References:
Araújo, S. J., Tirode, F., Coin, F., Pospiech, H., Syväoja, J. E.,
Stucki, M., Hübscher, U., Egly, J.-M., & Wood, R. D. (2000). Nucleotide
excision repair of DNA with recombinant human proteins: Definition of
the minimal set of factors, active forms of TFIIH, and modulation by
CAK. Genes & Development , 14 (3), 349–359.
Botta, E., Nardo, T., Lehmann, A. R., Egly, J.-M., Pedrini, A. M., &
Stefanini, M. (2002). Reduced level of the repair/transcription factor
TFIIH in trichothiodystrophy. Human Molecular Genetics ,11 (23), 2919–2928. https://doi.org/10.1093/hmg/11.23.2919
Chatterjee, N., & Walker, G. C. (2017). Mechanisms of DNA damage,
repair and mutagenesis. Environmental and Molecular Mutagenesis ,58 (5), 235–263. https://doi.org/10.1002/em.22087
Chen, X., Velmurugu, Y., Zheng, G., Park, B., Shim, Y., Kim, Y., Liu,
L., Van Houten, B., He, C., Ansari, A., & Min, J.-H. (2015). Kinetic
gating mechanism of DNA damage recognition by Rad4/XPC. Nature
Communications , 6 (1), Article 1.
https://doi.org/10.1038/ncomms6849
Ciccia, A., & Elledge, S. J. (2010). The DNA damage response: Making it
safe to play with knives. Molecular Cell , 40 (2), 179–204.
https://doi.org/10.1016/j.molcel.2010.09.019
Cleaver, J. E. (2008). Diagnosis of Xeroderma Pigmentosum and Related
DNA Repair-Deficient Cutaneous Diseases. Current Medical
Literature. Dermatology , 13 (2), 41–48.
Coin, F., Marinoni, J. C., Rodolfo, C., Fribourg, S., Pedrini, A. M., &
Egly, J. M. (1998). Mutations in the XPD helicase gene result in XP and
TTD phenotypes, preventing interaction between XPD and the p44 subunit
of TFIIH. Nature Genetics , 20 (2), 184–188.
https://doi.org/10.1038/2491
Coin, F., Oksenych, V., & Egly, J.-M. (2007). Distinct roles for the
XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during
nucleotide excision repair. Molecular Cell , 26 (2),
245–256. https://doi.org/10.1016/j.molcel.2007.03.009
Coin, F., Oksenych, V., Mocquet, V., Groh, S., Blattner, C., & Egly, J.
M. (2008). Nucleotide excision repair driven by the dissociation of CAK
from TFIIH. Molecular Cell , 31 (1), 9–20.
https://doi.org/10.1016/j.molcel.2008.04.024
Compe, E., & Egly, J.-M. (2012). TFIIH: When transcription met DNA
repair. Nature Reviews. Molecular Cell Biology , 13 (6),
343–354. https://doi.org/10.1038/nrm3350
Cooke, M. S., Evans, M. D., Dizdaroglu, M., & Lunec, J. (2003).
Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB
Journal: Official Publication of the Federation of American Societies
for Experimental Biology , 17 (10), 1195–1214.
https://doi.org/10.1096/fj.02-0752rev
Dienemann, C., Schwalb, B., Schilbach, S., & Cramer, P. (2019).
Promoter Distortion and Opening in the RNA Polymerase II Cleft.Molecular Cell , 73 (1), 97-106.e4.
https://doi.org/10.1016/j.molcel.2018.10.014
Duan, M., Selvam, K., Wyrick, J. J., & Mao, P. (2020). Genome-wide role
of Rad26 in promoting transcription-coupled nucleotide excision repair
in yeast chromatin. Proceedings of the National Academy of
Sciences , 117 (31), 18608–18616.
https://doi.org/10.1073/pnas.2003868117
Duan, M., Speer, R. M., Ulibarri, J., Liu, K. J., & Mao, P. (2021).
Transcription-coupled nucleotide excision repair: New insights revealed
by genomic approaches. DNA Repair , 103 , 103126.
https://doi.org/10.1016/j.dnarep.2021.103126
Dubaele, S., Proietti De Santis, L., Bienstock, R. J., Keriel, A.,
Stefanini, M., Van Houten, B., & Egly, J.-M. (2003). Basal
transcription defect discriminates between xeroderma pigmentosum and
trichothiodystrophy in XPD patients. Molecular Cell ,11 (6), 1635–1646. https://doi.org/10.1016/s1097-2765(03)00182-5
Fishburn, J., Tomko, E., Galburt, E., & Hahn, S. (2015).
Double-stranded DNA translocase activity of transcription factor TFIIH
and the mechanism of RNA polymerase II open complex formation.Proceedings of the National Academy of Sciences , 112 (13),
3961–3966. https://doi.org/10.1073/pnas.1417709112
Fousteri, M., & Mullenders, L. H. (2008). Transcription-coupled
nucleotide excision repair in mammalian cells: Molecular mechanisms and
biological effects. Cell Research , 18 (1), Article 1.
https://doi.org/10.1038/cr.2008.6
Freedman, N. D., Silverman, D. T., Hollenbeck, A. R., Schatzkin, A., &
Abnet, C. C. (2011). Association between smoking and risk of bladder
cancer among men and women. JAMA , 306 (7), 737–745.
https://doi.org/10.1001/jama.2011.1142
Fuss, J. O., & Tainer, J. A. (2011). XPB and XPD helicases in TFIIH
orchestrate DNA duplex opening and damage verification to coordinate
repair with transcription and cell cycle via CAK kinase. DNA
Repair , 10 (7), 697–713.
https://doi.org/10.1016/j.dnarep.2011.04.028
Giglia-Mari, G., Zotter, A., & Vermeulen, W. (2011). DNA damage
response. Cold Spring Harbor Perspectives in Biology ,3 (1), a000745. https://doi.org/10.1101/cshperspect.a000745
Groisman, R., Kuraoka, I., Chevallier, O., Gaye, N., Magnaldo, T.,
Tanaka, K., Kisselev, A. F., Harel-Bellan, A., & Nakatani, Y. (2006).
CSA-dependent degradation of CSB by the ubiquitin–proteasome pathway
establishes a link between complementation factors of the Cockayne
syndrome. Genes & Development , 20 (11), 1429–1434.
https://doi.org/10.1101/gad.378206
Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M.,
Drapkin, R., Kisselev, A. F., Tanaka, K., & Nakatani, Y. (2003). The
ubiquitin ligase activity in the DDB2 and CSA complexes is
differentially regulated by the COP9 signalosome in response to DNA
damage. Cell , 113 (3), 357–367.
https://doi.org/10.1016/s0092-8674(03)00316-7
Helenius, K., Yang, Y., Tselykh, T. V., Pessa, H. K. J., Frilander, M.
J., & Mäkelä, T. P. (2011). Requirement of TFIIH kinase subunit Mat1
for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and
mRNA turnover. Nucleic Acids Research , 39 (12), 5025–5035.
https://doi.org/10.1093/nar/gkr107
Hu, J., Adar, S., Selby, C. P., Lieb, J. D., & Sancar, A. (2015).
Genome-wide analysis of human global and transcription-coupled excision
repair of UV damage at single-nucleotide resolution. Genes &
Development , 29 (9), 948–960.
https://doi.org/10.1101/gad.261271.115
Huang, J. C., Svoboda, D. L., Reardon, J. T., & Sancar, A. (1992).
Human nucleotide excision nuclease removes thymine dimers from DNA by
incising the 22nd phosphodiester bond 5’ and the 6th phosphodiester bond
3’ to the photodimer. Proceedings of the National Academy of
Sciences , 89 (8), 3664–3668.
https://doi.org/10.1073/pnas.89.8.3664
Kim, J., Mouw, K. W., Polak, P., Braunstein, L. Z., Kamburov, A.,
Kwiatkowski, D. J., Rosenberg, J. E., Van Allen, E. M., D’Andrea, A., &
Getz, G. (2016). Somatic ERCC2 mutations are associated with a distinct
genomic signature in urothelial tumors. Nature Genetics ,48 (6), 600–606. https://doi.org/10.1038/ng.3557
Kokic, G., Chernev, A., Tegunov, D., Dienemann, C., Urlaub, H., &
Cramer, P. (2019). Structural basis of TFIIH activation for nucleotide
excision repair. Nature Communications , 10 , 2885.
https://doi.org/10.1038/s41467-019-10745-5
Kokic, G., Wagner, F. R., Chernev, A., Urlaub, H., & Cramer, P. (2021).
Structural basis of human transcription–DNA repair coupling.Nature , 598 (7880), Article 7880.
https://doi.org/10.1038/s41586-021-03906-4
Kraemer, K. H., DiGiovanna, J. J., & Tamura, D. (2022). Xeroderma
Pigmentosum. In GeneReviews® [Internet] . University of
Washington, Seattle. https://www.ncbi.nlm.nih.gov/books/NBK1397/
Krasikova, Y., Rechkunova, N., & Lavrik, O. (2021). Nucleotide Excision
Repair: From Molecular Defects to Neurological Abnormalities.International Journal of Molecular Sciences , 22 (12), 6220.
https://doi.org/10.3390/ijms22126220
Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Anarbaev, R. O.,
Pestryakov, P. E., Sugasawa, K., Min, J.-H., & Lavrik, O. I. (2013).
Human and yeast DNA damage recognition complexes bind with high affinity
DNA structures mimicking in size transcription bubble. Journal of
Molecular Recognition: JMR , 26 (12), 653–661.
https://doi.org/10.1002/jmr.2308
Krokan, H. E., & Bjørås, M. (2013). Base Excision Repair. Cold
Spring Harbor Perspectives in Biology , 5 (4), a012583.
https://doi.org/10.1101/cshperspect.a012583
Kuper, J., Braun, C., Elias, A., Michels, G., Sauer, F., Schmitt, D. R.,
Poterszman, A., Egly, J.-M., & Kisker, C. (2014). In TFIIH, XPD
Helicase Is Exclusively Devoted to DNA Repair. PLOS Biology ,12 (9), e1001954. https://doi.org/10.1371/journal.pbio.1001954
Kusakabe, M., Onishi, Y., Tada, H., Kurihara, F., Kusao, K., Furukawa,
M., Iwai, S., Yokoi, M., Sakai, W., & Sugasawa, K. (2019). Mechanism
and regulation of DNA damage recognition in nucleotide excision repair.Genes and Environment , 41 (1), 2.
https://doi.org/10.1186/s41021-019-0119-6
Laat, W. L. de, Jaspers, N. G. J., & Hoeijmakers, J. H. J. (1999).
Molecular mechanism of nucleotide excision repair. Genes &
Development , 13 (7), 768–785.
Lainé, J.-P., & Egly, J.-M. (2006). Initiation of DNA repair mediated
by a stalled RNA polymerase IIO. The EMBO Journal , 25 (2),
387–397. https://doi.org/10.1038/sj.emboj.7600933
Lehmann, A. R. (2001). The xeroderma pigmentosum group D (XPD) gene: One
gene, two functions, three diseases. Genes & Development ,15 (1), 15–23. https://doi.org/10.1101/gad.859501
Li, G.-M. (2008). Mechanisms and functions of DNA mismatch repair.Cell Research , 18 (1), Article 1.
https://doi.org/10.1038/cr.2007.115
Li, Q., Damish, A. W., Frazier, Z., Liu, D., Reznichenko, E., Kamburov,
A., Bell, A., Zhao, H., Jordan, E. J., Gao, S. P., Ma, J., Abbosh, P.
H., Bellmunt, J., Plimack, E. R., Lazaro, J.-B., Solit, D. B., Bajorin,
D., Rosenberg, J. E., D’Andrea, A. D., … Mouw, K. W. (2019).
ERCC2 Helicase Domain Mutations Confer Nucleotide Excision Repair
Deficiency and Drive Cisplatin Sensitivity in Muscle-Invasive Bladder
Cancer. Clinical Cancer Research: An Official Journal of the
American Association for Cancer Research , 25 (3), 977–988.
https://doi.org/10.1158/1078-0432.CCR-18-1001
Lieber, M. R. (2010). The Mechanism of Double-Strand DNA Break Repair by
the Nonhomologous DNA End Joining Pathway. Annual Review of
Biochemistry , 79 , 181–211.
https://doi.org/10.1146/annurev.biochem.052308.093131
Marteijn, J. A., Lans, H., Vermeulen, W., & Hoeijmakers, J. H. J.
(2014). Understanding nucleotide excision repair and its roles in cancer
and ageing. Nature Reviews. Molecular Cell Biology , 15 (7),
465–481. https://doi.org/10.1038/nrm3822
Martens, M. C., Emmert, S., & Boeckmann, L. (2021). Xeroderma
Pigmentosum: Gene Variants and Splice Variants. Genes ,12 (8), 1173. https://doi.org/10.3390/genes12081173
Martin, L. J. (2008). DNA Damage and Repair: Relevance to Mechanisms of
Neurodegeneration. Journal of Neuropathology and Experimental
Neurology , 67 (5), 377–387.
https://doi.org/10.1097/NEN.0b013e31816ff780
Mathieu, N., Kaczmarek, N., Rüthemann, P., Luch, A., & Naegeli, H.
(2013). DNA quality control by a lesion sensor pocket of the xeroderma
pigmentosum group D helicase subunit of TFIIH. Current Biology:
CB , 23 (3), 204–212. https://doi.org/10.1016/j.cub.2012.12.032
Min, J.-H., & Pavletich, N. P. (2007). Recognition of DNA damage by the
Rad4 nucleotide excision repair protein. Nature ,449 (7162), Article 7162. https://doi.org/10.1038/nature06155
Mu, H., Geacintov, N. E., Broyde, S., Yeo, J.-E., & Schärer, O. D.
(2018). MOLECULAR BASIS FOR DAMAGE RECOGNITION AND VERIFICATION BY
XPC-RAD23B AND TFIIH IN NUCLEOTIDE EXCISION REPAIR. DNA Repair ,71 , 33–42. https://doi.org/10.1016/j.dnarep.2018.08.005
Nakazawa, Y., Hara, Y., Oka, Y., Komine, O., van den Heuvel, D., Guo,
C., Daigaku, Y., Isono, M., He, Y., Shimada, M., Kato, K., Jia, N.,
Hashimoto, S., Kotani, Y., Miyoshi, Y., Tanaka, M., Sobue, A.,
Mitsutake, N., Suganami, T., … Ogi, T. (2020). Ubiquitination of
DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair.Cell , 180 (6), 1228-1244.e24.
https://doi.org/10.1016/j.cell.2020.02.010
Okuda, M., Nakazawa, Y., Guo, C., Ogi, T., & Nishimura, Y. (2017).
Common TFIIH recruitment mechanism in global genome and
transcription-coupled repair subpathways. Nucleic Acids Research ,45 (22), 13043–13055. https://doi.org/10.1093/nar/gkx970
Ploeg, M., Aben, K. K. H., & Kiemeney, L. A. (2009). The present and
future burden of urinary bladder cancer in the world. World
Journal of Urology , 27 (3), 289–293.
https://doi.org/10.1007/s00345-009-0383-3
Prakash, S., & Prakash, L. (2000). Nucleotide excision repair in yeast.Mutation Research , 451 (1–2), 13–24.
https://doi.org/10.1016/s0027-5107(00)00037-3
Rapin, I., Lindenbaum, Y., Dickson, D. W., Kraemer, K. H., & Robbins,
J. H. (2000). Cockayne syndrome and xeroderma pigmentosum.Neurology , 55 (10), 1442–1449.
Ray Chaudhuri, A., & Nussenzweig, A. (2017). The multifaceted roles of
PARP1 in DNA repair and chromatin remodelling. Nature Reviews
Molecular Cell Biology , 18 (10), Article 10.
https://doi.org/10.1038/nrm.2017.53
Rimel, J. K., & Taatjes, D. J. (2018). The essential and
multifunctional TFIIH complex. Protein Science : A Publication of
the Protein Society , 27 (6), 1018–1037.
https://doi.org/10.1002/pro.3424
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaçmaz, K., & Linn, S. (2004).
Molecular mechanisms of mammalian DNA repair and the DNA damage
checkpoints. Annual Review of Biochemistry , 73 , 39–85.
https://doi.org/10.1146/annurev.biochem.73.011303.073723
Schärer, O. D. (2013). Nucleotide Excision Repair in Eukaryotes.Cold Spring Harbor Perspectives in Biology , 5 (10),
a012609. https://doi.org/10.1101/cshperspect.a012609
Scully, R., Panday, A., Elango, R., & Willis, N. A. (2019). DNA
double-strand break repair-pathway choice in somatic mammalian cells.Nature Reviews Molecular Cell Biology , 20 (11), Article 11.
https://doi.org/10.1038/s41580-019-0152-0
Selby, C. P., & Sancar, A. (1997). Human Transcription-Repair Coupling
Factor CSB/ERCC6 Is a DNA-stimulated ATPase but Is Not a Helicase and
Does Not Disrupt the Ternary Transcription Complex of Stalled RNA
Polymerase II *. Journal of Biological Chemistry , 272 (3),
1885–1890. https://doi.org/10.1074/jbc.272.3.1885
Singh, A., Compe, E., Le May, N., & Egly, J.-M. (2015). TFIIH Subunit
Alterations Causing Xeroderma Pigmentosum and Trichothiodystrophy
Specifically Disturb Several Steps during Transcription. American
Journal of Human Genetics , 96 (2), 194–207.
https://doi.org/10.1016/j.ajhg.2014.12.012
Spivak, G. (2015). Nucleotide excision repair in humans. DNA
Repair , 36 , 13–18. https://doi.org/10.1016/j.dnarep.2015.09.003
Stefanini, M. (2013). Trichothiodystrophy: A Disorder Highlighting the
Crosstalk between DNA Repair and Transcription. In Madame Curie
Bioscience Database [Internet] . Landes Bioscience.
https://www.ncbi.nlm.nih.gov/books/NBK6285/
Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G.,
Mori, T., Iwai, S., Tanaka, K., Tanaka, K., & Hanaoka, F. (2005).
UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin
ligase complex. Cell , 121 (3), 387–400.
https://doi.org/10.1016/j.cell.2005.02.035
Sugitani, N., Sivley, R. M., Perry, K. E., Capra, J. A., & Chazin, W.
J. (2016). XPA: A key scaffold for human nucleotide excision repair.DNA Repair , 44 , 123–135.
https://doi.org/10.1016/j.dnarep.2016.05.018
Takagi, Y., Masuda, C. A., Chang, W.-H., Komori, H., Wang, D., Hunter,
T., Joazeiro, C. A. P., & Kornberg, R. D. (2005). Ubiquitin Ligase
Activity of TFIIH and the Transcriptional Response to DNA Damage.Molecular Cell , 18 (2), 237–243.
https://doi.org/10.1016/j.molcel.2005.03.007
Taylor, E. M., Broughton, B. C., Botta, E., Stefanini, M., Sarasin, A.,
Jaspers, N. G., Fawcett, H., Harcourt, S. A., Arlett, C. F., & Lehmann,
A. R. (1997). Xeroderma pigmentosum and trichothiodystrophy are
associated with different mutations in the XPD (ERCC2)
repair/transcription gene. Proceedings of the National Academy of
Sciences of the United States of America , 94 (16), 8658–8663.
https://doi.org/10.1073/pnas.94.16.8658
Topolska-Woś, A. M., Sugitani, N., Cordoba, J. J., Le Meur, K. V., Le
Meur, R. A., Kim, H. S., Yeo, J.-E., Rosenberg, D., Hammel, M., Schärer,
O. D., & Chazin, W. J. (2020). A key interaction with RPA orients XPA
in NER complexes. Nucleic Acids Research , 48 (4),
2173–2188. https://doi.org/10.1093/nar/gkz1231
Tsutakawa, S. E., Tsai, C.-L., Yan, C., Bralić, A., Chazin, W. J.,
Hamdan, S. M., Schärer, O. D., Ivanov, I., & Tainer, J. A. (2020).
Envisioning how the prototypic molecular machine TFIIH functions in
transcription initiation and DNA repair. DNA Repair , 96 ,
102972. https://doi.org/10.1016/j.dnarep.2020.102972
Tufegdžić Vidaković, A., Mitter, R., Kelly, G. P., Neumann, M.,
Harreman, M., Rodríguez-Martínez, M., Herlihy, A., Weems, J. C., Boeing,
S., Encheva, V., Gaul, L., Milligan, L., Tollervey, D., Conaway, R. C.,
Conaway, J. W., Snijders, A. P., Stewart, A., & Svejstrup, J. Q.
(2020). Regulation of the RNAPII Pool Is Integral to the DNA Damage
Response. Cell , 180 (6), 1245-1261.e21.
https://doi.org/10.1016/j.cell.2020.02.009
Uchida, A., Sugasawa, K., Masutani, C., Dohmae, N., Araki, M., Yokoi,
M., Ohkuma, Y., & Hanaoka, F. (2002). The carboxy-terminal domain of
the XPC protein plays a crucial role in nucleotide excision repair
through interactions with transcription factor IIH. DNA Repair ,1 (6), 449–461. https://doi.org/10.1016/s1568-7864(02)00031-9
van der Weegen, Y., de Lint, K., van den Heuvel, D., Nakazawa, Y.,
Mevissen, T. E. T., van Schie, J. J. M., San Martin Alonso, M., Boer, D.
E. C., González-Prieto, R., Narayanan, I. V., Klaassen, N. H. M.,
Wondergem, A. P., Roohollahi, K., Dorsman, J. C., Hara, Y., Vertegaal,
A. C. O., de Lange, J., Walter, J. C., Noordermeer, S. M., …
Luijsterburg, M. S. (2021). ELOF1 is a transcription-coupled DNA repair
factor that directs RNA polymerase II ubiquitylation. Nature Cell
Biology , 23 (6), 595–607.
https://doi.org/10.1038/s41556-021-00688-9
van der Weegen, Y., Golan-Berman, H., Mevissen, T. E. T., Apelt, K.,
González-Prieto, R., Goedhart, J., Heilbrun, E. E., Vertegaal, A. C. O.,
van den Heuvel, D., Walter, J. C., Adar, S., & Luijsterburg, M. S.
(2020). The cooperative action of CSB, CSA, and UVSSA target TFIIH to
DNA damage-stalled RNA polymerase II. Nature Communications ,11 (1), 2104. https://doi.org/10.1038/s41467-020-15903-8
van Eeuwen, T., Shim, Y., Kim, H. J., Zhao, T., Basu, S., Garcia, B. A.,
Kaplan, C. D., Min, J.-H., & Murakami, K. (2021). Cryo-EM structure of
TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision
repair. Nature Communications , 12 (1), 3338.
https://doi.org/10.1038/s41467-021-23684-x
van Toorn, M., Turkyilmaz, Y., Han, S., Zhou, D., Kim, H.-S.,
Salas-Armenteros, I., Kim, M., Akita, M., Wienholz, F., Raams, A., Ryu,
E., Kang, S., Theil, A. F., Bezstarosti, K., Tresini, M., Giglia-Mari,
G., Demmers, J. A., Schärer, O. D., Choi, J.-H., … Marteijn, J.
A. (2022). Active DNA damage eviction by HLTF stimulates nucleotide
excision repair. Molecular Cell , 82 (7), 1343-1358.e8.
https://doi.org/10.1016/j.molcel.2022.02.020
Wang, J. Y. (1998). Cellular responses to DNA damage. Current
Opinion in Cell Biology , 10 (2), 240–247.
https://doi.org/10.1016/s0955-0674(98)80146-4
Wang, J. Y. J. (2001). DNA damage and apoptosis. Cell Death &
Differentiation , 8 (11), Article 11.
https://doi.org/10.1038/sj.cdd.4400938
Wang, Y., Chakravarty, P., Ranes, M., Kelly, G., Brooks, P. J., Neilan,
E., Stewart, A., Schiavo, G., & Svejstrup, J. Q. (2014). Dysregulation
of gene expression as a cause of Cockayne syndrome neurological disease.Proceedings of the National Academy of Sciences of the United
States of America , 111 (40), 14454–14459.
https://doi.org/10.1073/pnas.1412569111
Winkler, G. S., Sugasawa, K., Eker, A. P. M., de Laat, W. L., &
Hoeijmakers, J. H. J. (2001). Novel Functional Interactions between
Nucleotide Excision DNA Repair Proteins Influencing the Enzymatic
Activities of TFIIH, XPG, and ERCC1-XPF. Biochemistry ,40 (1), 160–165. https://doi.org/10.1021/bi002021b
Wong, K. H., Jin, Y., & Struhl, K. (2014). TFIIH phosphorylation of the
Pol II CTD stimulates mediator dissociation from the preinitiation
complex and promoter escape. Molecular Cell , 54 (4),
601–612. https://doi.org/10.1016/j.molcel.2014.03.024
Xu, J., Lahiri, I., Wang, W., Wier, A., Cianfrocco, M. A., Chong, J.,
Hare, A. A., Dervan, P. B., DiMaio, F., Leschziner, A. E., & Wang, D.
(2017). Structural basis for the initiation of eukaryotic
transcription-coupled DNA repair. Nature , 551 (7682),
653–657. https://doi.org/10.1038/nature24658
Yi, C., & He, C. (2013). DNA repair by reversal of DNA damage.Cold Spring Harbor Perspectives in Biology , 5 (1), a012575.
https://doi.org/10.1101/cshperspect.a012575
Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., &
Hanaoka, F. (2000). The xeroderma pigmentosum group C protein complex
XPC-HR23B plays an important role in the recruitment of transcription
factor IIH to damaged DNA. The Journal of Biological Chemistry ,275 (13), 9870–9875. https://doi.org/10.1074/jbc.275.13.9870
Zurita, M., & Cruz-Becerra, G. (2016). TFIIH: New Discoveries Regarding
its Mechanisms and Impact on Cancer Treatment. Journal of Cancer ,7 (15), 2258–2265. https://doi.org/10.7150/jca.16966