., Marshall, W.S. (2020). Focal adhesion kinase and osmotic responses in ionocytes of Fundulus heteroclitus, a euryhaline teleost fish.Comparative Biochemistry and Physiology A: Molecular & Integrative Physiology 241:110639. https://doi.org/10.1016/j.cbpa.2019.110639 Gault, C. R., Obeid, L. M., & Hannun, Y. A. (2010). An Overview of Sphingolipid Metabolism: From Synthesis to Breakdown (pp. 1–23). https://doi.org/10.1007/978-1-4419-6741-1_1 Giffard-Mena, I., Boulo, V., Aujoulat, F., Fowden, H., Castille, R., Charmantier, G., & Cramb, G. (2007). Aquaporin molecular characterization in the sea-bass (Dicentrarchus labrax): The effect of salinity on AQP1 and AQP3 expression. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148(2), 430–444. https://doi.org/10.1016/j.cbpa.2007.06.002 Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1632(1–3), 16–30. https://doi.org/10.1016/S1388-1981(03)00059-3 Heckwolf, M. J., Meyer, B. S., Häsler, R., Höppner, M. P., Eizaguirre, C., & Reusch, T. B. H. (2020). Two different epigenetic information channels in wild three-spined sticklebacks are involved in salinity adaptation. Science Advances, 6(12). https://doi.org/10.1126/sciadv.aaz1138 Hwang, P. P., & Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. In Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology(Vol. 148, Issue 3, pp. 479–497). Elsevier Inc. https://doi.org/10.1016/j.cbpa.2007.06.416 Jeremias, G., Barbosa, J., Marques, S.M., De Schamphelaere, K.A.C., Van Nieuwerburgh, F., Deforce, D., Gonçalves, F.J.M., Pereira, J.L., & Asselman, J. (2018). Transgenerational inheritance of DNA hypomethylation in Daphnia magna in response to salinity stress.Environmental Science & Technology, 52(17), 10114-10123. DOI: 10.1021/acs.est.8b03225 Jones, P. A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), 484–492. https://doi.org/10.1038/nrg3230 Korthauer, K. (2017). Detection and inference of differentially methylated regions from bisulfite sequencing Differential methylation Differential methylation commonly studied in. Krueger, F. (2012). Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. URL Http://Www. Bioinformatics. Babraham. Ac. Uk/Projects/Trim_galore/.(Date of Access: 28/04/2016). Krueger, F., & Andrews, S. R. (2011). Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications.Bioinformatics, 27(11), 1571–1572.https://doi.org/10.1093/bioinformatics/btr167Kwon, M.J., Kim, S.H., Jeong, H.M., Jung, H.S., Kim, S.S., Lee, J.E., Gye, M.C., Erkin, O.C., Koh, S.S., Choi, Y.L., Park, C.K., & Shin, Y.K. (2011). Claudin-4 overexpression is associated with epigenetic derepression in gastric carcinoma. Lab Invest. 91(11):1652-67. doi: 10.1038/labinvest.2011.117. Larsen, F., Gundersen, G., Lopez, R., & Prydz, H. (1992). CpG islands as gene markers in the human genome. Genomics, 13(4), 1095–1107. https://doi.org/10.1016/0888-7543(92)90024-M Leguen, I., le Cam, A., Montfort, J., Peron, S., & Fautrel, A. (2015). Transcriptomic analysis of trout gill ionocytes in fresh water and sea water using laser capture microdissection combined with microarray analysis. PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0139938 L’Honoré, T., Farcy, E., Blondeau-Bidet, E., & Lorin-Nebel, C. (2020). Inter-individual variability in freshwater tolerance is related to transcript level differences in gill and posterior kidney of European sea bass. Gene, 741. https://doi.org/10.1016/j.gene.2020.144547 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656 Li, B., Wang, H., Li, A., An, C., Zhu, L., Liu, S., & Zhuang, Z. (2022). The Landscape of DNA Methylation Generates Insight Into Epigenetic Regulation of Differences Between Slow-Twitch and Fast-Twitch Muscles in Pseudocaranx dentex. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.916373 Li, H., Chen, D., & Zhang, J. (2012). Analysis of Intron Sequence Features Associated with Transcriptional Regulation in Human Genes.PLoS ONE, 7(10), e46784. https://doi.org/10.1371/journal.pone.0046784 Li, H.P., Peng, C.C., Wu, C.C., Chen, C.H., Shih, M.J., Huang, M.Y., Lai, Y.R., Chen, Y.L., Chen, T.W., Tang, P., Chang, Y.S., Chang, K.P. & Hsu, C.L. (2018). Inactivation of the tight junction gene CLDN11by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma. J. Exp. Clin. Cancer Res. 37 : 102. https://doi.org/10.1186/s13046-018-0754-y Lin, Y.-T., Hu, Y.-C., Wang, Y.-C., Hsiao, M.-Y., Lorin-Nebel, C., & Lee, T.-H. (2021). Differential expression of two ATPases revealed by lipid raft isolation from gills of euryhaline teleosts with different salinity preferences. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 253, 110562. https://doi.org/10.1016/j.cbpb.2021.110562 Liu, S., Tengstedt, A. N. B., Jacobsen, M. W., Pujolar, J. M., Jónsson, B., Lobón‐Cervià, J., Bernatchez, L., & Hansen, M. M. (2022). Genome‐wide methylation in the panmictic European eel ( Anguilla anguilla ). Molecular Ecology, 31(16), 4286–4306. https://doi.org/10.1111/mec.16586 Lopes, A.F.C. (2020). Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin. Epigenet.12, 182 (2020). https://doi.org/10.1186/s13148-020-00976-5 Lorin-Nebel C., Boulo V., Bodinier C. & Charmantier G. (2006). The Na+/K+/2Cl-cotransporter in the sea-bass Dicentrarchus labrax: Ontogeny and expression according to the salinity. J. Exp. Biol. 209: 4908-4922. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200 Masroor, W., Farcy, E., Gros, R., & Lorin-Nebel, C. (2018). Effect of combined stress (salinity and temperature) in European sea bassDicentrarchus labrax osmoregulatory processes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 215, 45–54. https://doi.org/10.1016/j.cbpa.2017.10.019 Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., D’Souza, C., Fouse, S. D., Johnson, B. E., Hong, C., Nielsen, C., Zhao, Y., Turecki, G., Delaney, A., Varhol, R., Thiessen, N., Shchors, K., Heine, V. M., Rowitch, D. H., Xing, X., Fiore, C., … Costello, J. F. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466(7303), 253–257. https://doi.org/10.1038/nature09165 Metzger, D. C. H., & Schulte, P. M. (2016). Epigenomics in marine fishes. Marine Genomics, 30, 43–54. https://doi.org/10.1016/j.margen.2016.01.004 Metzger, D. C. H., & Schulte, P. M. (2018). The DNA methylation landscape of stickleback reveals patterns of sex chromosome evolution and effects of environmental salinity. Genome Biology and Evolution, 10(3), 775–785. https://doi.org/10.1093/gbe/evy034 Morán, P., Marco-Rius, F., Megías, M., Covelo-Soto, L., & Pérez-Figueroa, A. (2013). Environmental induced methylation changes associated with seawater adaptation in brown trout. Aquaculture,392–395, 77–83. https://doi.org/10.1016/j.aquaculture.2013.02.006 Navarro-Martín, L., Viñas, J., Ribas, L., Díaz, N., Gutiérrez, A., di Croce, L., & Piferrer, F. (2011). DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genetics,7(12). https://doi.org/10.1371/journal.pgen.1002447 Newell-Price, J., Clark, A. J., & King, P. (2000). DNA methylation and silencing of gene expression. Trends in Endocrinology and Metabolism: TEM, 11(4), 142–148. https://doi.org/10.1016/s1043-2760(00)00248-4 Pickett, G. D., Kelley, D. F., & Pawson, M. G. (2004). The patterns of recruitment of sea bass, Dicentrarchus labrax L. from nursery areas in England and Wales and implications for fisheries management.Fisheries Research, 68(1–3), 329–342. https://doi.org/10.1016/j.fishres.2003.11.013 Qin, H., Yu, Z., Zhu, Z., Lin, Y., Xia, J., & Jia, Y. (2022). The integrated analyses of metabolomics and transcriptomics in gill of GIFT tilapia in response to long term salinity challenge. Aquaculture and Fisheries, 7(2), 131–139. https://doi.org/10.1016/J.AAF.2021.02.006 Quinlan, A. R. (2014). BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Current Protocols in Bioinformatics, 47(1), 11.12.1-11.12.34. https://doi.org/10.1002/0471250953.bi1112s47 Rajkumar, M. S., Shankar, R., Garg, R., & Jain, M. (2019). Role of DNA methylation dynamics in desiccation and salinity stress responses in rice cultivars. BioRxiv, 558064. https://doi.org/10.1101/558064 Raleigh, D. R., Marchiando, A. M., Zhang, Y., Shen, L., Sasaki, H., Wang, Y., Long, M., & Turner, J. R. (2010). Tight Junction–associated MARVEL Proteins MarvelD3, Tricellulin, and Occludin Have Distinct but Overlapping Functions. Molecular Biology of the Cell,21(7), 1200–1213. https://doi.org/10.1091/mbc.e09-08-0734 Ramírez, F., Ryan, D. P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S., Dündar, F., & Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis.Nucleic Acids Research, 44(W1), W160–W165. https://doi.org/10.1093/nar/gkw257 Ramu, Y., Xu, Y., & Lu, Z. (2007). Inhibition of CFTR Cl channel function caused by enzymatic hydrolysis of sphingomyelin. Proceedings of the National Academy of Sciences,104(15), 6448–6453. https://doi.org/10.1073/pnas.0701354104 Reid, M.A., Dai, Z. & Locasale, J.W. (2017). The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol19, 1298–1306. https://doi.org/10.1038/ncb3629 Root, L., Campo, A., MacNiven, L., Con, P., Cnaani, A., & Kültz, D. (2021). Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover. Genomics, 113(5), 3235–3249. https://doi.org/10.1016/j.ygeno.2021.07.016 Rosenhouse‐Dantsker, A., Mehta, D., & Levitan, I. (2012). Regulation of Ion Channels by Membrane Lipids. In Comprehensive Physiology (pp. 31–68). Wiley. https://doi.org/10.1002/cphy.c110001 Shayman, J. A. (2000). Sphingolipids. Kidney International,58(1), 11–26.https://doi.org/10.1046/j.1523-1755.2000.00136.xShaughnessy, D.T., McAllister, K., Worth, L., Haugen, A.C., Meyer, J.N., Domann, F.E., Van Houten, B., Mostoslavsky, R., Bultman, S.J., Baccarelli, A.A., Begley, T.J., Sobol, R.W., Hirschey, M.D., Ideker, T., Santos, J.H., Copeland, W.C., Tice, R.R., Balshaw, D.M. & Tyson, F.L. (2014). Mitochondria, energetics, epigenetics, and cellular responses to stress.Environmental Health Perspectives, 122(12), 1272-1278. https://doi.org/10.1289/ehp.1408418 Skorupa, M., Szczepanek, J., Mazur, J., Domagalski, K., Tretyn, A., & Tyburski, J. (2021). Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. PLOS ONE, 16(5), e0251675. https://doi.org/10.1371/journal.pone.0251675 Smith, J., Sen, S., Weeks, R. J., Eccles, M. R., & Chatterjee, A. (2020). Promoter DNA Hypermethylation and Paradoxical Gene Activation.Trends in Cancer, 6(5), 392–406. https://doi.org/10.1016/J.TRECAN.2020.02.007 Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nature Reviews Genetics,9(6), 465–476. https://doi.org/10.1038/nrg2341 Tang, C. H., Hwang, L. Y., & Lee, T. H. (2010). Chloride channel CLC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: Expression, localization and the possible role of chloride absorption.Journal of Experimental Biology, 213(5), 683–693. https://doi.org/10.1242/jeb.040212 Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics,14(2), 178–192. https://doi.org/10.1093/bib/bbs017 Tine, M., Kuhl, H., Gagnaire, P.-A., Louro, B., Desmarais, E., Martins, R. S. T., Hecht, J., Knaust, F., Belkhir, K., Klages, S., Dieterich, R., Stueber, K., Piferrer, F., Guinand, B., Bierne, N., Volckaert, F. a M., Bargelloni, L., Power, D. M., Bonhomme, F., … Reinhardt, R. (2014). European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nature Communications,5(May), 5770. https://doi.org/10.1038/ncomms6770 Tipsmark, C. K., Baltzegar, D. A., Ozden, O., Grubb, B. J., & Borski, R. J. (2008). Salinity regulates claudin mRNA and protein expression in the teleost gill. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 294(3), R1004-14.https://doi.org/10.1152/ajpregu.00112.2007Wang, J., Liu, W., Zhang, X., Zhang, Y., Xiao, H., & Luo, B. (2019). LMP2A induces DNA methylation and expression repression of AQP3 in EBV-associated gastric carcinoma. Virology, 534, 87–95. doi:10.1016/j.virol.2019.06.006 Whitehead, A., Roach, J. L., Zhang, S., & Galvez, F. (2012). Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill.Journal of Experimental Biology, 215(8), 1293–1305. https://doi.org/10.1242/jeb.062075 Yang, J., Liu, M., Zhou, T., & Lin, Z. (2023). Genome-wide methylome and transcriptome dynamics provide insights into epigenetic regulation of kidney functioning of large yellow croaker (Larimichthys crocea) during low-salinity adaptation. Aquaculture, 571, 739410. https://doi.org/10.1016/j.aquaculture.2023.739410 Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS A Journal of Integrative Biology, 16(5), 284–287. https://doi.org/10.1089/omi.2011.0118 Zhang, Y., Zhu, F., Teng, J., Zheng, B., Lou, Z., Feng, H., Xue, L., & Qian, Y. (2022). Effects of salinity stress on methylation of the liver genome and complement gene in large yellow croaker (Larimichthys crocea). Fish & Shellfish Immunology, 129, 207–220. https://doi.org/10.1016/j.fsi.2022.08.055