References:
Araújo, S. J., Tirode, F., Coin, F., Pospiech, H., Syväoja, J. E., Stucki, M., Hübscher, U., Egly, J.-M., & Wood, R. D. (2000). Nucleotide excision repair of DNA with recombinant human proteins: Definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes & Development , 14 (3), 349–359.
Botta, E., Nardo, T., Lehmann, A. R., Egly, J.-M., Pedrini, A. M., & Stefanini, M. (2002). Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Human Molecular Genetics ,11 (23), 2919–2928. https://doi.org/10.1093/hmg/11.23.2919
Chatterjee, N., & Walker, G. C. (2017). Mechanisms of DNA damage, repair and mutagenesis. Environmental and Molecular Mutagenesis ,58 (5), 235–263. https://doi.org/10.1002/em.22087
Chen, X., Velmurugu, Y., Zheng, G., Park, B., Shim, Y., Kim, Y., Liu, L., Van Houten, B., He, C., Ansari, A., & Min, J.-H. (2015). Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nature Communications , 6 (1), Article 1. https://doi.org/10.1038/ncomms6849
Ciccia, A., & Elledge, S. J. (2010). The DNA damage response: Making it safe to play with knives. Molecular Cell , 40 (2), 179–204. https://doi.org/10.1016/j.molcel.2010.09.019
Cleaver, J. E. (2008). Diagnosis of Xeroderma Pigmentosum and Related DNA Repair-Deficient Cutaneous Diseases. Current Medical Literature. Dermatology , 13 (2), 41–48.
Coin, F., Marinoni, J. C., Rodolfo, C., Fribourg, S., Pedrini, A. M., & Egly, J. M. (1998). Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nature Genetics , 20 (2), 184–188. https://doi.org/10.1038/2491
Coin, F., Oksenych, V., & Egly, J.-M. (2007). Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Molecular Cell , 26 (2), 245–256. https://doi.org/10.1016/j.molcel.2007.03.009
Coin, F., Oksenych, V., Mocquet, V., Groh, S., Blattner, C., & Egly, J. M. (2008). Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Molecular Cell , 31 (1), 9–20. https://doi.org/10.1016/j.molcel.2008.04.024
Compe, E., & Egly, J.-M. (2012). TFIIH: When transcription met DNA repair. Nature Reviews. Molecular Cell Biology , 13 (6), 343–354. https://doi.org/10.1038/nrm3350
Cooke, M. S., Evans, M. D., Dizdaroglu, M., & Lunec, J. (2003). Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology , 17 (10), 1195–1214. https://doi.org/10.1096/fj.02-0752rev
Dienemann, C., Schwalb, B., Schilbach, S., & Cramer, P. (2019). Promoter Distortion and Opening in the RNA Polymerase II Cleft.Molecular Cell , 73 (1), 97-106.e4. https://doi.org/10.1016/j.molcel.2018.10.014
Duan, M., Selvam, K., Wyrick, J. J., & Mao, P. (2020). Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin. Proceedings of the National Academy of Sciences , 117 (31), 18608–18616. https://doi.org/10.1073/pnas.2003868117
Duan, M., Speer, R. M., Ulibarri, J., Liu, K. J., & Mao, P. (2021). Transcription-coupled nucleotide excision repair: New insights revealed by genomic approaches. DNA Repair , 103 , 103126. https://doi.org/10.1016/j.dnarep.2021.103126
Dubaele, S., Proietti De Santis, L., Bienstock, R. J., Keriel, A., Stefanini, M., Van Houten, B., & Egly, J.-M. (2003). Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Molecular Cell ,11 (6), 1635–1646. https://doi.org/10.1016/s1097-2765(03)00182-5
Fishburn, J., Tomko, E., Galburt, E., & Hahn, S. (2015). Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation.Proceedings of the National Academy of Sciences , 112 (13), 3961–3966. https://doi.org/10.1073/pnas.1417709112
Fousteri, M., & Mullenders, L. H. (2008). Transcription-coupled nucleotide excision repair in mammalian cells: Molecular mechanisms and biological effects. Cell Research , 18 (1), Article 1. https://doi.org/10.1038/cr.2008.6
Freedman, N. D., Silverman, D. T., Hollenbeck, A. R., Schatzkin, A., & Abnet, C. C. (2011). Association between smoking and risk of bladder cancer among men and women. JAMA , 306 (7), 737–745. https://doi.org/10.1001/jama.2011.1142
Fuss, J. O., & Tainer, J. A. (2011). XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair , 10 (7), 697–713. https://doi.org/10.1016/j.dnarep.2011.04.028
Giglia-Mari, G., Zotter, A., & Vermeulen, W. (2011). DNA damage response. Cold Spring Harbor Perspectives in Biology ,3 (1), a000745. https://doi.org/10.1101/cshperspect.a000745
Groisman, R., Kuraoka, I., Chevallier, O., Gaye, N., Magnaldo, T., Tanaka, K., Kisselev, A. F., Harel-Bellan, A., & Nakatani, Y. (2006). CSA-dependent degradation of CSB by the ubiquitin–proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes & Development , 20 (11), 1429–1434. https://doi.org/10.1101/gad.378206
Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K., & Nakatani, Y. (2003). The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell , 113 (3), 357–367. https://doi.org/10.1016/s0092-8674(03)00316-7
Helenius, K., Yang, Y., Tselykh, T. V., Pessa, H. K. J., Frilander, M. J., & Mäkelä, T. P. (2011). Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover. Nucleic Acids Research , 39 (12), 5025–5035. https://doi.org/10.1093/nar/gkr107
Hu, J., Adar, S., Selby, C. P., Lieb, J. D., & Sancar, A. (2015). Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes & Development , 29 (9), 948–960. https://doi.org/10.1101/gad.261271.115
Huang, J. C., Svoboda, D. L., Reardon, J. T., & Sancar, A. (1992). Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5’ and the 6th phosphodiester bond 3’ to the photodimer. Proceedings of the National Academy of Sciences , 89 (8), 3664–3668. https://doi.org/10.1073/pnas.89.8.3664
Kim, J., Mouw, K. W., Polak, P., Braunstein, L. Z., Kamburov, A., Kwiatkowski, D. J., Rosenberg, J. E., Van Allen, E. M., D’Andrea, A., & Getz, G. (2016). Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nature Genetics ,48 (6), 600–606. https://doi.org/10.1038/ng.3557
Kokic, G., Chernev, A., Tegunov, D., Dienemann, C., Urlaub, H., & Cramer, P. (2019). Structural basis of TFIIH activation for nucleotide excision repair. Nature Communications , 10 , 2885. https://doi.org/10.1038/s41467-019-10745-5
Kokic, G., Wagner, F. R., Chernev, A., Urlaub, H., & Cramer, P. (2021). Structural basis of human transcription–DNA repair coupling.Nature , 598 (7880), Article 7880. https://doi.org/10.1038/s41586-021-03906-4
Kraemer, K. H., DiGiovanna, J. J., & Tamura, D. (2022). Xeroderma Pigmentosum. In GeneReviews® [Internet] . University of Washington, Seattle. https://www.ncbi.nlm.nih.gov/books/NBK1397/
Krasikova, Y., Rechkunova, N., & Lavrik, O. (2021). Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities.International Journal of Molecular Sciences , 22 (12), 6220. https://doi.org/10.3390/ijms22126220
Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Anarbaev, R. O., Pestryakov, P. E., Sugasawa, K., Min, J.-H., & Lavrik, O. I. (2013). Human and yeast DNA damage recognition complexes bind with high affinity DNA structures mimicking in size transcription bubble. Journal of Molecular Recognition: JMR , 26 (12), 653–661. https://doi.org/10.1002/jmr.2308
Krokan, H. E., & Bjørås, M. (2013). Base Excision Repair. Cold Spring Harbor Perspectives in Biology , 5 (4), a012583. https://doi.org/10.1101/cshperspect.a012583
Kuper, J., Braun, C., Elias, A., Michels, G., Sauer, F., Schmitt, D. R., Poterszman, A., Egly, J.-M., & Kisker, C. (2014). In TFIIH, XPD Helicase Is Exclusively Devoted to DNA Repair. PLOS Biology ,12 (9), e1001954. https://doi.org/10.1371/journal.pbio.1001954
Kusakabe, M., Onishi, Y., Tada, H., Kurihara, F., Kusao, K., Furukawa, M., Iwai, S., Yokoi, M., Sakai, W., & Sugasawa, K. (2019). Mechanism and regulation of DNA damage recognition in nucleotide excision repair.Genes and Environment , 41 (1), 2. https://doi.org/10.1186/s41021-019-0119-6
Laat, W. L. de, Jaspers, N. G. J., & Hoeijmakers, J. H. J. (1999). Molecular mechanism of nucleotide excision repair. Genes & Development , 13 (7), 768–785.
Lainé, J.-P., & Egly, J.-M. (2006). Initiation of DNA repair mediated by a stalled RNA polymerase IIO. The EMBO Journal , 25 (2), 387–397. https://doi.org/10.1038/sj.emboj.7600933
Lehmann, A. R. (2001). The xeroderma pigmentosum group D (XPD) gene: One gene, two functions, three diseases. Genes & Development ,15 (1), 15–23. https://doi.org/10.1101/gad.859501
Li, G.-M. (2008). Mechanisms and functions of DNA mismatch repair.Cell Research , 18 (1), Article 1. https://doi.org/10.1038/cr.2007.115
Li, Q., Damish, A. W., Frazier, Z., Liu, D., Reznichenko, E., Kamburov, A., Bell, A., Zhao, H., Jordan, E. J., Gao, S. P., Ma, J., Abbosh, P. H., Bellmunt, J., Plimack, E. R., Lazaro, J.-B., Solit, D. B., Bajorin, D., Rosenberg, J. E., D’Andrea, A. D., … Mouw, K. W. (2019). ERCC2 Helicase Domain Mutations Confer Nucleotide Excision Repair Deficiency and Drive Cisplatin Sensitivity in Muscle-Invasive Bladder Cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research , 25 (3), 977–988. https://doi.org/10.1158/1078-0432.CCR-18-1001
Lieber, M. R. (2010). The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway. Annual Review of Biochemistry , 79 , 181–211. https://doi.org/10.1146/annurev.biochem.052308.093131
Marteijn, J. A., Lans, H., Vermeulen, W., & Hoeijmakers, J. H. J. (2014). Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews. Molecular Cell Biology , 15 (7), 465–481. https://doi.org/10.1038/nrm3822
Martens, M. C., Emmert, S., & Boeckmann, L. (2021). Xeroderma Pigmentosum: Gene Variants and Splice Variants. Genes ,12 (8), 1173. https://doi.org/10.3390/genes12081173
Martin, L. J. (2008). DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration. Journal of Neuropathology and Experimental Neurology , 67 (5), 377–387. https://doi.org/10.1097/NEN.0b013e31816ff780
Mathieu, N., Kaczmarek, N., Rüthemann, P., Luch, A., & Naegeli, H. (2013). DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Current Biology: CB , 23 (3), 204–212. https://doi.org/10.1016/j.cub.2012.12.032
Min, J.-H., & Pavletich, N. P. (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature ,449 (7162), Article 7162. https://doi.org/10.1038/nature06155
Mu, H., Geacintov, N. E., Broyde, S., Yeo, J.-E., & Schärer, O. D. (2018). MOLECULAR BASIS FOR DAMAGE RECOGNITION AND VERIFICATION BY XPC-RAD23B AND TFIIH IN NUCLEOTIDE EXCISION REPAIR. DNA Repair ,71 , 33–42. https://doi.org/10.1016/j.dnarep.2018.08.005
Nakazawa, Y., Hara, Y., Oka, Y., Komine, O., van den Heuvel, D., Guo, C., Daigaku, Y., Isono, M., He, Y., Shimada, M., Kato, K., Jia, N., Hashimoto, S., Kotani, Y., Miyoshi, Y., Tanaka, M., Sobue, A., Mitsutake, N., Suganami, T., … Ogi, T. (2020). Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair.Cell , 180 (6), 1228-1244.e24. https://doi.org/10.1016/j.cell.2020.02.010
Okuda, M., Nakazawa, Y., Guo, C., Ogi, T., & Nishimura, Y. (2017). Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Research ,45 (22), 13043–13055. https://doi.org/10.1093/nar/gkx970
Ploeg, M., Aben, K. K. H., & Kiemeney, L. A. (2009). The present and future burden of urinary bladder cancer in the world. World Journal of Urology , 27 (3), 289–293. https://doi.org/10.1007/s00345-009-0383-3
Prakash, S., & Prakash, L. (2000). Nucleotide excision repair in yeast.Mutation Research , 451 (1–2), 13–24. https://doi.org/10.1016/s0027-5107(00)00037-3
Rapin, I., Lindenbaum, Y., Dickson, D. W., Kraemer, K. H., & Robbins, J. H. (2000). Cockayne syndrome and xeroderma pigmentosum.Neurology , 55 (10), 1442–1449.
Ray Chaudhuri, A., & Nussenzweig, A. (2017). The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nature Reviews Molecular Cell Biology , 18 (10), Article 10. https://doi.org/10.1038/nrm.2017.53
Rimel, J. K., & Taatjes, D. J. (2018). The essential and multifunctional TFIIH complex. Protein Science : A Publication of the Protein Society , 27 (6), 1018–1037. https://doi.org/10.1002/pro.3424
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaçmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry , 73 , 39–85. https://doi.org/10.1146/annurev.biochem.73.011303.073723
Schärer, O. D. (2013). Nucleotide Excision Repair in Eukaryotes.Cold Spring Harbor Perspectives in Biology , 5 (10), a012609. https://doi.org/10.1101/cshperspect.a012609
Scully, R., Panday, A., Elango, R., & Willis, N. A. (2019). DNA double-strand break repair-pathway choice in somatic mammalian cells.Nature Reviews Molecular Cell Biology , 20 (11), Article 11. https://doi.org/10.1038/s41580-019-0152-0
Selby, C. P., & Sancar, A. (1997). Human Transcription-Repair Coupling Factor CSB/ERCC6 Is a DNA-stimulated ATPase but Is Not a Helicase and Does Not Disrupt the Ternary Transcription Complex of Stalled RNA Polymerase II *. Journal of Biological Chemistry , 272 (3), 1885–1890. https://doi.org/10.1074/jbc.272.3.1885
Singh, A., Compe, E., Le May, N., & Egly, J.-M. (2015). TFIIH Subunit Alterations Causing Xeroderma Pigmentosum and Trichothiodystrophy Specifically Disturb Several Steps during Transcription. American Journal of Human Genetics , 96 (2), 194–207. https://doi.org/10.1016/j.ajhg.2014.12.012
Spivak, G. (2015). Nucleotide excision repair in humans. DNA Repair , 36 , 13–18. https://doi.org/10.1016/j.dnarep.2015.09.003
Stefanini, M. (2013). Trichothiodystrophy: A Disorder Highlighting the Crosstalk between DNA Repair and Transcription. In Madame Curie Bioscience Database [Internet] . Landes Bioscience. https://www.ncbi.nlm.nih.gov/books/NBK6285/
Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., & Hanaoka, F. (2005). UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell , 121 (3), 387–400. https://doi.org/10.1016/j.cell.2005.02.035
Sugitani, N., Sivley, R. M., Perry, K. E., Capra, J. A., & Chazin, W. J. (2016). XPA: A key scaffold for human nucleotide excision repair.DNA Repair , 44 , 123–135. https://doi.org/10.1016/j.dnarep.2016.05.018
Takagi, Y., Masuda, C. A., Chang, W.-H., Komori, H., Wang, D., Hunter, T., Joazeiro, C. A. P., & Kornberg, R. D. (2005). Ubiquitin Ligase Activity of TFIIH and the Transcriptional Response to DNA Damage.Molecular Cell , 18 (2), 237–243. https://doi.org/10.1016/j.molcel.2005.03.007
Taylor, E. M., Broughton, B. C., Botta, E., Stefanini, M., Sarasin, A., Jaspers, N. G., Fawcett, H., Harcourt, S. A., Arlett, C. F., & Lehmann, A. R. (1997). Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proceedings of the National Academy of Sciences of the United States of America , 94 (16), 8658–8663. https://doi.org/10.1073/pnas.94.16.8658
Topolska-Woś, A. M., Sugitani, N., Cordoba, J. J., Le Meur, K. V., Le Meur, R. A., Kim, H. S., Yeo, J.-E., Rosenberg, D., Hammel, M., Schärer, O. D., & Chazin, W. J. (2020). A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Research , 48 (4), 2173–2188. https://doi.org/10.1093/nar/gkz1231
Tsutakawa, S. E., Tsai, C.-L., Yan, C., Bralić, A., Chazin, W. J., Hamdan, S. M., Schärer, O. D., Ivanov, I., & Tainer, J. A. (2020). Envisioning how the prototypic molecular machine TFIIH functions in transcription initiation and DNA repair. DNA Repair , 96 , 102972. https://doi.org/10.1016/j.dnarep.2020.102972
Tufegdžić Vidaković, A., Mitter, R., Kelly, G. P., Neumann, M., Harreman, M., Rodríguez-Martínez, M., Herlihy, A., Weems, J. C., Boeing, S., Encheva, V., Gaul, L., Milligan, L., Tollervey, D., Conaway, R. C., Conaway, J. W., Snijders, A. P., Stewart, A., & Svejstrup, J. Q. (2020). Regulation of the RNAPII Pool Is Integral to the DNA Damage Response. Cell , 180 (6), 1245-1261.e21. https://doi.org/10.1016/j.cell.2020.02.009
Uchida, A., Sugasawa, K., Masutani, C., Dohmae, N., Araki, M., Yokoi, M., Ohkuma, Y., & Hanaoka, F. (2002). The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair ,1 (6), 449–461. https://doi.org/10.1016/s1568-7864(02)00031-9
van der Weegen, Y., de Lint, K., van den Heuvel, D., Nakazawa, Y., Mevissen, T. E. T., van Schie, J. J. M., San Martin Alonso, M., Boer, D. E. C., González-Prieto, R., Narayanan, I. V., Klaassen, N. H. M., Wondergem, A. P., Roohollahi, K., Dorsman, J. C., Hara, Y., Vertegaal, A. C. O., de Lange, J., Walter, J. C., Noordermeer, S. M., … Luijsterburg, M. S. (2021). ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation. Nature Cell Biology , 23 (6), 595–607. https://doi.org/10.1038/s41556-021-00688-9
van der Weegen, Y., Golan-Berman, H., Mevissen, T. E. T., Apelt, K., González-Prieto, R., Goedhart, J., Heilbrun, E. E., Vertegaal, A. C. O., van den Heuvel, D., Walter, J. C., Adar, S., & Luijsterburg, M. S. (2020). The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nature Communications ,11 (1), 2104. https://doi.org/10.1038/s41467-020-15903-8
van Eeuwen, T., Shim, Y., Kim, H. J., Zhao, T., Basu, S., Garcia, B. A., Kaplan, C. D., Min, J.-H., & Murakami, K. (2021). Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair. Nature Communications , 12 (1), 3338. https://doi.org/10.1038/s41467-021-23684-x
van Toorn, M., Turkyilmaz, Y., Han, S., Zhou, D., Kim, H.-S., Salas-Armenteros, I., Kim, M., Akita, M., Wienholz, F., Raams, A., Ryu, E., Kang, S., Theil, A. F., Bezstarosti, K., Tresini, M., Giglia-Mari, G., Demmers, J. A., Schärer, O. D., Choi, J.-H., … Marteijn, J. A. (2022). Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Molecular Cell , 82 (7), 1343-1358.e8. https://doi.org/10.1016/j.molcel.2022.02.020
Wang, J. Y. (1998). Cellular responses to DNA damage. Current Opinion in Cell Biology , 10 (2), 240–247. https://doi.org/10.1016/s0955-0674(98)80146-4
Wang, J. Y. J. (2001). DNA damage and apoptosis. Cell Death & Differentiation , 8 (11), Article 11. https://doi.org/10.1038/sj.cdd.4400938
Wang, Y., Chakravarty, P., Ranes, M., Kelly, G., Brooks, P. J., Neilan, E., Stewart, A., Schiavo, G., & Svejstrup, J. Q. (2014). Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease.Proceedings of the National Academy of Sciences of the United States of America , 111 (40), 14454–14459. https://doi.org/10.1073/pnas.1412569111
Winkler, G. S., Sugasawa, K., Eker, A. P. M., de Laat, W. L., & Hoeijmakers, J. H. J. (2001). Novel Functional Interactions between Nucleotide Excision DNA Repair Proteins Influencing the Enzymatic Activities of TFIIH, XPG, and ERCC1-XPF. Biochemistry ,40 (1), 160–165. https://doi.org/10.1021/bi002021b
Wong, K. H., Jin, Y., & Struhl, K. (2014). TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Molecular Cell , 54 (4), 601–612. https://doi.org/10.1016/j.molcel.2014.03.024
Xu, J., Lahiri, I., Wang, W., Wier, A., Cianfrocco, M. A., Chong, J., Hare, A. A., Dervan, P. B., DiMaio, F., Leschziner, A. E., & Wang, D. (2017). Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature , 551 (7682), 653–657. https://doi.org/10.1038/nature24658
Yi, C., & He, C. (2013). DNA repair by reversal of DNA damage.Cold Spring Harbor Perspectives in Biology , 5 (1), a012575. https://doi.org/10.1101/cshperspect.a012575
Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., & Hanaoka, F. (2000). The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. The Journal of Biological Chemistry ,275 (13), 9870–9875. https://doi.org/10.1074/jbc.275.13.9870
Zurita, M., & Cruz-Becerra, G. (2016). TFIIH: New Discoveries Regarding its Mechanisms and Impact on Cancer Treatment. Journal of Cancer ,7 (15), 2258–2265. https://doi.org/10.7150/jca.16966