References
1. Smolen J, Aletaha D, McInnes I. Rheumatoid arthritis. Lancet (London, England). 2016;388(10055):2023-38.
2. Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. Journal of hematology & oncology. 2019;12(1):84.
3. Magcwebeba T, Dorhoi A, du Plessis N. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis. Frontiers in immunology. 2019;10:917.
4. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nature immunology. 2018;19(2):108-19.
5. Gabrilovich D, Bronte V, Chen S, Colombo M, Ochoa A, Ostrand-Rosenberg S, et al. The terminology issue for myeloid-derived suppressor cells. Cancer research. 2007;67(1):425; author reply 6.
6. Bronte V, Brandau S, Chen S, Colombo M, Frey A, Greten T, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature communications. 2016;7:12150.
7. Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, et al. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. Journal of immunology (Baltimore, Md : 1950). 2013;191(3):1073-81.
8. Wang W, Jiao Z, Duan T, Liu M, Zhu B, Zhang Y, et al. Functional characterization of myeloid-derived suppressor cell subpopulations during the development of experimental arthritis. European journal of immunology. 2015;45(2):464-73.
9. Guo C, Hu F, Yi H, Feng Z, Li C, Shi L, et al. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Annals of the rheumatic diseases. 2016;75(1):278-85.
10. Zhang H, Wang S, Huang Y, Wang H, Zhao J, Gaskin F, et al. Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating Th17 cell differentiation. Clinical immunology (Orlando, Fla). 2015;157(2):175-86.
11. Park M, Lee S, Kim E, Lee E, Baek J, Park S, et al. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci Rep. 2018;8(1):3753.
12. Scherer H, van der Woude D, Toes R. From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nature reviews Rheumatology. 2022;18(7):371-83.
13. Kruglov A, Drutskaya M, Schlienz D, Gorshkova E, Kurz K, Morawietz L, et al. Contrasting contributions of TNF from distinct cellular sources in arthritis. Annals of the rheumatic diseases. 2020;79(11):1453-9.
14. Qin Y, Cai M, Jin H, Huang W, Zhu C, Bozec A, et al. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways. Annals of the rheumatic diseases. 2022.
15. Wang J, Yang C, Hou X, Xu J, Yun Y, Qin L, et al. Rapamycin Modulates the Proinflammatory Memory-Like Response of Microglia Induced by BAFF. Frontiers in immunology. 2021;12:639049.
16. Ringheim G, Wampole M, Oberoi K. Bruton’s Tyrosine Kinase (BTK) Inhibitors and Autoimmune Diseases: Making Sense of BTK Inhibitor Specificity Profiles and Recent Clinical Trial Successes and Failures. Frontiers in immunology. 2021;12:662223.
17. Mohamed A, Yu L, Bäckesjö C, Vargas L, Faryal R, Aints A, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009;228(1):58-73.
18. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology. 2010;11(5):373-84.
19. Möckel T, Basta F, Weinmann-Menke J, Schwarting A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE). Autoimmunity reviews. 2021;20(2):102736.
20. Schiemann B, Gommerman J, Vora K, Cachero T, Shulga-Morskaya S, Dobles M, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science (New York, NY). 2001;293(5537):2111-4.
21. Batten M, Groom J, Cachero T, Qian F, Schneider P, Tschopp J, et al. BAFF mediates survival of peripheral immature B lymphocytes. The Journal of experimental medicine. 2000;192(10):1453-66.
22. Marsters S, Yan M, Pitti R, Haas P, Dixit V, Ashkenazi A. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Current biology : CB. 2000;10(13):785-8.
23. Thompson J, Bixler S, Qian F, Vora K, Scott M, Cachero T, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science (New York, NY). 2001;293(5537):2108-11.
24. Brightbill H, Jackman J, Suto E, Kennedy H, Jones C, Chalasani S, et al. Conditional Deletion of NF-κB-Inducing Kinase (NIK) in Adult Mice Disrupts Mature B Cell Survival and Activation. Journal of immunology (Baltimore, Md : 1950). 2015;195(3):953-64.
25. Burmester G, Feist E, Dörner T. Emerging cell and cytokine targets in rheumatoid arthritis. Nature reviews Rheumatology. 2014;10(2):77-88.
26. Crook K, Jin M, Weeks M, Rampersad R, Baldi R, Glekas A, et al. Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J Leukoc Biol. 2015;97(3):573-82.
27. Jang E, Cho S, Pyo S, Nam J, Youn J. An Inflammatory Loop Between Spleen-Derived Myeloid Cells and CD4 T Cells Leads to Accumulation of Long-Lived Plasma Cells That Exacerbates Lupus Autoimmunity. Frontiers in immunology. 2021;12:631472.
28. Assi L, Wong S, Ludwig A, Raza K, Gordon C, Salmon M, et al. Tumor necrosis factor alpha activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis and rheumatism. 2007;56(6):1776-86.
29. Knier B, Hiltensperger M, Sie C, Aly L, Lepennetier G, Engleitner T, et al. Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nature immunology. 2018;19(12):1341-51.
30. Youn J, Collazo M, Shalova I, Biswas S, Gabrilovich D. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol. 2012;91(1):167-81.
31. Rui K, Hong Y, Zhu Q, Shi X, Xiao F, Fu H, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate murine Sjögren’s syndrome by modulating the function of myeloid-derived suppressor cells. Cellular & molecular immunology. 2021;18(2):440-51.
32. Shi G, Li D, Zhang D, Xu Y, Pan Y, Lu L, et al. IRF-8/miR-451a regulates M-MDSC differentiation via the AMPK/mTOR signal pathway during lupus development. Cell death discovery. 2021;7(1):179.
33. Pang B, Zhen Y, Hu C, Ma Z, Lin S, Yi H. Myeloid-derived suppressor cells shift Th17/Treg ratio and promote systemic lupus erythematosus progression through arginase-1/miR-322-5p/TGF-β pathway. Clinical science (London, England : 1979). 2020;134(16):2209-22.
34. Taher T, Bystrom J, Ong V, Isenberg D, Renaudineau Y, Abraham D, et al. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clinical reviews in allergy & immunology. 2017;53(2):237-64.
35. Wu D, Poholek C, Majumder S, Liu Q, Revu S, Mohib K, et al. IL-17-dependent fibroblastic reticular cell training boosts tissue protective mucosal immunity through IL-10-producing B cells. Science immunology. 2021;6(66):eaao3669.
36. Yin Y, Yang X, Wu S, Ding X, Zhu H, Long X, et al. Jmjd1c demethylates STAT3 to restrain plasma cell differentiation and rheumatoid arthritis. Nature immunology. 2022;23(9):1342-54.
37. Carnrot C, Prokopec K, Råsbo K, Karlsson M, Kleinau S. Marginal zone B cells are naturally reactive to collagen type II and are involved in the initiation of the immune response in collagen-induced arthritis. Cellular & molecular immunology. 2011;8(4):296-304.
38. Dahdah A, Habir K, Nandakumar K, Saxena A, Xu B, Holmdahl R, et al. Germinal Center B Cells Are Essential for Collagen-Induced Arthritis. Arthritis & rheumatology (Hoboken, NJ). 2018;70(2):193-203.