Akalin, A., Kormaksson, M., Li,
S., Garrett-Bakelman, F. E., Figueroa, M. E., Melnick, A., & Mason, C.
E. (2012). methylKit: a comprehensive R package for the analysis of
genome-wide DNA methylation profiles. Genome Biology,13(10), R87. https://doi.org/10.1186/gb-2012-13-10-r87
Aliaga, B., Bulla, I., Mouahid, G., Duval, D., & Grunau, C. (2019).
Universality of the DNA methylation codes in Eucaryotes.Scientific Reports, 9(1), 1–11.
https://doi.org/10.1038/s41598-018-37407-8
Anastasiadi, D., Díaz, N., & Piferrer, F. (2017). Small ocean
temperature increases elicit stage-dependent changes in DNA methylation
and gene expression in a fish, the European sea bass. Scientific
Reports, 7(1), 12401. https://doi.org/10.1038/s41598-017-10861-6
Anastasiadi, D., Esteve-Codina, A., & Piferrer, F. (2018). Consistent
inverse correlation between DNA methylation of the first intron and gene
expression across tissues and species. Epigenetics and Chromatin,11(1). https://doi.org/10.1186/s13072-018-0205-1
Anders, S., & Huber, W. (2010). Differential expression analysis for
sequence count data. Genome Biology, 11(10), R106.
https://doi.org/10.1186/gb-2010-11-10-r106
Andrews, S. (2010). FastQC-A Quality Control application for FastQ
files.
Artemov, A. v., Mugue, N. S., Rastorguev, S. M., Zhenilo, S., Mazur, A.
M., Tsygankova, S. v., Boulygina, E. S., Kaplun, D., Nedoluzhko, A. v.,
Medvedeva, Y. A., & Prokhortchouk, E. B. (2017). Genome-wide DNA
methylation profiling reveals epigenetic adaptation of stickleback to
marine and freshwater conditions. Molecular Biology and
Evolution, 34(9), 2203–2213.
https://doi.org/10.1093/molbev/msx156
Bagherie-Lachidan, M., Wright, S. I., & Kelly, S. P. (2009). Claudin-8
and -27 tight junction proteins in puffer fish Tetraodon
nigroviridis acclimated to freshwater and seawater. Journal of
Comparative Physiology B, 179(4), 419–431.https://doi.org/10.1007/s00360-008-0326-0Bertocci, L. A., Rovatti, J. R., Wu, A., Morey, A., Bose, D. D., &
Kinney, S. R. M. (2022). Calcium handling genes are regulated by
promoter DNA methylation in colorectal cancer cells. European Journal of
Pharmacology, 915, 174698. https://doi.org/10.1016/j.ejphar.2021.174698
Brie, B., Ornstein, A., Ramirez, M.C., Lacau-Mengido, I.,
Becu-Villalobos, D. (2020). Epigenetic modifications in the GH-dependent
Prlr, Hnf6, Cyp7b1, Adh1 and Cyp2a4 genes. J. Molecular
Endocrinology, 64(3), 165-179.https://doi.org/10.1530/JME-19-0205Bian, X., & Gao, Y. (2021). DNA methylation and gene expression
alterations in zebrafish embryos exposed to cadmium. Environmental
Science and Pollution Research, 28(23), 30101–30110.
https://doi.org/10.1007/s11356-021-12691-6
Bird, A. (2002). DNA methylation patterns and epigenetic memory. InGenes and Development (Vol. 16, Issue 1, pp. 6–21).
https://doi.org/10.1101/gad.947102
Blondeau-Bidet, E., Hiroi, J., & Lorin-Nebel, C. (2019). Ion uptake
pathways in European sea bass Dicentrarchus labrax. Gene,692, 126–137. https://doi.org/10.1016/j.gene.2019.01.006
Bodinier, C., Lorin-Nebel, C., Charmantier, G., Boulo, V. (2009).
Influence of salinity on the localization and expression of the CFTR
chloride channel in the ionocytes of juvenile Dicentrarchus
labrax exposed to seawater and freshwater. Comparative
Biochemistry and Physiology A, 153(3), 345-351.
https://doi.org/10.1016/j.cbpa.2009.03.011.
Bossus, M., Charmantier, G., Blondeau-Bidet, E., Valletta, B., Boulo,
V., & Lorin-Nebel, C. (2013). The ClC-3 chloride channel and
osmoregulation in the European Sea Bass, Dicentrarchus labrax.Journal of Comparative Physiology B: Biochemical, Systemic, and
Environmental Physiology, 183(5), 641–662.
https://doi.org/10.1007/s00360-012-0737-9
Brenet, F., Moh, M., Funk, P., Feierstein, E., Viale, A. J., Socci, N.
D., & Scandura, J. M. (2011). DNA Methylation of the First Exon Is
Tightly Linked to Transcriptional Silencing. PLoS ONE,6(1), e14524. https://doi.org/10.1371/journal.pone.0014524
Breves, J. P., Inokuchi, M., Yamaguchi, Y., Seale, A. P., Hunt, B. L.,
Watanabe, S., Lerner, D. T., Kaneko, T., & Grau, E. G. (2016). Hormonal
regulation of aquaporin 3: opposing actions of prolactin and cortisol in
tilapia gill. Journal of Endocrinology, 230(3), 325–337.
https://doi.org/10.1530/JOE-16-0162
Chang, C.-H., Liu, C.-J., Lu, W.-J., Wu, L.-Y., Lai, K.-J., Lin, Y.-T.,
& Lee, T.-H. (2022). Hypothermal Effects on Energy Supply for Ionocytes
in Gills of Freshwater- and Seawater-Acclimated Milkfish, Chanos
chanos. Frontiers in Marine Science, 9.
https://doi.org/10.3389/fmars.2022.880103
Chang, J. C.-H., Wu, S.-M., Tseng, Y.-C., Lee, Y.-C., Baba, O., &
Hwang, P.-P. (2007). Regulation of glycogen metabolism in gills and
liver of the euryhaline tilapia (Oreochromis mossambicus) during
acclimation to seawater. Journal of Experimental Biology,210(19), 3494–3504. https://doi.org/10.1242/jeb.007146
Chasiotis, H., Kolosov, D., Bui, P., & Kelly, S. P. (2012). Tight
junctions, tight junction proteins and paracellular permeability across
the gill epithelium of fishes: A review. In Respiratory Physiology
and Neurobiology (Vol. 184, Issue 3, pp. 269–281).
https://doi.org/10.1016/j.resp.2012.05.020
Cutler, C. P., & Cramb, G. (2002). Branchial expression of an aquaporin
3 (AQP-3) homologue is downregulated in the European eel Anguilla
anguilla following seawater acclimation. Journal of Experimental
Biology, 205(17), 2643–2651.
https://doi.org/10.1242/jeb.205.17.2643
Czubak-Prowizor, K., Babinska, A., & Swiatkowska, M. (2022). The F11
Receptor (F11R)/Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A) in
cancer progression. Molecular and Cellular Biochemistry,477(1), 79–98. https://doi.org/10.1007/s11010-021-04259-2
De Larco, J. E., Wuertz, B. R. K., Yee, D., Rickert, B. L., & Furcht,
L. T. (2003). Atypical methylation of the interleukin-8 gene correlates
strongly with the metastatic potential of breast carcinoma cells.Proceedings of the National Academy of Sciences of the United
States of America, 100(24), 13988–13993.
https://doi.org/10.1073/pnas.2335921100
Delon, I., & Brown, N. H. (2007). Integrins and the actin cytoskeleton.Current Opinion in Cell Biology, 19(1), 43–50.
https://doi.org/10.1016/j.ceb.2006.12.013
Dobin, A., & Gingeras, T. R. (2016). Optimizing RNA-seq mapping with
STAR. In Methods in Molecular Biology (Vol. 1415, pp. 245–262).
Humana Press Inc. https://doi.org/10.1007/978-1-4939-3572-7_13
Dufour, V., Cantou, M., & Lecomte, F. (2009). Identification of sea
bass (Dicentrarchus labrax) nursery areas in the north-western
Mediterranean Sea. Journal of the Marine Biological Association of
the United Kingdom, 89(7), 1367–1374.
https://doi.org/10.1017/S0025315409000368
Engelund, M. B., Yu, A. S. L., Li, J., Madsen, S. S., Færgeman, N. J.,
& Tipsmark, C. K. (2012). Functional characterization and localization
of a gill-specific claudin isoform in Atlantic salmon. American
Journal of Physiology-Regulatory, Integrative and Comparative
Physiology, 302(2), R300–R311.
https://doi.org/10.1152/ajpregu.00286.2011
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC:
summarize analysis results for multiple tools and samples in a single
report. Bioinformatics, 32(19), 3047–3048.
https://doi.org/10.1093/bioinformatics/btw354
Fan, Z., & Makielski, J. C. (1997). Anionic Phospholipids Activate
ATP-sensitive Potassium Channels. Journal of Biological
Chemistry, 272(9), 5388–5395.
https://doi.org/10.1074/jbc.272.9.5388
Feng, S., Cokus, S. J., Zhang, X., Chen, P. Y., Bostick, M., Goll, M.
G., Hetzel, J., Jain, J., Strauss, S. H., Halpern, M. E., Ukomadu, C.,
Sadler, K. C., Pradhan, S., Pellegrini, M., & Jacobsen, S. E. (2010).
Conservation and divergence of methylation patterning in plants and
animals. Proceedings of the National Academy of Sciences of the
United States of America, 107(19), 8689–8694.
https://doi.org/10.1073/pnas.1002720107
Flores, K. B., Wolschin, F., & Amdam, G. v. (2013). The role of
methylation of DNA in environmental adaptation. Integrative and
Comparative Biology, 53(2), 359–372.
https://doi.org/10.1093/icb/ict019
Fougere, B., Barnes, K.R., Francis, M.E., Claus, L.N., Cozzi, R.R.F.,
Marshall, W.S. (2020). Focal adhesion kinase and osmotic responses in
ionocytes of Fundulus heteroclitus, a euryhaline teleost fish.Comparative Biochemistry and Physiology A: Molecular &
Integrative Physiology 241:110639.
https://doi.org/10.1016/j.cbpa.2019.110639
Gault, C. R., Obeid, L. M., & Hannun, Y. A. (2010). An Overview
of Sphingolipid Metabolism: From Synthesis to Breakdown (pp. 1–23).
https://doi.org/10.1007/978-1-4419-6741-1_1
Giffard-Mena, I., Boulo, V., Aujoulat, F., Fowden, H., Castille, R.,
Charmantier, G., & Cramb, G. (2007). Aquaporin molecular
characterization in the sea-bass (Dicentrarchus labrax): The
effect of salinity on AQP1 and AQP3 expression. Comparative
Biochemistry and Physiology Part A: Molecular & Integrative
Physiology, 148(2), 430–444.
https://doi.org/10.1016/j.cbpa.2007.06.002
Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of
sphingolipid metabolism. Biochimica et Biophysica Acta (BBA) -
Molecular and Cell Biology of Lipids, 1632(1–3), 16–30.
https://doi.org/10.1016/S1388-1981(03)00059-3
Heckwolf, M. J., Meyer, B. S., Häsler, R., Höppner, M. P., Eizaguirre,
C., & Reusch, T. B. H. (2020). Two different epigenetic information
channels in wild three-spined sticklebacks are involved in salinity
adaptation. Science Advances, 6(12).
https://doi.org/10.1126/sciadv.aaz1138
Hwang, P. P., & Lee, T. H. (2007). New insights into fish ion
regulation and mitochondrion-rich cells. In Comparative
Biochemistry and Physiology - A Molecular and Integrative Physiology(Vol. 148, Issue 3, pp. 479–497). Elsevier Inc.
https://doi.org/10.1016/j.cbpa.2007.06.416
Jeremias, G., Barbosa, J., Marques, S.M., De Schamphelaere, K.A.C., Van
Nieuwerburgh, F., Deforce, D., Gonçalves, F.J.M., Pereira, J.L., &
Asselman, J. (2018). Transgenerational inheritance of DNA
hypomethylation in Daphnia magna in response to salinity stress.Environmental Science & Technology, 52(17), 10114-10123. DOI:
10.1021/acs.est.8b03225
Jones, P. A. (2012). Functions of DNA methylation: islands, start sites,
gene bodies and beyond. Nature Reviews Genetics, 13(7),
484–492. https://doi.org/10.1038/nrg3230
Korthauer, K. (2017). Detection and inference of differentially
methylated regions from bisulfite sequencing Differential methylation
Differential methylation commonly studied in.
Krueger, F. (2012). Trim Galore: a wrapper tool around Cutadapt and
FastQC to consistently apply quality and adapter trimming to FastQ
files, with some extra functionality for MspI-digested RRBS-type
(Reduced Representation Bisufite-Seq) libraries. URL Http://Www.
Bioinformatics. Babraham. Ac. Uk/Projects/Trim_galore/.(Date of Access:
28/04/2016).
Krueger, F., & Andrews, S. R. (2011). Bismark: A flexible aligner and
methylation caller for Bisulfite-Seq applications.Bioinformatics, 27(11), 1571–1572.https://doi.org/10.1093/bioinformatics/btr167Kwon, M.J., Kim, S.H., Jeong, H.M., Jung, H.S., Kim, S.S., Lee, J.E.,
Gye, M.C., Erkin, O.C., Koh, S.S., Choi, Y.L., Park, C.K., & Shin, Y.K.
(2011). Claudin-4 overexpression is associated with epigenetic
derepression in gastric carcinoma. Lab Invest. 91(11):1652-67.
doi: 10.1038/labinvest.2011.117.
Larsen, F., Gundersen, G., Lopez, R., & Prydz, H. (1992). CpG islands
as gene markers in the human genome. Genomics, 13(4),
1095–1107. https://doi.org/10.1016/0888-7543(92)90024-M
Leguen, I., le Cam, A., Montfort, J., Peron, S., & Fautrel, A. (2015).
Transcriptomic analysis of trout gill ionocytes in fresh water and sea
water using laser capture microdissection combined with microarray
analysis. PLoS ONE, 10(10).
https://doi.org/10.1371/journal.pone.0139938
L’Honoré, T., Farcy, E., Blondeau-Bidet, E., & Lorin-Nebel, C. (2020).
Inter-individual variability in freshwater tolerance is related to
transcript level differences in gill and posterior kidney of European
sea bass. Gene, 741.
https://doi.org/10.1016/j.gene.2020.144547
Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient
general purpose program for assigning sequence reads to genomic
features. Bioinformatics, 30(7), 923–930.
https://doi.org/10.1093/bioinformatics/btt656
Li, B., Wang, H., Li, A., An, C., Zhu, L., Liu, S., & Zhuang, Z.
(2022). The Landscape of DNA Methylation Generates Insight Into
Epigenetic Regulation of Differences Between Slow-Twitch and Fast-Twitch
Muscles in Pseudocaranx dentex. Frontiers in Marine
Science, 9. https://doi.org/10.3389/fmars.2022.916373
Li, H., Chen, D., & Zhang, J. (2012). Analysis of Intron Sequence
Features Associated with Transcriptional Regulation in Human Genes.PLoS ONE, 7(10), e46784.
https://doi.org/10.1371/journal.pone.0046784
Li, H.P., Peng, C.C., Wu, C.C., Chen, C.H., Shih, M.J., Huang, M.Y.,
Lai, Y.R., Chen, Y.L., Chen, T.W., Tang, P., Chang, Y.S., Chang, K.P. &
Hsu, C.L. (2018). Inactivation of the tight junction gene CLDN11by aberrant hypermethylation modulates tubulins polymerization and
promotes cell migration in nasopharyngeal carcinoma. J. Exp. Clin.
Cancer Res. 37 : 102. https://doi.org/10.1186/s13046-018-0754-y
Lin, Y.-T., Hu, Y.-C., Wang, Y.-C., Hsiao, M.-Y., Lorin-Nebel, C., &
Lee, T.-H. (2021). Differential expression of two ATPases revealed by
lipid raft isolation from gills of euryhaline teleosts with different
salinity preferences. Comparative Biochemistry and Physiology Part
B: Biochemistry and Molecular Biology, 253, 110562.
https://doi.org/10.1016/j.cbpb.2021.110562
Liu, S., Tengstedt, A. N. B., Jacobsen, M. W., Pujolar, J. M., Jónsson,
B., Lobón‐Cervià, J., Bernatchez, L., & Hansen, M. M. (2022).
Genome‐wide methylation in the panmictic European eel ( Anguilla
anguilla ). Molecular Ecology, 31(16), 4286–4306.
https://doi.org/10.1111/mec.16586
Lopes, A.F.C. (2020). Mitochondrial metabolism and DNA methylation: a
review of the interaction between two genomes. Clin. Epigenet.12, 182 (2020). https://doi.org/10.1186/s13148-020-00976-5
Lorin-Nebel C., Boulo V., Bodinier C. & Charmantier G. (2006). The
Na+/K+/2Cl-cotransporter in the sea-bass Dicentrarchus labrax: Ontogeny and
expression according to the salinity. J. Exp. Biol. 209:
4908-4922.
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
Martin, M. (2011). Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet.Journal, 17(1),
10. https://doi.org/10.14806/ej.17.1.200
Masroor, W., Farcy, E., Gros, R., & Lorin-Nebel, C. (2018). Effect of
combined stress (salinity and temperature) in European sea bassDicentrarchus labrax osmoregulatory processes. Comparative
Biochemistry and Physiology Part A: Molecular & Integrative
Physiology, 215, 45–54.
https://doi.org/10.1016/j.cbpa.2017.10.019
Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J.,
D’Souza, C., Fouse, S. D., Johnson, B. E., Hong, C., Nielsen, C., Zhao,
Y., Turecki, G., Delaney, A., Varhol, R., Thiessen, N., Shchors, K.,
Heine, V. M., Rowitch, D. H., Xing, X., Fiore, C., … Costello, J.
F. (2010). Conserved role of intragenic DNA methylation in regulating
alternative promoters. Nature, 466(7303), 253–257.
https://doi.org/10.1038/nature09165
Metzger, D. C. H., & Schulte, P. M. (2016). Epigenomics in marine
fishes. Marine Genomics, 30, 43–54.
https://doi.org/10.1016/j.margen.2016.01.004
Metzger, D. C. H., & Schulte, P. M. (2018). The DNA methylation
landscape of stickleback reveals patterns of sex chromosome evolution
and effects of environmental salinity. Genome Biology and
Evolution, 10(3), 775–785. https://doi.org/10.1093/gbe/evy034
Morán, P., Marco-Rius, F., Megías, M., Covelo-Soto, L., &
Pérez-Figueroa, A. (2013). Environmental induced methylation changes
associated with seawater adaptation in brown trout. Aquaculture,392–395, 77–83.
https://doi.org/10.1016/j.aquaculture.2013.02.006
Navarro-Martín, L., Viñas, J., Ribas, L., Díaz, N., Gutiérrez, A., di
Croce, L., & Piferrer, F. (2011). DNA methylation of the gonadal
aromatase (cyp19a) promoter is involved in temperature-dependent sex
ratio shifts in the European sea bass. PLoS Genetics,7(12). https://doi.org/10.1371/journal.pgen.1002447
Newell-Price, J., Clark, A. J., & King, P. (2000). DNA methylation and
silencing of gene expression. Trends in Endocrinology and
Metabolism: TEM, 11(4), 142–148.
https://doi.org/10.1016/s1043-2760(00)00248-4
Pickett, G. D., Kelley, D. F., & Pawson, M. G. (2004). The patterns of
recruitment of sea bass, Dicentrarchus labrax L. from nursery
areas in England and Wales and implications for fisheries management.Fisheries Research, 68(1–3), 329–342.
https://doi.org/10.1016/j.fishres.2003.11.013
Qin, H., Yu, Z., Zhu, Z., Lin, Y., Xia, J., & Jia, Y. (2022). The
integrated analyses of metabolomics and transcriptomics in gill of GIFT
tilapia in response to long term salinity challenge. Aquaculture
and Fisheries, 7(2), 131–139.
https://doi.org/10.1016/J.AAF.2021.02.006
Quinlan, A. R. (2014). BEDTools: The Swiss-Army Tool for Genome Feature
Analysis. Current Protocols in Bioinformatics, 47(1),
11.12.1-11.12.34. https://doi.org/10.1002/0471250953.bi1112s47
Rajkumar, M. S., Shankar, R., Garg, R., & Jain, M. (2019). Role of DNA
methylation dynamics in desiccation and salinity stress responses in
rice cultivars. BioRxiv, 558064. https://doi.org/10.1101/558064
Raleigh, D. R., Marchiando, A. M., Zhang, Y., Shen, L., Sasaki, H.,
Wang, Y., Long, M., & Turner, J. R. (2010). Tight Junction–associated
MARVEL Proteins MarvelD3, Tricellulin, and Occludin Have Distinct but
Overlapping Functions. Molecular Biology of the Cell,21(7), 1200–1213. https://doi.org/10.1091/mbc.e09-08-0734
Ramírez, F., Ryan, D. P., Grüning, B., Bhardwaj, V., Kilpert, F.,
Richter, A. S., Heyne, S., Dündar, F., & Manke, T. (2016). deepTools2:
a next generation web server for deep-sequencing data analysis.Nucleic Acids Research, 44(W1), W160–W165.
https://doi.org/10.1093/nar/gkw257
Ramu, Y., Xu, Y., & Lu, Z. (2007). Inhibition of CFTR Cl− channel function caused by enzymatic hydrolysis of
sphingomyelin. Proceedings of the National Academy of Sciences,104(15), 6448–6453. https://doi.org/10.1073/pnas.0701354104
Reid, M.A., Dai, Z. & Locasale, J.W. (2017). The impact of cellular
metabolism on chromatin dynamics and epigenetics. Nat Cell Biol19, 1298–1306. https://doi.org/10.1038/ncb3629
Root, L., Campo, A., MacNiven, L., Con, P., Cnaani, A., & Kültz, D.
(2021). Nonlinear effects of environmental salinity on the gill
transcriptome versus proteome of Oreochromis niloticus modulate
epithelial cell turnover. Genomics, 113(5), 3235–3249.
https://doi.org/10.1016/j.ygeno.2021.07.016
Rosenhouse‐Dantsker, A., Mehta, D., & Levitan, I. (2012). Regulation of
Ion Channels by Membrane Lipids. In Comprehensive Physiology (pp.
31–68). Wiley. https://doi.org/10.1002/cphy.c110001
Shayman, J. A. (2000). Sphingolipids. Kidney International,58(1), 11–26.https://doi.org/10.1046/j.1523-1755.2000.00136.xShaughnessy, D.T., McAllister, K., Worth, L., Haugen, A.C., Meyer, J.N.,
Domann, F.E., Van Houten, B., Mostoslavsky, R., Bultman, S.J.,
Baccarelli, A.A., Begley, T.J., Sobol, R.W., Hirschey, M.D., Ideker, T.,
Santos, J.H., Copeland, W.C., Tice, R.R., Balshaw, D.M. & Tyson, F.L.
(2014).
Mitochondria,
energetics, epigenetics, and cellular responses to stress.Environmental Health Perspectives, 122(12), 1272-1278.
https://doi.org/10.1289/ehp.1408418
Skorupa, M., Szczepanek, J., Mazur, J., Domagalski, K., Tretyn, A., &
Tyburski, J. (2021). Salt stress and salt shock differently affect DNA
methylation in salt-responsive genes in sugar beet and its wild,
halophytic ancestor. PLOS ONE, 16(5), e0251675.
https://doi.org/10.1371/journal.pone.0251675
Smith, J., Sen, S., Weeks, R. J., Eccles, M. R., & Chatterjee, A.
(2020). Promoter DNA Hypermethylation and Paradoxical Gene Activation.Trends in Cancer, 6(5), 392–406.
https://doi.org/10.1016/J.TRECAN.2020.02.007
Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes:
provocative insights from epigenomics. Nature Reviews Genetics,9(6), 465–476. https://doi.org/10.1038/nrg2341
Tang, C. H., Hwang, L. Y., & Lee, T. H. (2010). Chloride channel CLC-3
in gills of the euryhaline teleost, Tetraodon nigroviridis:
Expression, localization and the possible role of chloride absorption.Journal of Experimental Biology, 213(5), 683–693.
https://doi.org/10.1242/jeb.040212
Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013).
Integrative Genomics Viewer (IGV): High-performance genomics data
visualization and exploration. Briefings in Bioinformatics,14(2), 178–192. https://doi.org/10.1093/bib/bbs017
Tine, M., Kuhl, H., Gagnaire, P.-A., Louro, B., Desmarais, E., Martins,
R. S. T., Hecht, J., Knaust, F., Belkhir, K., Klages, S., Dieterich, R.,
Stueber, K., Piferrer, F., Guinand, B., Bierne, N., Volckaert, F. a M.,
Bargelloni, L., Power, D. M., Bonhomme, F., … Reinhardt, R.
(2014). European sea bass genome and its variation provide insights into
adaptation to euryhalinity and speciation. Nature Communications,5(May), 5770. https://doi.org/10.1038/ncomms6770
Tipsmark, C. K., Baltzegar, D. A., Ozden, O., Grubb, B. J., & Borski,
R. J. (2008). Salinity regulates claudin mRNA and protein expression in
the teleost gill. American Journal of Physiology. Regulatory,
Integrative and Comparative Physiology, 294(3), R1004-14.https://doi.org/10.1152/ajpregu.00112.2007Wang, J., Liu, W., Zhang, X., Zhang, Y., Xiao, H., & Luo, B. (2019).
LMP2A induces DNA methylation and expression repression of AQP3 in
EBV-associated gastric carcinoma. Virology, 534, 87–95.
doi:10.1016/j.virol.2019.06.006
Whitehead, A., Roach, J. L., Zhang, S., & Galvez, F. (2012). Salinity-
and population-dependent genome regulatory response during osmotic
acclimation in the killifish (Fundulus heteroclitus) gill.Journal of Experimental Biology, 215(8), 1293–1305.
https://doi.org/10.1242/jeb.062075
Yang, J., Liu, M., Zhou, T., & Lin, Z. (2023). Genome-wide methylome
and transcriptome dynamics provide insights into epigenetic regulation
of kidney functioning of large yellow croaker (Larimichthys
crocea) during low-salinity adaptation. Aquaculture, 571,
739410. https://doi.org/10.1016/j.aquaculture.2023.739410
Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). ClusterProfiler: An R
package for comparing biological themes among gene clusters. OMICS
A Journal of Integrative Biology, 16(5), 284–287.
https://doi.org/10.1089/omi.2011.0118
Zhang, Y., Zhu, F., Teng, J., Zheng, B., Lou, Z., Feng, H., Xue, L., &
Qian, Y. (2022). Effects of salinity stress on methylation of the liver
genome and complement gene in large yellow croaker (Larimichthys
crocea). Fish & Shellfish Immunology, 129, 207–220.
https://doi.org/10.1016/j.fsi.2022.08.055